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ABSTRACT Unmanned aerial vehicles (UAVs) or drones have attracted much attention in wireless
communication networks because of their agility, unique flexibility, low cost of implementation, and the
high strength of the line-of-sight (LoS) channel. They are widely used in different scenarios. In many
environments with complex geographical conditions or in situations where areas are affected by natural
disasters, UAVs can be used as base stations (BSs) for downlink ground users. The article proposes a
communication system usingmultiple UAV-mounted BSs to improve coverage rate andminimize the number
of required UAVs. The problem is formulated as a mixed-integer programming problem with constraints on
the quality of service (QoS) and serviceability of each UAV. A three-step method is developed to solve
the problem, which includes deriving the maximum service radius of UAVs using the Karush-Kuhn-Tucker
(KKT) method, minimizing the number of required UAVs using reinforcement learning (RL) algorithm, and
designing the three-dimensional (3D) position and frequency band of each UAV to increase signal power
and reduce interference. The simulation results show that the RLP algorithm outperforms other algorithms
in terms of coverage rate, user clustering, increased signal, reduced interference, and processing time required
to find the optimal solution.

INDEX TERMS Wireless communication, unmanned aerial vehicles (UAVs), base stations (BSs), three-
dimensional (3D) deployment, user clustering.

I. INTRODUCTION
In recent years, the world has seen unprecedented demands
for high-quality wireless services that have put incredible
strain on existing cellular communication networks. UAVs
offer significant advantages, such as wide operational
coverage, flexible and highly controllable mobility, and
comparatively low implementation costs. UAVs have been
widely used in different aspects, especially for natural
disaster management, monitoring public areas, military areas,
and rural and remote areas that need communication. UAVs
have been the focus of numerous research studies due to their
remarkable mobility and capability to establish LoS connec-
tions on wireless communication networks [1], [2], [3], [4],
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[5], [6], [7], [8], [9], [10]. The purpose of determining the
minimum number of UAVs in communication between users
in UAV-based networks and improving the user’s coverage
is to create a secure and reliable network infrastructure for
crisis management that maximizes energy efficiency, reduces
interference power, and optimizes the network’s lifetime.

This paper proposes a new algorithm called Reinforcement
Learning Placement (RLP) that uses the RL algorithm
to cluster users. Then, each cluster or UAV is assigned
a frequency band using the frequency band allocation
algorithm. In the next step, by optimizing the 3D deployment
of drones, there will be a decrease in the number of drones
used in the network. The RL algorithm is a type of machine
learning that deals with how intelligent agents should perform
actions in an environment to maximize the concept of
cumulative reward [9].
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A. RELATED WORKS
The artificial bee colony-based (ABC) algorithm proposed
in [10] is a meta-heuristic optimization algorithm inspired
by the foraging behavior of honeybees. The algorithm aims
to optimize the deployment of drones as base stations (BSs)
in a wireless network to improve user coverage rates and
overall network performance. One of the key features of
this algorithm is its ability to simultaneously optimize mul-
tiple parameters, including the number of required drones,
received power, interference power, UAVs’ 3D locations, and
frequency band allocation. This multi-objective optimization
approach ensures that the deployment of drones is both
efficient and effective in meeting the needs of users. Another
important feature of the algorithm is its consideration of the
serviceability of each drone. The algorithm takes into account
the maximum service radius and optimal altitude of each
drone to ensure that users are assigned to the appropriate
drone for efficient service. Additionally, the signal-to-
interference-plus-noise ratio (SINR) threshold is considered
to ensure that users receive a high-quality signal without
interference from other drones or external sources. In [11],
a novel 3D deployment method for UAVs is introduced,
utilizing the ant colony optimization (ACO) meta-heuristic
algorithm to optimize the required number of UAVs for
user service, thereby enhancing network performance and
coverage. The use of UAVs as base stations is a notable
aspect of this approach. The article focuses on obtaining
the 3D positions of the drones, but it does not consider the
serviceability of eachUAV. This can lead to someUAVs being
overloaded while others are underutilized, which can degrade
the quality of service for users. Additionally, the SINR
threshold is not considered in this approach. In [12], a meta-
heuristic particle swarm optimization (PSO) algorithm is
proposed to determine the 3D locations of UAVs acting as
BSs. The article focuses on obtaining the 3D positions of
the drones, without considering the serviceability of each
UAV and the SINR threshold. One of the advantages of this
approach is its ability to find the optimal 3D location of UAVs
as base stations while minimizing the number of uncovered
users. This improves the network performance and coverage
while reducing the cost and complexity of deploying and
managing the network.

In [13], the deployment of dynamic movement for UAVs
in multi-UAV networks is explored. The paper proposes
a genetic algorithm to obtain user cell division and a
learning-based algorithm for the 3D positioning of drones.
Additionally, a learning-based algorithm is suggested for
acquiring 3D dynamic movement for UAVs. The article
covers the 3D positioning of drones and considers the SINR
threshold, which can help to ensure that the quality of service
for users is not degraded due to interference. However,
the serviceability of each UAV is not considered in this
approach. This can lead to some UAVs being overloaded
while others are underutilized, which can affect the overall
network performance. In [14], the efficient placement of
drones as wireless BS for optimal user coverage is examined.

