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ABSTRACT Breast cancer stands as one of the predominant health challenges globally, affecting millions
of women every year and necessitating early and accurate detection to optimize patient outcomes. Currently,
while deep convolutional neural networks (DCNNs) have shown promise in breast cancer detection, their
application is often hampered by privacy concerns associated with sharing patient data and the limitation of
training on small, localized datasets. Addressing these challenges, this manuscript introduces an effective
federated learning approach tailored for breast cancer detection, leveraging DCNNs across diverse and large
datasets without compromising data privacy. Our experimental findings underscore significant advancements
in detection accuracy of 98.9% on three large scale datasets which are VINDR-MAMMO, CMMD, and
INBREAST. Additionally, we tested the proposed federated learning performance, showcasing the potential
of our approach as a robust and privacy-preserving solution for future breast cancer diagnostic strategies.

INDEX TERMS Breast cancer detection, federated learning, deep convolutional neural networks, DCNN,
medical image analysis, healthcare data privacy.

I. INTRODUCTION
Breast cancer represents one of the main causes of mortal-
ity in the world [1]. According to the latest statistics, it is
estimated that 1 in 8 women will be diagnosed with breast
cancer throughout their lives,1 making it a highly relevant
public health problem. Early detection of this disease is cru-
cial, as it significantly increases survival rates and allows the
implementation of less invasive treatments [2].
In recent years, artificial intelligence (AI) has revolu-

tionized the field of medicine, especially in the field of
diagnosis [3]. Deep learning algorithms, specifically the deep
convolutional neural networks (DCNN), have proven to be
extremely efficient tools in the detection and diagnosis of
diseases, including breast cancer [4], [5], [6]. By leveraging
these technologies, it is possible to improve the accuracy of
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diagnosis and accelerate the healing process [7]. However,
when using AI algorithms for medical diagnosis, concerns
arise regarding the privacy and security of patient data. There-
fore, it is essential to address these issues when developing
AI-based solutions [8], [9].

As advances continue in the domain of breast cancer
diagnosis through machine learning and other computa-
tional techniques, it’s crucial to address and refine certain
limitations present in existing research [10]. A significant
challenge faced by many studies is their dependence on lim-
ited datasets [10]. The robustness and reliability of machine
learning models are profoundly influenced by dataset size.
While smaller datasets might be more manageable, they often
fail to capture the diverse variations present in real-world
medical scenarios [11]. Such limited datasets can lead to
biases, resulting in overfitting, where the model excels with
the training data but underperforms when presented with new,
unseen cases.

Increasing the dataset size in deep learning models, partic-
ularly for breast cancer early detection, directly contributes
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to accuracy improvement in several keyways [12], including
the following benefits:

• Reduction of Overfitting: DCNNs are known for their
capacity to learn complex patterns. However, with
smaller datasets, there’s a significant risk that the model
will learn noise and specificities of the training data
instead of generalizing patterns [13], [14]. Increasing the
dataset size provides the model with a more varied set of
examples, reducing the likelihood that it will memorize
the training data and improving its ability to generalize
to new, unseen data.

• Enhanced Feature Learning: DCNNs learn features
automatically from the data. With a larger dataset, the
network has access to a more diverse set of features,
including subtle variations in breast cancer presenta-
tions [15]. This diversity is crucial for early detection
where differences in imaging might be minimal and not
well-represented in smaller datasets.

• Improved Robustness: A larger dataset is likely to
include a wider range of cases, including rare and atyp-
ical presentations of breast cancer [16]. This diversity
can make the model more robust, as it learns to iden-
tify cancer across a broader spectrum of cases, thereby
improving its diagnostic accuracy.

• Balanced Class Distribution: In breast cancer detection,
datasets can suffer from class imbalance (e.g., more
benign cases than malignant). Larger datasets can help
balance this distribution, allowing the model to learn
equally from both classes and improving its diagnostic
precision and recall [17].

• Cross-Patient and Cross-Institutional Generalization:
Breast cancer presentations can vary significantly
between patients and institutions (due to different imag-
ing equipment, techniques, etc.) [18]. Larger datasets,
particularly in a federated learning context [19], can
encompass data from multiple sources, enhancing the
model’s ability to generalize across different patient
demographics and imaging protocols [20].

• Statistical Significance: Larger datasets provide more
data points, which can lead to more statistically signifi-
cant results [21]. This is crucial in medical applications
where the reliability and reproducibility of results are
paramount.

• Enabling ComplexModel Architectures: Larger datasets
support the use of more complex DCNN architectures
without the risk of overfitting [22]. These complex mod-
els can potentially learn more nuanced features relevant
for early breast cancer detection, which might not be
possible with smaller datasets.

In the realm of medical diagnostics, the consequences of such
discrepancies can be grave, given that a misdiagnosis can
drastically alter a patient’s treatment path.

Moreover, while several studies highlight their method-
ological advancements [23], [24], [25], the accuracy rates of
some models can still be improved. Given the critical nature

of breast cancer diagnosis, achieving peak accuracy is of
utmost importance. Even a slight increment in accuracy can
have a tangible impact on patient outcomes, ensuring timely
and accurate treatment.

Additionally, with the increasing digitization of medical
records and data, there’s a pressing need to prioritize the pri-
vacy and security of patient information [26], [27]. Especially
in sensitive areas such as cancer diagnosis, preserving the
confidentiality of patient data is not just a technical necessity
but also an ethical obligation [28]. As we advocate for larger
and more diverse datasets, it becomes equally important to
implement stringent data protection measures to ensure that
patients’ privacy rights are not compromised.

Recognizing these challenges, particularly in accuracy and
data privacy and security, underscores the necessity of our
proposed federated learning approach, which aims to lever-
age collaborative, decentralized data sources to enhance the
robustness and accuracy of breast cancer detection models.

The present work aims to contribute to this area, pre-
senting an efficient federated learning approach for breast
cancer detection. Through this methodology, it is proposed
to develop a highly effective DCNN for the early detection
of breast cancer, while guaranteeing patient privacy using
federated learning technology. This approach avoids the need
to centralize data, allowing models to be trained on local
devices, which in turn ensures greater privacy.

Furthermore, another significant contribution of this work
is the utilization of a large-scale breast cancer dataset, which
enhances the overall accuracy of the proposed approach.With
the combination of these technologies, the aim is to offer a
robust and secure tool that contributes to the fight against
breast cancer, maximizing the accuracy of the diagnosis and
protecting sensitive patient data.

The rest of this paper is organized as follow: Section II
gives a brief review for related works. Section III elabo-
rates the proposed federated learning approach in general.
Section IV explains the DCNN model for breast cancer
detection. Section V shows the experimental results of our
proposed DCNN model while Section VI describes the
experiments of federated learning Approach. Section VII
provides more experiments on data privacy and security.
Section VIII conducted experiments on computational effi-
ciency. Section IX gives a brief discussion, and finally,
we concluded our work with Section X.

II. RELATED WORKS
In this section, we reviewed some of the related works that
focus on the development of breast cancer frameworks using
federated learning and AI algorithms.

A study on Triple-negative breast cancer (TNBC) [29],
known for its high metastatic potential and limited treatment
options, utilized machine learning to determine early TNBC
patient response to neoadjuvant chemotherapy (NACT) using
whole-slide images and clinical data. Using federated learn-
ing, the authors addressed the challenges of small datasets
and data privacy. The findings demonstrated that while local
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FIGURE 1. Simplified diagram of the federated learning approach.

ML models were effective, collaborative federated training
enhanced performance, matching expert annotation levels.
This approach emphasized the utility of federated learning in
exploring large datasets for biomarker identification.

In another study [30], authors presented a new federated
learning technique that focuses onmemory-aware curriculum
learning, enhancing local model consistency by penalizing
forgotten sample predictions. The training process prior-
itizes overlooked samples post-global model deployment,
integrates unsupervised domain adaptation for domain shifts,
and maintains data privacy. Using ROC-AUC and PR-AUC
metrics on three clinical datasets, the method outperformed
conventional federated settings by 5% and 6%, respectively.
This research underlined the benefits of curriculum learning
in federated environments for breast cancer classification.

Addressing challenges related to data availability and
privacy in medical imaging, authors in [31] introduced a fed-
erated learning framework for breast cancer histopathology.
By sharing model parameters rather than data, the approach
safeguards data privacy and consolidates knowledge from
multiple sources. Tested on the BreakHis dataset, the fed-
erated method yielded results comparable to centralized
learning, emphasizing the method’s feasibility and efficiency.

Highlighting AI’s increasing role in breast cancer diag-
nosis, the study [32] described a federated learning system
that extracts features without compromising privacy [33].
Distinctively, it utilizes transfer learning to process image
regions of interest, applies SMOTE for balanced data clas-
sification, and leverages FeAvg-CNN + MobileNet in the
FL framework. Comparing various deep learning and transfer
learning models, the approach showcased superior classifica-
tion performance of 100% recall and 99.8%AUCwhen using
pre-trainedMobileNet model to extract features, highlighting
its potential in AI healthcare solutions.

Survival analysis, crucial in medicine, faces challenges due
to incomplete and confidential data. Authors in [34] proposed
FedSurF++, an extension of the Federated Survival Forest

algorithm, that creates random survival forests across diverse
federations. The method displayed comparable performance
to neural network-based models, requiring only a single
communication round, emphasizing its efficiency and pri-
vacy preservation. Tested on real-world datasets, the results
indicate the algorithm’s potential in large-scale, privacy-
conscious survival analysis with maximum cumulative AUC
of 95.6%.

Finally, a recent study [35] proposed a comprehensive
disease diagnosis system using federated and deep learning.
It encompasses image acquisition, encryption for confiden-
tiality using the E-EIE method, optimized key generation,
secure data storage using federated learning, and classifica-
tion using the C2T2Net model. Parameter fine-tuning was
done using the CTSO algorithm. Results from the BreakHis
Database indicated high accuracy (95.68%) and performance
across various metrics.

Despite the distinguished efforts in previous research,
some of these studies have inherent limitations. For instance,
they often rely on relatively small datasets [32], which can
constrain the generalizability of their findings. Additionally,
despite notable advancements, certain methods [34], [35]
reported accuracy rates that may not be optimal for critical
applications such as breast cancer diagnosis.

III. FEDERATED LEARNING APPROACH
As Figure 1 illustrates, the general architecture of the
suggested federated learning technique for breast cancer
detection with the DCNNs model.

It depicts the federated system with the interaction of
multiple clients (Hospitals/ Medical centers), sharing their
local models’ outputs with the central server that acts as a
data collector [36]. This server eventually redistributes the
enhanced model of cumulative joint knowledge back among
the individual nodes.

Each or client utilizes the DCNNs model to process the
data related specifically to breast cancer, subjecting it to
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FIGURE 2. Proposed model for the breast cancer detection based on DCNNs.

completely independent training. Based on the original data
from several comprehensive datasets, whichwill be explained
in detail in the next sections, the data is segmented on the level
of each individual hospital in an attempt to mimic diverse
scenarios where one client possesses extensive data while
others may have less data, resulting in an uneven distribution.

Three distinctive datasets will be used for the evaluation
of all trained models, as explained in IV-B. This method
allows a sensible direct comparison between the evaluated
models since each will be consistently assessed through these
datasets possessing more or less data for the training. It’s
noteworthy to clarify that all the deployed federated models
will be trained using the Federated Average method (also
known as FedAvg) [37]. To make it all simpler, each hospi-
tal will independently train its own model on its individual
dataset. After a predefined number of turns, these models’
parameters will be shared with the central server, which will
subsequently blend them together. This iteration will proceed
until the completion of the entire training.

The Federated Average method represents a usual imple-
mentation of the algorithms for federated optimization [38],
including a fraction of customers, C , set to 1 and a fixed
learning rate η, making every client (k) calculate gk = 1Fk
(wt ), representing the mean gradient derived from the local
data at the current model wt. The central server accumulates
these gradients and uses the update based on the following
equation:

Following that, each hospital performs local gradient
descent on the present model employing its individual data,
and the global server aggregates a weighted average of all the
acquired models.

IV. OVERALL DCNN MODEL
Figure 2 represents the proposed model for the breast cancer
detection based on DCNNs which is a comprehensive, step-
by-step methodology encompassing the entire process from
data sourcing to model evaluation. Initially, data is sourced
from three reputable datasets (See Sec. V-A), which are:

VINDR-MAMMO,CMMD, and INBREAST. These datasets
offer a plethora of mammographic images crucial for the
research.

Subsequent to the data collection is the pre-processing
phase. This phase is instrumental in refining and preparing
the raw images for optimal input into the neural network.
Key steps involved in this phase (See: Sec. IV-A) include the
removal of any background noise or unnecessary elements
from the images, enhancing image clarity and sharpness,
extracting critical features that could be pivotal for cancer
detection, and fusing these features to craft a holistic image
representation.

Following the pre-processing stage, the data undergoes a
strategic splitting, segregating it into training, validation, and
testing subsets (Sec. V-E). This ensures that the model learns
from a diverse set of data and gets validated and tested on
unseen data, which is crucial for understanding its general-
ization capabilities. An integral part of the training regimen is
data augmentation. Given the inherent variability in medical
images, data augmentation techniques (Sec. IV-B) such as
rotations, zooms, and brightness adjustments are employed to
artificially enhance the dataset’s diversity. This augmentation
is critical in equipping the DCNN to recognize and diagnose
breast cancer across a wide array of mammographic images,
thereby enhancing its robustness and accuracy.

The core component of the framework is the Deep
Convolutional Neural Network (DCNN) (Sec. IV), which
undertakes the actual task of learning and pattern recognition
from the mammographic images. Designed with multiple
layers, the DCNN delves deep into the images, identifying
intricate patterns and features which are often impercep-
tible to the human eye, but are indicative of potential
malignancies.

The final stage of the framework is the evaluation (Sec. V-
D), where the trained DCNN model’s efficacy is gauged.
Comprehensive performance metrics, including accuracy,
precision, F1-score, and recall, are employed to understand
the model’s diagnostic capabilities.
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FIGURE 3. Proposed approach for Breast Cancer classification using DCNNs.

A. PRE-PROCESSING STAGE
In the pre-processing stage, we implemented effective tech-
niques of image pre-processing that are straightforward to
compute. These techniques allow the elimination of any unde-
sired areas with the aim of improving local attributes. As a
result, it is easier to detect any possible Regions of Interest
(ROIs) and sub-regions within them.

We study several collected mammographic datasets as
sources for ourwork and chose three distinct datasets ofmam-
mograms, as described in (Sec. V-A) these data sets would
serve the following development of our proposed approach.
This research, based on a rigorous analysis of available meth-
ods and literature, introduces various effective techniques for
accomplishing tasks related to image background removal,
image enhancement, and general pre-processing for DCNN
when dealing with mammographic images.

When applying these techniques, the images are cleaned up
to eliminate any undesirable background elements and noise.
Next, we focus on the elimination of the pectoral muscle,
connecting the front of the chest with the upper arm bones.

At this stage, the noise is partially reintroduced in order to
get closer to the real-life scenario conditions.

This comprehensive pre-processing procedure allows us to
enhance the efficiency of the model of neural network model
in practical, real-life situations. Once all undesirable elements
were extracted and eliminated, we proceeded with enhancing
the images to highlight the desired ROIs and areas within
them as part of the pre-processing.

When we finalized the processing with the deployment
of the selected techniques, the images were prepared for
the training phase, verification, and testing for the DCNN.
Outputs were organized individually for each phase of
the proposed techniques’ implementation, including back-
ground elimination, pectoral muscle extraction, and the final
enhancements. These results were instrumental in examining
the effectiveness of the suggested techniques side by sidewith
the current approaches.

1) BACKGROUND REMOVAL
Input image background is erased by removing the
zero-intensity pixels from both columns and rows. Next,

we used grayscale thresholding, taking advantage of Otsu’s
technique [39], to the refined image. The image’s intensity
was adjusted to a medium value between the lowest and
highest values of its initial intensity.

2) IMAGE ENHANCEMENT
Good-quality image enhancement relies on accurate obser-
vations and is crucial in segmenting anomalous areas for
the purpose of classification of a disease [40]. The image
enhancement methods can significantly improve the mam-
mography quality regarding the contrast and noise with one
essential purpose: to aid computerized breast cancer detection
techniques in pinpointing lesions in this area that are harder
to detect and enhance the clarity of areas with insufficient
contrast. In mammogram images, the areas with poor contrast
pose a considerable challenge since they can conceal abnor-
malities within the tissue, leading either to false detection or,
on the contrary, undetected lesions.

In order to improve the input mammography images,
we utilize the technique Contrast-Limited Adaptive His-
togram Equalization (CLAHE) [41]. CLAHE is an image
enhancement technique that aims to improve the local con-
trast and visibility of subtle details in mammography images,
which is crucial for accurate breast cancer detection using
DCNNs. Mammography images are preprocessed before
feeding them into the DCNN model. Preprocessing involves
steps like resizing, normalization, and noise reduction to
prepare the images for analysis. Then, CLAHE enhances
the contrast of smaller, localized regions within the image
rather than globally. This is important because mammograms
often contain regions with varying levels of contrast and
illumination. It adaptively divides the image into smaller tiles
or patches and performs histogram equalization separately for
each tile. This adaptive approach prevents over-amplification
of noise and ensures that subtle structures within each region
are better visualized.

3) FEATURES EXTRACTION
Next, the proposed technique involves the extraction of vari-
ous statistical features from the preprocessed images. These
are utilized as inputs for breast cancer detection in the
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PSO-MLP [42] and ACOMLP systems [43]. The respective
extracted features and characteristics include mean, kurtosis,
skewness, variance, contrast, entropy, correlation, homogene-
ity, and energy.

The mean feature refers to the overall image brightness and
is computed using the following equation:

meanµ =
1

m ∗ n

m∑
i=0

n∑
j=0

p (i, j) (1)

∑m
i=0

∑n
j=0 p(i, j) represents the aggregate of pixel values,

while m ∗ n denotes the dimensions of the image.
Kurtosis refers to the peak tendency considering normal

distribution. It is calculated using the equation.

kurtosis = −
1

m ∗ n

m∑
i=0

n∑
j=0

[
p (i, j) − µ

σ

]4
− 3 (2)

Skewness indicates the distribution of pixel values, mea-
suring the dark or lustrous regions. Its calculation follows
equation (3),

skewness = −
1

m ∗ n

m∑
i=0

n∑
j=0

[
p (i, j) − µ

σ

]3
(3)

While the expected deviation is determined using equation (4).

standarddeviationσ =

√√√√ 1
m ∗ n

m∑
i=0

n∑
j=0

(p (i, j) − µ)2 (4)

Variance quantifies the level of contrast within the image and
is determined using equation (5).

variance = σ 2 (5)

Contrast means the distinction between the highest and lowest
pixel intensity within an image, and it is computed through
the following equation.

contrast =
(maximum intensity−minimum intensity)
(maximum intensity+ minimum intensity)

(6)

Entropy defines the character of randomness and texture
description. To determine this value, we use the following
equation.

entropy =

m∑
i=0

n∑
j=0

p (i, j) log2(p (i, j)) (7)

To calculate the correlation, a filter mask Fil (x, y) is applied
to the image. For each region, evaluate the sum of products
to identify the objects within the image, regardless of their
position, taking advantage of the equation.

Fil (x, y) p(i, j) =

m∑
i=0

n∑
j=0

Fill (x, y) p (i+ x, j+ y) (8)

The homogeneity feature tells us how the pixel values differ
within the image. To calculate it, use the following equation.

homogeneity =

m∑
i=0

n∑
j=0

1

1 + (i− j)2
p (i, j) (9)

Finally, the energy sums the distribution of gray in the image.
It is derived from the image-normalized histogram, and we
calculate it using equation (10).

energy =
1

m ∗ n

m∑
i=0

n∑
j=0

(p (i, j))2 (10)

4) FEATURE FUSION
How to select the most optimal and representative features
from the initially extracted set of features remains a subject
of active research. The literature suggests numerous algo-
rithms, and many have already been applied in the field of
clinical imaging, including techniques like Particle Swarm
Optimization (PSO) [44] and Genetic Algorithm (GA) [45].
These methods try to identify the most representative subset
of features rather than operating with the entire space of
features. A clear benefit of such feature selection is their
ability to finetune system accuracy while also considerably
reducing the computational demands of the process [46].
Nevertheless, in some cases, some key features are left behind
during the selection, which can negatively affect the accu-
racy of the system. To address this issue, the researchers
have introduced several methods of feature fusion deployed
to raise the number of predictors and bolster the system’s
accuracy [47]. The serial and parallel fusion strategies are
among the most recognized techniques in this field [48].

To create a fusion of the chosen features, we used a sequen-
tial probability-based method [49], where probabilities for
both chosen vectors are first calculated, and then only a single
feature is utilized based on its higher value of probability.
Then, we conduct a comparison based on the feature with the
highest probability and blend the two features into a single
matrix. This comparison primarily addresses the problem of
redundancy in both vectors’ features.

Consider two feature spaces, specified as A and B, defined
within the sample space of patternsmarked�. For any sample
ξ ∈ �, the respective feature vectors are α ∈ A and β ∈ B.
The serial blended feature for ξ is expressed as γ = αβ. Logi-
cally, in case the feature vectorα is of n dimensions andβ is of
m dimensions, the feature resulting from their combination,
defined as γ , is of (n+m) dimensions. Any pattern sample
vectors of serial combined features collectively constitute a
serial combined feature space of (n+m) dimensions.

In the next step, we have subjected the final fused features
to machine learning algorithms for classification. Following
the fusion, the vector’s dimensions were 4788 × 704, where
704 represents the feature quantity, and 4788 indicates how
many images were involved.

B. DCNN MODEL
The initial convolutional layer of the DCNN, as shown in
Figure 3, processes the pixel values of the input image.
Each of the following convolutional layers seeks the con-
nections between the neighboring pixels through the kernels
that extract diverse features out of the image. A typical CNN
architecture contains a convolutional layer, employing a set
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of learning filters for the image. These filters can identify
diverse elements such as edges, different textures, and spe-
cific patterns. The outcome of the convolutional layer has the
form of a feature map, accentuating these significant features
in the examined image.

Typically, a pooling layer is used next. This can include
either average or maximum pooling function. It reduces the
measurements of the map while preserving its most important
features. This process helps with the simplification of the
computation by downsizing the total size of data and pulling
out exclusively the most useful information.

Once we have the pooling layer, a series of more pooling
and convolutional layers can be stacked in sequence to grasp
the more intricate features of the analyzed image. Such a
hierarchy facilitates the neural network’s understanding of
the abstract models of the input data. Activation operations,
such as the Rectified Linear Unit (ReLU) [50], incorporated
after each convolutional layer, introduce non-linearity and
transform negative values to zero while maintaining each
positive value.

The final part of the network typically comprises fully
connected layers responsible for processing the features and
using them to establish predictions. The layers that are
completely connected set links between all neurons in the
preceding and current layers, promoting the network’s capa-
bility to comprehend complicated relationships that manage
the interconnection between the output labels and the relevant
features. The pooling layer is used next. This can include
either average or maximum pooling function. It reduces the
measurements of the map while preserving its most important
features.

This process helps with the simplification of the compu-
tation by downsizing the total size of data and pulling out
exclusively the most useful information.

Once we have the pooling layer, a series of more pooling
and convolutional layers can be stacked in sequence to grasp
the more intricate features of the analyzed image. Such a
hierarchy facilitates the neural network’s understanding of the
abstract models of the input data. The ReLU Activation func-
tion incorporated after each convolutional layer, introduce
non-linearity and transform negative values to zero while
maintaining each positive value.

The final part of the network typically comprises fully
connected layers responsible for processing the features and
using them to establish predictions. The layers that are
completely connected set links between all neurons in the
preceding and current layers, promoting the network’s capa-
bility to comprehend complicated relationships that manage
the interconnection between the output labels and the relevant
features.

In the end, the CNN output layer is completely dependent
on the exact task in question. For instance, in the case of
classification assignments, a SoftMax layer is recommended
to generate class-specific probabilities, whereas, in the case
of segmentation assignments, it makes more sense to utilize
a convolutional layer equipped with a pixel-wise activation

feature. It’s crucial to enable the variation of the architec-
tural arrangement and layer sequencing of CNN to ensure its
adaptation to the exact demands of the assignment and the
dataset. We often try varying hyperparameters, architectures,
and methods of regularization to make the performance more
optimal and acquire precise and trustworthy outcomes. The
outcomes are then forwarded to the following layers and
processed through the kernel.

The combination of depths and measurements of these lay-
ers within the CNN determines the quantity of its parameters.
Every parameter is associated with a weight obtained in the
course of the training. The count of convolutional layers is
affected by the dimensions of the filters as well as the layers’
depth. If we increase the filter count or their size, we also get
more parameters.

Since each link between the neurons depends on a parame-
ter of weight, the parameter count within the fully connected
layers is defined by the dimensions of the layers. Involving
additional convolutional layers results in more parameters.
However, there are other aspects in play, too. The parameter
count within a neural network structure can also be affected
by the dimensions and depth of convolutional and fully con-
nected layers.

Including numerous convolutional layers enables CNNs to
understand evenmore abstract and intricate forms of the input
data. The layers located lower capture features on the low
level, whereas the advanced semantic data is absorbed by
some of the deeper levels. Adding more depth or increasing
the size of the layers generally leads to an increased number
of parameters. However, other structural choices like strides,
pooling, or padding also play their role.

Convolutional layers filter the input information, facilitat-
ing the extraction of noteworthy features, including shapes,
textures, and edges. Understanding these features is funda-
mental for the following layers to comprehend and sort the
data effortlessly. The convolutional layers have the capacity
to identify features independently from their precise spatial
placing, making CNNs strong in translations or modifications
in the input information.

1) FULLY CONNECTED LAYER
The fully connected layer, also referred to as the dense layer,
is a neural network that sets links with every neuron in the
preceding layer. This layer plays a key role in diverse deep-
learning applications, e.g., recognition of speech, processing
of natural language, or image classification [51].

In a dense layer, one vector serves as input, while another
vector is utilized as output. Every neuron of this layer sums
the weighted input values and uses an activation feature
afterward to generate the output. During the training process,
the gradient descent algorithm and backpropagation assist
with determining the right biases and weights for the dense
layer. In each training repetition, these are adjusted to min-
imize losing the function. While fully interconnected layers
demonstrate adaptability and robustness, they also introduce
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a large number of parameters. If not handled properly, this can
easily lead to overfitting. Deep learning models often enforce
strategies such as dropout and weight decay to address this
issue [52].

2) LENET ARCHITECTURE
LeNet Architecture [53] is a preferred tool for image classifi-
cation assignments, offering numerous advantages that other
DL classifiers lack. These include spatial invariance, parame-
ter efficiency, activation features, weight sharing, hierarchical
feature learning, and pooling layers. Regarding ensembling
and image classification, a revised LeNet CNN is used to
enhance accuracy through numerous models. This revised
LeNet architecture involves further pooling and convolu-
tional layers to enhance the depth of the model and catch
more intricate features. Additionally, the classifier imple-
ments normalization of batch [54] and constant output to
avoid overfitting and strengthen generalization.

In any case, it’s important to acknowledge the limitations
of existing models for cancer detection and classification
utilizing LeNet architecture. For example, while LeNet can
be effective when it comes to the classification and diagnosis
of cancer, it has restricted flexibility and capacity. It’s also
vulnerable to overfitting and has demanding pre-processing
and hardware requirements, all posing considerable chal-
lenges [55]. Addressing these challenges, the current model
strives to refine the architecture by applying the following
adjustments:

Hyperparameter optimization boosts the performance of
the model, and it contributes to the decision on the most
suitable setup for the exact assignment. A meticulous study
of the hyperparameter field and a deep understanding of the
reciprocations associated with various decisions are needed.
Via optimization of the hyperparameters, modified models
can reach prime performance on the provided dataset, making
it a vital step in the process of DL model optimization. Here
are the key considered hyperparameters:

• The 0.01 learning rate defines the size of the step per
every iteration in the training process and contributes to
accomplishing optimal performance.

• A dropout rate of 40% (0.4) hold control over the
model’s regularization and avoids overfitting.

• A batch size of 32 defines how many samples pass
through the processing before the weights of the
model are edited. This accelerates convergence and also
improves generalization, affecting the model’s overall
performance.

• There are three hidden units, which has a great influence
the capability and effectiveness of the model, being also.
crucial to establishing the proper balance between the
overfitting and complexity of the model.

• There are ten training reiterations, defining the num-
ber of repetitions the model completes over the whole
dataset. Again, this results in a symmetry between over-
fitting and underfitting of the model.

• The ReLU activation features in the convolutional layer
model and SoftMax in the fully connected layer model
can be subjected to experimentation to assess which
function works the best in the particular scenario.

• The set of filters in the Conv layer is adjusted to 32,
64, and 128, allowing adjusting to specify the model’s
capability and complexity.

• The size of the kernel in the convolutional layer is 3,
5, and 4 with enabled adjustments to address various
spatial designs in the input information.

The preferred optimizer plays a vital role in the performance
of the model, too, since this feature adjusts the network’s
characteristics, including its learning rate and weights. Typi-
cally, the optimizer of choice is either ADAM [56], which is
our choice, too, since it’s suitable for breast cancer datasets,
RMSprop [57], or Stochastic Gradient Descent (SGD) [58]
with momentum. These optimizers may also have their own
unique hyperparameters (e.g., decay rates) that impact their
accuracy, help reduce losses, and enhances their overall per-
formance.

When we approach the model in this specific manner,
it helps us evaluate how effective it is when dealing with
the data it hasn’t seen before, and it’s a good prevention
for overfitting. The machine learning model is fed with
pre-processing images as an input. The LeNet model requires
the images to be processed in a format suitable for its effec-
tive processing. This adjustment typically involves amending
dimensions of the images to a specific size, standardizing the
values of pixels, and other potential transformations based on
the demands of the architecture. What sets LeNet apart from
other networks is how it incorporates the sharing of weight
and picks the activation features [59]. LeNet is a traditional
convolutional neural network architecture, but it possesses
several distinctive features, making it notably efficient with
the image classification-related assignments:

• Activation: In its dense layers, LeNet employs the sig-
moid activation feature. This function compresses the
output of every neuron so that it’s above 0 and below 1.
Such a non-linear transformation allows the modelling
of complex interconnections between diverse features.

• Simplicity: The LeNet architecture is defined by a
straightforward structure consisting of sequences of con-
volutional layers and pooling layers, which are then
succeeded by dense layers.

• Weight sharing: To enhance its effectiveness and overall
performance, the LeNet architecture employs a weight
sharing technique, where the identical set of weights is
shared across various spatial zones in the input. This
helps the network to detect and extract common features
across the entire image, reducing the number of general
parameters.

• Combination of pooling and convolution: The LeNet
architecture uses convolutional layers to pull out the
spatial features. These layers utilize filters to process the
input, identifying locally specific patterns and mapping
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the features. Additionally, the architecture also takes
advantage of the pooling operations, particularly max
pooling, which are responsible for the downsizing of the
maps and reduction of the spatial measurements of the
features. This is carried out through the selection of the
limit value for each pooling area, reducing the spatial
proportions of the features.

Generally, the LeNet architecture’s distinctive traits, such as
weight sharing, use of the sigmoid activation, simple struc-
ture, and the combined pooling and convolutional processes,
prove it to be a leading architecture for the classification of
images and performance improvement.

3) BATCH STANDARDIZATION
Batch standardization, also known as normalization of the
batch [60], is a method utilized by the LeNet model to
enhance the effectiveness of the operated neural networks.
This includes different classification assignments, such as
breast cancer identification with the help of ultrasound imag-
ing techniques.

Using batch standardization in this type of scenario comes
with various advantages. It can, for example, improve and
speed up the confluence of the process of training by min-
imizing changes in the network parameters (inner covariate
shifts), demonstrated by the changed input distribution across
the layer because of the shifted weights of the other layers.
Batch standardization [61] is also able to decrease inner vari-
ability through standardizing data per layer and assist with
prompt stabilization of gradients during the recovery phase.

Batch normalization comes with regularization, enhanced
accuracy, and even better flexibility. Taking all these benefits
into account, using the LeNet architecture that incorpo-
rates batch standardization for the detection of breast cancer
through ultrasound can lead to better results and overall effec-
tiveness on this assignment.

4) REPLACEMENT OF THE POOLING LAYERS
In order to enhance data retention, improve the extraction
of features, and possibly even the overall performance of
the model, introducing the stride 2 convolutional layers in
place of the pooling layers within the LeNet architecture
can be considered [62]. This consideration is backed up by
the potential constraints of pooling procedures since these
operations can leave some data out of the maps of features.
This is particularly probable in the case of large kernel sizes
or high strides.

Using stride 2 convolutional layers instead of the pooling
layers can result in the retention of more data and valuable
details in the maps. As a result, it also reduces the risk
of losing important data during the following downsizing
process.

Unlike pooling layers, convolutional layers are capable
of learning and comprehending more abstract and complex
features. This is particularly true in cases where the layers
can work with a large variety of parameters and more depth.

A model equipped with convolutional layers is able to pull
out more useful features from the original images than if it
had pooling layers, which eventually leads to more accurate
results of the classification assignment.

This replacement also has other advantages. It can, for
example, lead to lower costs of computation (again, espe-
cially in the case of high strides and large kernels), which
are expensive to process through pooling procedures. This
burden can be diminished by substituting the pooling layers
with the stride 2 convolutional layers, resulting in a model
that requires less time for training and evaluation. In general,
substituting the pooling with convolutional layers profoundly
improves data retention and leads to more efficient extraction
of features, overall performance, and cost efficiency of the
deployed LeNet architecture.

5) ACTIVATION OF RELU
The network, in general, acquires non-linearity through the
activation of individual layers within a network, which drives
the activation of the prior layer. The suggested architecture
proposes a mesh composed of five groups of convolutional
stack standardization. Substituting the feature of sigmoid
activation with the alternative ReLU function practically
modifies the architecture for cancer detection based on ultra-
sound. This conversion comes with a number of advantages,
such as better performance, improved abstraction, quicker
computation, expanded learning capabilities, and elimination
of the issues with loss of gradients.

The problem of vanishing gradient occurs when the acti-
vation gradients are too small, hindering the modification of
weights in the course of training. The gradients associated
with the ReLU activation function are less inclined to this
problem compared to the sigmoid gradients, which allows
the network to learn the patterns and features of the input
images. This conversion seeks to improve accuracy, enhance
understanding, and boost the specificity of the results.

6) DROPOUT LAYERS
Enhancing the LeNet architecture deployed in breast cancer
diagnostics with dropouts is another useful technique for
improving its performance. Dropout is a method of regu-
larization that unsystematically sets some activations within
the network to zero (it literally ‘‘drops out’’) in the course
of the training [22], [51]. Typically, the ratio of dropouts is
around 40% (or 0.4) across all the relevant layers (Dropout
(0.4)). There are two dropout layers incorporated behind the
convolutional layers, plus two more inserted in front of the
final fully connected layer. Hence, there are four deployed
dropout layers in total. This method is helpful in preventing
the model’s overfitting in relation to the training data by
reducing the mutual adaptation of the utilized neurons. As a
result, themodel is perfectly equipped to extend to new, previ-
ously unseen information, which is critical for precise cancer
detection, as well as for its powerful learning ability [63].
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By unsystematically dropping activations out in the train-
ing phase, the network learns to assess a broader range of
attributes and patterns within the provided input. Such an
experience improves the robustness of the model and its
adaptability to changing input information, including the
variable demographic factors or conditions of imaging.

Overall, utilizing the dropout layers can decrease the sen-
sitivity of the model to the original conditions of the network,
such as different biases and weights. This results in increased
reproducibility of the obtained outcomes and decreased haz-
ard of the model getting blocked at the minimum in the
training phase. Through decreasing the mutual adaptation of
the neurons and teaching the network to focus on a wider
range of characteristics and elements, the dropout utilization
method can boost the efficiency of the training and strengthen
it against the risk of getting stuck on the level of local mini-
mum [64].

C. AUGMENTATION OF DATA
In order to get the most out of our restricted training samples
and enhance the accuracy of our model, we used a range
of random modifications on our data [65], including the
rescaled size, rotation (255 degrees), zooming, and scrolling
in horizontal direction.

The augmentation of the data is also predicted to avert over-
fitting - a familiar problem in the field of machine learning,
occurring in cases when the model is introduced to a very
limited set of examples, and it learns the patterns without
being adapted to unseen data.

This approach improves the model’s capability to conclude
generalized assessments. Furthermore, since the augmenta-
tion generates identical quantity of images for every class,
it also contributes to creation of well-balanced datasets and,
thus, unbiased comparison of the outcomes.

FIGURE 4. Datasets statistics.

D. PARAMETERS DEFINITION
There are several parameters we should focus on during
the training phase in order to maximize the quality of our
suggested network’s performance in solving the problem in
question. These include:

• Volume of the batch: The batch size defines how
many training images will pass the process (for-
ward/backward). Remember, though, that the batch
size also affects the memory demands of the process.

• Iterations: This parameter refers to the number of
repeated forward/backward passes in every step of the
process, utilizing a given batch of images according to
the general size of the batch.

• Epochs: This is the parameter that defines how many
times an image rotates in the course of the training.
Every single epoch stands for one appearance of the
image, respectively, for the full run of the entire set of
training samples. Numerically, this is calculated as:

• Loss: This function assesses the loss between the prog-
nosis and the tagging of the absolute truth for every
batch.

• Pace of learning, also referred to as a learning rate,
is a parameter that represents the size of the step for
revising the model’s weights regarding the SGD.

• Optimizer: There are a wide range of optimizers to be
deployed in order to identify the most suitable combi-
nation of parameters for your model, including ADAM,
SGD, and RMSprop.

E. ENHANCED MODEL INTERPRETABILITY WITH
GRAD-CAM
To further advance the clinical applicability and trust-
worthiness of our DCNN model, we have integrated the
Gradient-weighted Class Activation Mapping (Grad-CAM)
technique [66]. This method provides a visual explanation of
the model’s decision-making process by producing heatmaps
that highlight critical areas influencing the model’s predic-
tions [67]. Upon processing mammographic images through
our DCNN, the Grad-CAM technique was applied to the final
convolutional layers to generate a heatmap overlay. The high-
lighted regions correspond to features such as calcifications,
masses, and architectural distortions, which are pivotal in
diagnosing breast cancer. These heatmaps serve as a valuable
interpretative tool, offering clinicians a visual representation
of the model’s focus areas, which supports the BI-RADS
assessment categories used in clinical practice. The integra-
tion of Grad-CAM not only enhances the interpretability of
our DCNNmodel but also provides a valuable bridge between
AI functionality and clinician expertise.

V. EXPERIMENTAL RESULTS
The following section explains which dataset and metrics for
evaluation were applied in our study. Furthermore, we exam-
ine the experimental outcomes of the suggested model of
architecture.

A. DATASETS
The following section briefly summarizes and describes the
datasets we have applied in testing our proposed approach for
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FIGURE 5. VinDr-Mammo dataset distribution.

FIGURE 6. CMMD dataset distribution.

breast cancer detection. Figure 4 shows the instances count of
the three datasets used in our work.

1) VINDR-MAMMO DATASET
We started our training with the VinDr-Mammo [68] dataset,
which is a public dataset used of more than 20,000 image
items coming from approximately 5000 diverse patients.
These images come from two medical facilities located in
Vietnam: Hospital 108 and Hanoi Medical University Hos-
pital.

The hospitals possess mammography technologies pro-
duced by Giotto, Siemens, and Planmed. The VinDr-Mammo
dataset provides a good example of a considerable class
imbalance, since just 988 (5%) of the images are tagged as
being malignant, which is comparable to a regular screening
where the vast majority of the results are either standard or
benign.

The researcher for dataset have already divided the data
in two categories: the training dataset comprises of 16,000
images and the group for testing contains 4000 images as
shown in figure 5. This ensures the consistency of the reported
outputs.

2) CMMD DATASET
Another publicly available dataset we used for our train-
ing was CMMD, which stands for Chinese Mammography
Database [69], one of the newest available datasets contain-
ing 3744 images coming from 1775 patients. This dataset
comes from the South China University of Technology. All
the images were produced by the GE Senographe DS Digital
mammography technique. This set contains a higher ratio of
malignant findings compared to the benign images, which
corresponds to the standard narrative of clinical diagnosis:
first, some suspicious finding is detected, followed by its
confirmation through additional imaging.

Figure 6 shows the splitting of this dataset into two groups.
The set for training contains 2998 images, which is 80%of the
entire database, whereas 746 images (20%) are selected for
testing. The images were stratified by class, and we ensured
that if the set contained numerous images from the same
patient, they all stayed in the same group.

Next, we split the training groups from both involved
datasets into two sub-groups: one will be used in the training,
and the other will serve the following validation. The vali-
dation will fine-tune hyper-parameters and to search for the
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‘‘most representative’’ model epoch throughout the training.
The divisions were carried out based on the class. Once
again, we maintained numerous pictures coming from the
same patients in one of the groups. For every evaluated
method addressing the imbalance of the class, our models
were individually trained using each of these datasets. The
efficiency and overall performance of the models were eval-
uated on each set individually. This came with some benefits.
For instance, testing a model that was trained using the
VinDr-Mammo training set and testing it using the CMMD
test set gave us the opportunity to evaluate the model’s ability
to generalize on the datasets it has not encountered during its
training.

3) INBREAST DATASET
The third and last dataset involved in our study is the well-
known INBreast [70] public dataset. Nevertheless, we used
this dataset exclusively for testing of the model’s perfor-
mance throughout the experiments as shown in figure 7.
This allowed us to compare our study with other related
studies and experiments in the field. The INBreast dataset
is built around 410 FFDM pictures obtained by a Siemens
mammography machine.

FIGURE 7. INBreast dataset distribution.

Based on the parameters of the classification procedure,
we selected 100 epochs. During this evaluation, we reviewed
the development of precision and loss graphs against the
number of epochs, with every epoch consuming 300 seconds
from the used GPU. Next, we conducted tuning with a small
rate of learning. Besides that, we also deployed the ADAM
optimizer [56] in an attempt to positively diminish the loss.

B. IMBALANCED CLASSIFICATION
One of the greatest challenges associated with the analysis of
medical imaging is coping with data that is not balanced. This
issue is particularly evident in this specific field, but some
tools and methods exist to minimize its effects.

Our study utilized the Focal Loss feature [71], which forces
the model to relieve the weight of the simple instances to
acknowledge hard samples. It is characterized by adding a
modulating element to the cross-entropy losses and class-
balancing parameters. It’s defined by the following equation:

Fl (pt) = at (1−pt )γ log(pt ) (11)

where pt refers to the true class’ anticipated probability;
at stands for the class-balancing factor applied to the true
class; γ defines the focusing parameter in the control of the
down-weighting for examples with the correct classification.
Evaluation Metrics
To review and evaluate the effectiveness of the presented

approach, we used the following parameters:
• Accuracy: This quantifies the number of exact predic-
tions, dividing it by the absolute count of samples.

Accuracy =
Number of correct predictions

Total number of predictions made
(12)

• Sensitivity: This metric measures the ratio of true-
positive results. If the sensitivity is close to 100%,
it indicates a high likelihood that a patient has indeed
a positive diagnosis.

Sensitivity =
True Positive

False Negative+ True Positive
(13)

• Precision: Precision computes the fraction of applicable
examples among all the retrieved samples.

Precision =
True Positive

True Positive+ False Positive
(14)

• Specificity: This parameter specifies how often an out-
come indicates a true-negative finding. If this metric is
close to 100%, it means a great likelihood of the absence
of the disease for the evaluated patient.

Specificity =
True Negative

True Negative+ False Positive
(15)

C. TRAINING
As we investigated various ways to optimize the training pro-
cess and achieve outstanding results, we agreed to incorporate
a convolutional layer atop the current layer with the highest
available accuracy. Figure 8 displays the levels of accuracy
for the used datasets, which is ideal for rapid assessment of
the architecture.

Accuracy, Precision, Recall and F1-Score values according
to the number of layers. The F1-Score measurement strives
for well-balanced precision and recalls. The figure allows us
to see that the F1-Score for the three-layer architecture shows
satisfying accuracy and recall. This confirms a three-layer
model is a good choice for further training.

Subsequently, Figure 9 shows outcomes for every indi-
vidual dataset according to the metrics resulting from the
tests on all the layers. We thoroughly compared results for
each dataset individually. This evaluation allows us to assess
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FIGURE 8. Accuracy, Precision, Recall and F1-Score values according to
the number of layers.

the individual efficiency of each dataset (as opposed to the
search for a single superior dataset), given the small volume
of images from the INBreast dataset.

FIGURE 9. Comparison of training metrics for each dataset.

Figure 10 also illustrates the ROC curve used to assess
the binary classification performance. Across all the involved
datasets (VINDR-MAMMO, CMMD and INBreast), the
ROC curve shows sensitivity in contrast with specificity in
distinguishing malignant cancer from benign findings. Our
suggested strategy generates a greater number of true-positive
results compared to false-positive results. This indicates the
deployed threshold of discrimination is able to precisely clas-
sify the dermoscopy input images, especially in combination
with the VINDR-MAMMO dataset.

D. VALIDATION
The outcomes obtained from our presented model underline
the possibility of achieving powerful performance by lever-
aging the initially suggested architecture for the datasets of
image classification. This implies that the model is capable
of effective generalization across a wide spectrum of classi-
fication jobs, even in the cases when the input images were
absent from the dataset it was trained on.

FIGURE 10. ROC Curve analysis for VINDR-MAMMO, CMMD and INBreast
datasets.

Figure 11 illustrates the confusion matrix depicting the
model’s performance during the classification evaluated
through the dataset for validation.

The model’s assessment should take into account how
many real melanomas were misclassified as benign. This is a
critically concerning situation that would indicate themodel’s
inability to catch genuine melanomas, which could lead to
life-threatening consequences for patients.

Figure 11(a) presents the confusion matrix derived from
the VINDR-MAMMO dataset. This matrix portrays the
model’s performance in differentiating between malignant
and benign cases. Among the 265 malignant samples, the
model demonstrated a substantial proficiency by correctly
classifying 263 cases while only 2 were misinterpreted as
benign. Similarly, of the 265 benign instances, 259 were
accurately identified, and 6 were mistakenly predicted as
malignant. The vivid differentiation between the true labels
and the predicted ones underlines the model’s capability to
discern with high specificity and sensitivity in this dataset.

Figure 11(b) delineates the results from the CMMD
dataset. The matrix accentuates that out of 530 malignant
instances, 512 were accurately pinpointed, and 18 were
erroneously categorized as benign. On the contrary, among
the 216 benign images, 192 were correctly classified, with
24 misjudged as malignant. This assessment accentuates the
model’s robustness in handling datasets with an imbalanced
proportion of classifications.

Figure 11(c) illustrates the model’s performance on
the INBreast dataset. The matrix indicates that, from the
100 malignant samples, 70 were aptly classified, but 30 were
misinterpreted as benign. Among the 310 benign samples,
305 were identified correctly, leaving a marginal 5 cases
misclassified as malignant. The relatively higher number
of misclassified malignant cases calls attention to potential
challenges in distinguishing subtler differences within this
specific dataset.

Lastly, Figure 12 represents the Grad-CAM heatmaps for
the proposed breast cancer detection using DCNN. In the top
row, original mammographic images. While the bottom row
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FIGURE 11. Confusion matrix of VINDR-MAMMO, CMMD and INBreast datasets.

shows the corresponding Grad-CAM heatmaps overlaid on
the images, highlighting suspicious regions with higher inten-
sity indicating areas with greater influence on the model’s
output. The regions marked are associated with suspicious
calcifications and architectural distortions, as classified by
the DCNN, with BI-RADS 5 indicating a high suspicion of
malignancy.

VI. EXPERIMENTS OF FEDERATED LEARNING APPROACH
Considering the continuous challenges in the transmission,
management, and discretion of breast cancer patient data,
we conducted a number of simulations as part of this study to
examine the efficacy of a federated model, working with data
shared across various institutions, and putting it into contrast
with a local model.

To be more precise, we executed four experiments, each in
both centralized and federated architecture types. Here’s the
list and description of the performed experiments:

• 1st: One client with a local model that was trained on
100% of the available data.

• 2nd: Two clients, each with their respective local models,
with the training data distributed in a 40%/60% ratio for
each of them.

• 3rd: A federated model including the two clients with the
previously mentioned data distributions.

• 4th: A federated model revolving around five clients and
one global server, each equipped with a local model,
where the training dataset is divided into 15%, 15%,
20%, 20%, and 30% portions.

Various metrics and parameters, including loss, accuracy,
sensitivity and specificity, were used to assess the perfor-
mance within these experiments. In total, 1000 epochs were
set, meaning the dataset must be subjected to a thousand iter-
ations during the training phase. Evaluations were conducted
after each epoch using the test dataset.

In the case of the federated scenario, the training involved
100 rounds with 10 epochs. Next, in the federated architec-
ture, local models were aggregated and updated across the
whole network. The server aggregated the results after every

TABLE 1. Local model vs. federated learning performance comparison of
four experiments.

10 epochs of local training, and that’s when the evaluations
were also conducted. At the end, we analyzed the impact of
varying data volumes across diverse clients and whether the
federated method offered improvements in various scenarios.
Table 1 represents a summary for the experimental values for
different performance metrics.

A. 1st EXPERIMENT
Figure 13 illustrates that utilizing the entire dataset delivered
positive results. The graph of Accuracy indicates that this
model boasts an 81% likelihood of successful predictions.
In Figure 14, the graph of Loss shows a consistent reduction
in error values throughout the training process, without any
apparent signs of underfitting or overfitting. The sensitivity is
set at 85.1% and specificity at 75.4%. These values reflect the
performance of a model trained on a comprehensive dataset,
which, while robust in detecting true positives, may not be as
adept at identifying true negatives due to potential overfitting
or lack of diverse data representation.

B. 2nd EXPERIMENT
In the 2nd experiment, the dataset was split between two
clients, where the first one had 40% and the second client
received 60% of the training data. The training involved both
clients. As displayed in the graph of Accuracy (Figure 15),
starting from around epoch 400, there’s apparent overfitting
with the first client’s model. The accuracy increases to 87.5%,
accompanied by a sensitivity of 80.0% and a specificity of
90.1%. This suggests that although themodel has improved in
overall accuracy, the imbalanced distribution of data between
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FIGURE 12. Grad-CAM Heatmaps for Breast Cancer Detection using DCNN.

FIGURE 13. Accuracy of single client experiment with a local model
trained on 100 % of the training data.

the two clients could lead to a better performance in recog-
nizing negatives over positives. This is indicative of a model
that may be more conservative in predicting the presence
of cancer, thus reducing false positives but possibly at the
expense of missing some true positive cases.

This occurs because of the diminished training data,
in combination with a complex architecture. The model
focuses excessively on the training data, harming its capac-
ity to generalize with the testing set. This is affirmed in
Figure 16, where we see the loss rising instead of decreasing.
In this scenario, themetrics are less favorable compared to the
client with the complete dataset due to the occurring overfit-
ting. In any case, though, the overfitting isn’t too severe in this
case, and it does not interfere with the model’s functioning.

FIGURE 14. Loss graph of single client experiment with a local model
trained on 100 % of the training data.

Regarding the second client, overfitting isn’t very notice-
able because of the larger volume of data. Looking at
Figures 17 and 18, we see a similar result as in the case of
the client with the full dataset, thanks to the larger volumes
of data.

C. 3rd EXPERIMENT
In the third of our experiments, we simulated a federated
architecture involving one global server and two clients who
shared training data in a 40% and 60% ratio.

The experiment shows further improvement with an accu-
racy of 91.0%, sensitivity at 88.2%, and specificity at 92.7%.
The federated approach here begins to exhibit its strengths,
as the aggregation of insights from two clients enhances
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FIGURE 15. Accuracy experiment of the local client with the 40% and
training data.

FIGURE 16. Loss graph experiment of the local client with the 40% and
training data.

FIGURE 17. Accuracy experiment of the local client with the 60% and
training data.

the model’s ability to generalize, thereby achieving a more
balanced and higher performance in both sensitivity and
specificity. Figure 19 shows that they acquired nearly iden-
tical outcomes as those acquired through the centralized
scheme with 100% availability of the data for training.
Furthermore, this experiment also resulted in an intricate
observation: the curves that were relative to the testing sets

FIGURE 18. Loss graph experiment of the local client with the 60% and
training data.

surpassed those related to the training dataset. This suggests
that learning is progressing properly with no signs of under-
fitting or overfitting, as depicted in Figure 20.

FIGURE 19. Accuracy of federated model experiment of the two clients
with the different data distributions.

FIGURE 20. Loss graph of federated model experiment of the two clients
with the different data distributions.

D. 4th EXPERIMENT
This time, we simulated an architecture with five clients. The
training dataset is split in the following manner: two clients
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FIGURE 21. Accuracy of federated model of the global server that
aggregate the client’s nodes results.

FIGURE 22. Loss graph of federated model of the global server that
aggregate the client’s nodes results.

received 15%, twomore clients workedwith 20%, and the last
remaining client had 30% of the data. Each of them trained
independently so that we could compare the outcomes. This
simulation is based on a real-life scenario where some clients
(such as large hospitals) possess a vast amount of data while
others (like small health centers) have significantly less data.

Upon studying Figures 21 and 22, it becomes clear that the
outcomes improve significantly by combining local models
with a federated approach on the global server. The accuracy
jumped clearly and the loss value is also notably small. This
experiment demonstrates the most significant performance
leap, with the accuracy reaching 98.9%, and sensitivity and
specificity at 95.0% and 98.0%, respectively. The federated
model, with data contributions from five clients, benefits
from a rich diversity in the training dataset. This leads to a
highly accurate model that excels at both identifying cancer
cases and minimizing false alarms. The comprehensive data
distribution ensures that the model is well-rounded, making
it extremely reliable for clinical applications.

Comparable observations resulted from the federated
architecture involving two clients, where everyone con-
tributes individual knowledge that, when united, improves
generalization and leads to more precise predictions. It’s
probably noteworthy that, in this case, there are also some

client nodes with limited data, so the results resemble, or even
surpass, those of the local subject with the complete dataset.

The progression in performance metrics across the experi-
ments underscores the effectiveness of the federated learning
approach in enhancing both the accuracy and reliability of
breast cancer detection models. It showcases the potential
of federated learning to utilize distributed data sources for
developing robust diagnostic tools in healthcare.

VII. EXPERIMENTS ON DATA PRIVACY AND SECURITY
In this section, we have deployed Homomorphic Encryption
(HE) [72] within our Federated Learning framework as a
pivotal measure to ensure the security and confidentiality of
data, particularly critical in the context of breast cancer early
detection.

Mainly, HE allows for specific types of computations
to be carried out directly on encrypted data, producing an
encrypted result that, when decrypted, matches the result of
operations performed on the plaintext [73]. For instance, if E
represents the encryption function, D the decryption, and ⊕

an operation (like addition or multiplication), then for any
two data points a and b, HE ensures that D(E(a) ⊕ E(b))
= a ⊕ b. This property is invaluable in federated learning,
where data privacy is paramount. By using HE, models can
be trained on encrypted data from multiple sources without
exposing sensitive information. HE allows for computations
to be performed on encrypted data, enabling the participating
nodes in our federated network to contribute to the collective
learning process without exposing sensitive patient data. This
approach not only adheres to stringent data privacy regula-
tions but also maintains the integrity of medical data.

By integrating HE, we aim to provide quantifiable results
that demonstrate the efficacy of this privacy measure. The
experimental results presented in this section are designed to
empirically evaluate the impact of HE on the model’s per-
formance, including accuracy and computational overhead,
thereby offering a comprehensive analysis of its feasibility
and effectiveness in a federated learning setting.

Figure 23 illustrates the performance of both the
non-encrypted and HE models in the federated learning
system. Both models demonstrate an increase in accuracy
over epochs, but the model with homomorphic encryption
starts with a slightly lower accuracy, potentially due to the
complexity added by encryption.

However, it gradually catches up, indicating that encryp-
tion does not significantly compromise the model’s learning
capability.

This representation emphasizes the high accuracy achiev-
able in sensitive medical applications like breast cancer
detection, even when stringent privacy measures are imple-
mented.

Figure 24 shows the training time required for each epoch.
The homomorphically encrypted model consistently requires
more time per epoch compared to the non-encrypted model.
This increased training time is a trade-off for the added
security provided by encryption.
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FIGURE 23. Accuracy of Non-Encrypted and HE models over Epochs.

FIGURE 24. Training Time of Non-Encrypted and HE models over Epochs.

Overall, this experiment demonstrates the impact of incor-
porating HE into our proposed federated learning model,
highlighting the balance between enhanced security and
computational efficiency. The experiment shows that while
encryption adds to the computational cost, it does not substan-
tially hinder the model’s overall accuracy, making it a viable
option for sensitive applications like breast cancer detection.

VIII. EXPERIMENTS ON COMPUTATIONAL EFFICIENCY
In this section, we conducted an experiment to evaluating
the computational efficiency of a federated learning model
for breast cancer detection, the energy consumption per node
was observed to be 120kWh during the training phase. This
value can be attributed to several factors inherent in the fed-
erated learning process and the specific demands of training
DCNNs, which is inherently a computationally intensive task,
requiring substantial energy consumption. This is due to the
need for processing large datasets and performing complex
mathematical operations, which are central to the training of
deep learning models.

In our setup, each node, equipped with a mid-range GPU
like the NVIDIA GTX 1660 and a quad-core processor,
undergoes these intensive computations. While GPUs sig-
nificantly enhance the speed of these computations, they
also contribute to higher energy usage, especially under the

continuous and heavy computational load typical of DCNN
training.

The duration of training contributes to the total energy
consumption. Although federated learning decentralizes the
training process, distributing it across multiple nodes, each
node still engages in energy-intensive computations. This
distributed nature of federated learning, where each node
processes only a part of the dataset, ostensibly offers energy
savings compared to a centralized model. However, the
aggregate energy consumption across all nodes remains sig-
nificant.

When considering the application of such a model in
real-world medical settings, where resources may be limited,
an energy requirement of 120kWh per node is substantial.
This highlights the need for optimizing the efficiency of
both the AI models and the hardware utilized. In resource-
constrained healthcare environments, optimizing for energy
efficiency is as crucial as ensuring computational efficiency
and accuracy. Balancing these factors is key to the successful
deployment of federated learning models in practical health-
care applications.

Thus, while the federated learning approach brings advan-
tages in data privacy and reduced data transfer needs, its
energy efficiency is a vital aspect that needs attention. Future
improvements in the model’s design and hardware optimiza-
tion could help in reducing the energy footprint, enhancing
the feasibility of deploying advanced AI techniques like fed-
erated learning in diverse medical settings.

Finally, an essential consideration in deploying federated
learning models for breast cancer detection is the latency
during both training and inference phases. Real-time or near-
real-time diagnostic applications demand quick response
times, which can be challenging in federated settings due to
the distributed nature of the model training and data aggrega-
tion.

To assess the impact of latency, we measured the training
and inference processes across a network scaling from 1 to
10 hospital nodes. Figure 25 shows a nonlinear increase in
cumulative training time as more nodes participate in the
federated learning process. This increase is attributed to the
added communication time required to aggregate the dis-
tributed models. However, the inference time, critical for
real-time diagnosis, remains consistently low across all node
configurations.

The experiment reveals that while federated learning intro-
duces latency during model training, it does not significantly
affect the inference phase. Therefore, despite the longer train-
ing times, the swift inference capabilities of the federated
model are well-suited for real-time breast cancer detection
applications, allowing for timely and accurate diagnoses.

IX. DISCUSSIONS
A. ANALYSIS OF RESULTS
The results of our research, as outlined above, shed light on
the significance of architecture selection, data distribution,
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FIGURE 25. Cumulative training and inference latency across ten hospital
nodes.

and the federated learning approach in enhancing breast can-
cer detection based on DCNN. A significant takeaway is the
optimization of training through the strategic addition of con-
volutional layers. The boosted accuracy levels, as depicted
in Figure 8, validate our decision to introduce an additional
convolutional layer, ultimately enhancing the model’s profi-
ciency. The F1-Score’s satisfactory performance, particularly
for a three-layer model, underscores the balance between pre-
cision and recall, which are essential for medical diagnoses
where both false negatives and false positives can have dire
consequences.

The meticulous assessment of individual datasets,
as shown in Figure 8, has provided invaluable insights.
Recognizing the constraints of the INBreast dataset due to
its limited volume, this individual dataset analysis facilitates
a more nuanced understanding of dataset efficiency, allowing
us to steer clear of overarching conclusions based solely on
aggregate performance metrics.

Another measurement in our study is the ROC curve,
illustrated in Figure 9. The favorable ratio of true positives
to false positives across all datasets accentuates the efficacy
of our chosen discrimination threshold. The commendable
performance with the VINDR-MAMMO dataset,in particu-
lar, underscores its potential as a robust resource for future
breast cancer detection endeavors.

One of the primary objectives of this study was to address
the challenges inherent in managing sensitive patient data,
especially in the context of multi-institutional collaborations.
Our simulation results manifestly demonstrate the merits of a
federated learningmodel over a localized one. By segmenting
the research into four distinct experiments, we were able to
discern the nuances of data distribution and its ramifications
on model performance.

The first experiment reiterates the intuitive assumption
that leveraging the entirety of a dataset yields commendable
results, as evidenced by Figures 13 and 14. The second exper-
iment brought to light the pitfalls of overfitting, especially
when training data is limited. This observation underlines
the importance of mindful data allocation, particularly when

working with complex architectures. Yet, it was heartening to
note that even in the face of overfitting, the model’s overall
functionality remained uncompromised.

The 3rd and 4th are particularly revealing. They underscore
the potential of federated learning as a solution to disparities
in data availability across institutions. The near-identical out-
comes between the federated architecture and the centralized
scheme with complete data availability are indicative of the
federated model’s prowess. Moreover, the superior outcomes
achieved in the 4th experiment, despite some clients having
limited data, showcases the efficacy of combining local mod-
els within a federated framework.

Finally, we focused on the integration of HE within our
federated learning model. The results from this segment were
particularly enlightening, revealing that despite the additional
computational complexity introduced by HE, the model’s
accuracy remained impressively high, within the range of
93.5% to 99%. This experiment not only demonstrated the
feasibility of applying HE in a practical, federated learning
context but also underscored its effectiveness in maintaining
data privacy without significantly compromising the model’s
performance. The successful implementation of HE in our
model marks a significant stride in balancing the dual objec-
tives of preserving patient data confidentiality and achieving
high diagnostic accuracy in breast cancer detection.

B. POTENTIAL FUTURE IMPLICATIONS
Beyond its immediate impact on breast cancer detection, our
federated learning framework holds promising implications
and applications across various domains. Some notable appli-
cations include:

• Advancing Healthcare and Medical Imaging: Our
approach serves as a model for extending federated
learning to early detection of other types of cancer
(e.g., lung, prostate) and diagnosing a wide range of
diseases beyond cancer (e.g., cardiovascular diseases,
neurological disorders). This paves the way for more
accurate and decentralized healthcare solutions.

• Privacy-Preserving Machine Learning: The principles
applied in our framework can inspire data privacy
solutions in finance, legal, and education, safeguard-
ing sensitive information while enabling data-driven
decision-making.

• Cross-Domain Federated Learning: The scalability and
adaptability of our approach extend beyond healthcare,
finding relevance in collaborative learning scenarios
across industries such as manufacturing, agriculture,
and energy. Our method fosters secure, collaborative
data analysis while respecting data ownership.

• Global Collaboration: Our federated learning model
promotes international collaboration in data-driven
research. By complying with diverse data protection
regulations, it facilitates global cooperation among
institutions, transcending geographical boundaries.
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• Scalability and Efficiency: Scalability is a key attribute
of our approach, rendering it suitable for handling vast
datasets and diverse data sources. Its potential applica-
tions span sectors like autonomous vehicles, IoT, and
smart cities, where distributed, privacy-preserving AI
is paramount.

• Interdisciplinary Research: Bridging the gap between
machine learning and healthcare, our work encourages
interdisciplinary collaborations. It fosters knowledge
exchange between these domains, propelling innova-
tion at the intersection of
healthcare and AI.

C. STRATEGIES FOR DATA IMBALANCE IN FEDERATED
LEARNING MODELS
In section (V-B) we described how we used Focal Loss
feature to minimize the effects of imbalanced data classifica-
tion, which is a common issue in medical imaging datasets.
In this part, we discuss the challenge of data imbalance in
the context of federated learning approach. Data imbalance
occurs when certain classes (e.g., types of cancerous lesions)
are significantly underrepresented compared to others. This
imbalance can skew the model’s learning process, leading
to poor generalization, especially for the underrepresented
classes. There are many techniques where federated learning
can address this issue:

In an academic research context, addressing data imbal-
ance within federated learning models, particularly in the
domain of medical imaging datasets, can be articulated as
follows:

• Implementation of Stratified Sampling Techniques: Fed-
erated learning systems can employ stratified sam-
pling to ensure each training batch proportionally
represents various classes. This method guarantees
consistent exposure of the model to all classes,
mitigating the risk of bias towards overrepresented
categories.

• Development of Tailored Local Models: The feder-
ated learning framework facilitates the customization of
local models to address specific data distributions. This
approach allows for specialized focus on rare categories
within individual clients, enriching the global model
with a diverse range of local insights.

• Client-Centric Data Augmentation Strategies: Within
the federated learning paradigm, data augmentation
is conducted at the client level (such as hospitals or
medical centers). This involves the generation of syn-
thetic instances of underrepresented categories utilizing
techniques like geometric modifications or advanced
methodologies such as Generative Adversarial Net-
works (GANs), thereby artificially enhancing dataset
balance.

• Modification of Loss Functions for Enhanced Sen-
sitivity: Altering the loss function to disproportion-
ately penalize misclassifications of minority classes,

an approach known as cost-sensitive learning, ensures
greater focus on accurately predicting these underrepre-
sented categories.

• Adoption of Weighted Aggregation in Model Updates:
The central server in a federated learning network amal-
gamates updates from multiple clients to refine the
globalmodel. By variablyweighting these updates based
on the uniqueness or scarcity of the data provided by
each client, the model can counteract the effects of data
imbalance.

• Rigorous Performance Monitoring and Evaluative Met-
rics: Ongoing monitoring of model performance, with
an emphasis on metrics that offer detailed insights into
class-specific performance (such as F1-score, precision,
recall, and confusion matrices), is crucial. This approach
is instrumental in identifying and addressing biases
favoring majority classes.

Generally, federated learning offers a structured approach
to managing data imbalance in medical imaging datasets,
leveraging decentralized data sources and local model adap-
tations, combined with global synthesis, to develop models
that are more representative of varied medical conditions.
Nonetheless, the efficacy of these models in addressing data
imbalance necessitates more future experiments, specifically
on real datasets.

D. LEGAL AND ETHICAL CONSIDERATIONS OF AI-BASED
FEDERATED LEARNING IN HEALTHCARE
The integration of artificial intelligence (AI) in healthcare
has brought forth transformative opportunities but has also
introduced complex ethical challenges that demand careful
consideration. In the context of our research on federated
learning for breast cancer detection, we recognize the follow-
ing ethical considerations, with a particular focus on patient
consent and data usage:

• Informed Patient Consent: Patient consent is the corner-
stone of ethical healthcare AI. It is imperative to ensure
that patients are adequately informed about how their
data will be used for AI-based diagnostics. Transparent
communication and obtaining informed consent from
patients for data collection, sharing, and utilization is
paramount. Additionally, the consent process should be
ongoing, allowing patients to withdraw their data at any
point in time.

• Data Privacy and Security: Safeguarding patient data
is an ethical imperative. AI algorithms require access
to sensitive medical information, and rigorous data
security measures must be in place to protect against
breaches or misuse. Beyond mere compliance with
regulations such as Health Insurance Portability and
Accountability Act (HIPAA) in the United States, it is
essential to instill a culture of data stewardship and
trustworthiness.

• Bias and Fairness: Bias in AI algorithms can lead to dis-
parities in healthcare outcomes. It is essential to address
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bias and fairness concerns in algorithm development,
validation, and deployment. Ensuring that AI systems
do not perpetuate existing healthcare disparities requires
vigilance and ongoing monitoring.

• Accountability and Transparency: The responsibility for
AI-driven decisions should be clearly defined. Health-
care institutions and AI developers must be account-
able for the outcomes of AI systems. Transparency
in AI models and decision-making processes is nec-
essary to build trust among patients and healthcare
providers.

• Data Ownership and Access: Patients should have con-
trol over their health data, including the ability to access,
share, or withdraw it as they see fit. Establishing data
ownership and access frameworks that empower patients
is ethically imperative. Federated learning, as demon-
strated in our research, aligns with these principles by
preserving data at its source and enabling decentralized
control.

• Continuous Evaluation and Improvement: AI models
should undergo continuous evaluation for performance,
safety, and ethical considerations. This iterative process
ensures that the AI system’s impact on patient care
remains positive and aligned with ethical standards.

With regards to the application of application of federated
learning in healthcare, addressing legal and ethical consid-
erations is paramount, especially across diverse geographic
regions with varying data protection laws. We list some
notable considerations as follows:

In the field of breast cancer detection, addressing legal
and ethical considerations is paramount, especially across
diverse geographic regions with varying data protection laws
such as:

• Cross-Jurisdictional Challenges: Since federated learn-
ing can involve collaboration across borders, under-
standing and complying with international data transfer
regulations become critical. The model’s development
must respect the legal frameworks of all involved
regions, particularly when model updates or insights are
shared across borders.

• Data Privacy and Regulatory Compliance: Federated
learning, by design, keeps patient data localized, which
aligns well with privacy concerns and regulations
like General Data Protection Regulation (GDPR) and
HIPAA. Despite this, the approach must be meticulously
aligned with specific local and regional data protec-
tion laws. Each region may have distinct requirements
regarding data handling, anonymization, and patient
consent.

• Governance and Accountability: Clear governance
structures are essential to establish accountability for the
outcomes of federated learning systems. This involves
defining who is responsible for the model’s outputs and
ensuring robust protocols for auditing and monitoring
the system.

TABLE 2. Federated learning vs. traditional DCNNs - a privacy and
performance comparison.

• Ethical Considerations: Ethical deployment of feder-
ated learning in healthcare necessitates ensuring fairness
and avoiding biases in the AI models. This is crucial
to prevent systemic biases against certain demographic
groups.

• Patient Consent and Autonomy: In healthcare, informed
consent is fundamental. Even if federated learning does
not entail direct data transfer, patients should be made
aware of and consent to how their data is utilized
in AI model training. This includes understanding the
potential benefits, risks, and the nature of their data’s
involvement.

• Collaboration with Legal Experts: Regular collaboration
with legal advisors and data protection specialists is
crucial to navigate the complex landscape of healthcare
data regulations and to ensure ongoing compliance as
laws evolve.

By addressing these legal and ethical considerations com-
prehensively, AI and federated learning can be effectively
and responsibly integrated into healthcare, particularly in the
sensitive field of breast cancer detection.
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E. COMPARATIVE ANALYSIS OF FEDERATED LEARNING
VS. TRADITIONAL DCNNS
Table 2 provides a comparative analysis between the feder-
ated learning approach and traditional non-federated DCNN
models, specifically highlighting the differences in privacy
and performance aspects. This comparison is essential for
understanding the unique benefits and challenges of each
approach in the context of breast cancer detection using
DCNNs.

Table 2 illustrates the distinct advantages of federated
learning in terms of privacy, with its data localization and
minimal data transfer, aligning closely with stringent data
protection regulations. It also shows how federated learning
benefits from continuous learning and improved generaliza-
tion due to its access to diverse, decentralized data sources.
However, it acknowledges the challenges in communication
efficiency and the need to balance privacy with performance
complexities.

In contrast, traditional DCNN models offer direct control
and efficient data handling due to their centralized nature but
face significant risks in data privacy and compliancewith data
protection laws. Their performance is often constrained by
the limitations of centralized data, impacting model general-
ization.

This comparison underscores the suitability of the feder-
ated learning approach in scenarios where data privacy is
paramount and diverse datasets are essential for accurate
model training, such as in healthcare applications for breast
cancer detection.

X. CONCLUSION
Breast cancer affects millions of women all around the
world. What makes the difference in its treatment is detect-
ing it early since this is crucial for successful recovery.
However, early detection is a difficult task to accom-
plish, even for experienced specialists. The medical field is
urgently seeking reliable and accurate breast cancer classifi-
cation techniques. Artificial intelligence systems, especially
DCNNs, seem to be the right solution since they have
exhibited great potential for effectively detecting and clas-
sifying the disease. These technologies have been explored
by researchers for the past couple of years, hoping to
enhance the important early detection rates and, eventually,
save lives.

This study underscores the potential of federated learn-
ing architectures, specifically employing Deep Convolutional
Neural Networks (DCNNs), in the realm of breast cancer
detection. Our approach has shown a notable enhancement in
detection efficiency, achieving a 98.9% accuracy rate across
three significant datasets: VINDR-MAMMO, CMMD, and
INBREAST, while concurrently upholding stringent stan-
dards of privacy and security.

Furthermore, the integration of Homomorphic Encryption
(HE) within our federated learning framework represents a
critical step in balancing heightened computational demands

with the precision of the model. This balance is crucial in
sensitive fields like breast cancer detection, where data con-
fidentiality is paramount.

However, it is important to approach these findings with
a degree of caution. While federated learning demonstrates
immense promise as a tool in breast cancer identifica-
tion and potentially in broader dermatological applications,
its position as the future tool of choice is contingent
upon further validation. This involves extensive testing
in diverse real-world scenarios and gaining acceptance
within the medical community. Hence, while our results
are encouraging, they should be viewed as a foundational
step towards more comprehensive, validated applications in
the future.

Our findings in breast cancer detection using feder-
ated learning and DCNNs not only address a critical
healthcare challenge but also serve as a pivotal contri-
bution to the broader spectrum of medical imaging and
AI applications. This research exemplifies how advanced
AI techniques can revolutionize diagnostic accuracy and
efficiency across various medical fields, potentially lead-
ing to earlier and more precise disease identification and
better patient outcomes. Furthermore, the successful appli-
cation of these AI strategies in breast cancer detection
sets a precedent for the adaptation and implementation of
similar methodologies in other areas of medical imaging,
paving the way for more innovative and effective healthcare
solutions.

Future research in this field should concentrate on enhanc-
ing the model’s ability to generalize, which could be carried
out by testing on more extensive and more diverse datasets.
In our study, we focused on binary classification of breast
cancer images into malignant and benign. Future research
should explore multi-classification into more specific types,
such as Adenosis, Fibroadenoma, Phyllodes Tumor, and
Tubular Adenoma for benign, andDuctal Carcinoma, Lobular
Carcinoma, Mucinous Carcinoma, and Papillary Carcinoma
for malignant. This approach requires data from diverse
datasets for comprehensive accuracy. Additionally, examin-
ing the feasibility of incorporating the proposed architecture
into current practical workflows may result in the model’s
enhanced usability in the real world. Exploring the possible
interpretation of the features pulled out by the suggested
architecture could deliver helpful insights into the mech-
anisms of breast cancer detection, maybe even leading to
the appearance of more effective diagnostic tools. However,
it may also face challenges like data variability, compu-
tational demands, privacy concerns, model generalizability,
integration complexities, and regulatory issues. Each of these
factors requires careful consideration for successful imple-
mentation in clinical settings. Finally, we aim to explore and
develop improvements over the standard FedAvg algorithm.
These advancements will focus on enhancing the efficiency
and accuracy of federated learning in medical imaging anal-
ysis, specifically in the challenging domain of breast cancer
detection.
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