The theory of circular packing is proposed to determine the
3D locations of drones to maximize coverage. However, the
article does not consider the serviceability of each UAV
and the SINR threshold. In [15], the edge prior placement
(EPP) algorithm was examined for the 3D deployment of
drones acting as BSs. The algorithm aims to cover all ground
users while minimizing the number of required drones in the
communication network. The article takes into account the
3D positions of the drones and considers the serviceability of
each drone. However, the SINR threshold is not considered in
this particular investigation. Without considering the SINR
threshold, there is a risk of interference between drones or
from external sources, which can degrade the quality of the
signal received by users. Overall, the EPP algorithm offers
a cost-effective solution for the 3D deployment of drones as
BSs to cover all ground users. However, it may not be suitable
for applications that require high-quality signal transmission
and reception due to its lack of consideration for the SINR
threshold.

In [16], a spiral mobile base station deployment algorithm
is presented to minimize the number of mobile base stations
required to serve all ground users by optimizing drone
deployment. The article focuses on obtaining the 2D position
of drones and does not consider the serviceability of each
UAV and the SINR threshold. In [17], the elephant herd
optimization algorithm [18] is employed for the fixed
deployment of drones to minimize the number of drones
needed to serve all users in the network. The article focuses on
obtaining the 2D position of drones and does not consider the
serviceability of each UAV and the SINR threshold. In [19],
a 3D deployment algorithm for multiple mobile base stations
mounted on UAVs, based on quality of service (QoS) for
ground user coverage, has been proposed. The algorithm
takes into account the QoS requirements of each user. The
article aims to optimize the altitude and coverage radius of
drones. It considers the 3D position of the drones and the
serviceability of each drone but does not address the SINR
threshold.

In [20], an improved particle swarm optimization
algorithm was proposed to optimize the positions of drones
in cellular networks. The goal of this optimization was
to minimize the number of drones required to serve all
users effectively. Additionally, the article suggests using
a clustering method based on the K-means algorithm to
determine the locations of the drones. This approach helps
in generating the 3D positions of the drones. However, the
serviceability of each UAV and the SINR threshold are not
considered in this approach. These factors are important in
ensuring that the network performance meets the desired QoS
requirements of the users. In [21], the focus is on the 3D
deployment of base station-based drones in a cellular network
and the management of backhaul to minimize the number of
drones required to cover ground users. The approach used in
the article involves stochastic optimization techniques. In this
article, the 3D position of the drones has been obtained.
However, the serviceability of each UAV and the SINR
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threshold are not considered in this approach. In [22], the
focus is on investigating two drone deployment algorithms
based on BSs to minimize the number of drones required to
serve users and enhance the coverage for ground users in a
cellular network. The determination of the 3D positions of
the drones is addressed in this study. However, it is noted that
the serviceability of each UAV is not considered. Therefore,
while the positions of the drones are obtained, the article
does not take into account the capability of each drone to
effectively serve the users on the ground.Moreover, the SINR
threshold, which is an important metric in evaluating the
quality of wireless communication, is not considered in this
article.

In [23], the focus is on investigating a novel meta-heuristic
method for the 3D dynamic deployment of multiple
base station-based UAVs in a cellular network. The arti-
cle proposes the use of the PSO algorithm and the
electromagnetism-like algorithm (EML) to address this
deployment issue. The determination of the 3D positions
of the drones is considered in this study. However, it is
important to note that the serviceability of each UAV is
not taken into account. Additionally, the SINR threshold,
which is a crucial factor in evaluating the quality of wireless
communication, is not considered in this article. In [24],
the optimization of UAV deployment in wireless networks
is investigated, considering base stations and user power
allocation, with the assistance of non-orthogonal multiple
access (NOMA). The article proposes the utilization of
the K-means algorithm for grouping ground users and the
balanced gray wolf optimization (B-GWO) algorithm to
solve the non-confrontational optimization problem. The
optimization problem is formulated as a non-confrontational
problem, where the objective function is to maximize the
sum rate of all users while ensuring that each user’s QoS
requirements are met. The determination of the 3D positions
of the drones is addressed in this study. However, it is
important to note that the serviceability of each UAV is not
taken into account. Furthermore, the SINR threshold, which
is a crucial parameter in evaluating the quality of wireless
communication, is not considered in this article. In [25], the
Q-learning algorithm is used to optimize the placement of
the drones in 3D space, taking into account the location of
the users and the available resources. In this paper, SDQ-H
is an approach that uses distributed learning to help drones
serve users. The proposed approach focuses on maximizing
the number of users served by each drone while ensuring that
the drones do not interfere with each other. The determination
of the 3D positions of the drones is addressed in this study.
However, it is important to note that the serviceability of
each UAV is not taken into account. Furthermore, the SINR
threshold, which is a crucial parameter in evaluating the
quality of wireless communication, is not considered in this
article.

In [26], 3D position optimization has been investigated
for both uplink and downlink transmissions, which could
provide a more comprehensive solution for the UAV-assisted

communication networks. However, the proposed approach
in the article considers several factors such as the number of
users served by each drone, the distance between drones and
users, and the interference between drones. However, the lack
of consideration for the serviceability of each UAV and the
SINR threshold could limit the applicability of the approach
in practical scenarios. The serviceability of each UAV is an
important factor in ensuring that the network can operate
reliably, and the SINR threshold is critical for maintaining
a certain level of quality of service for the users. In [27],
a multi-agent deep reinforcement learning (DRL) algorithm
is used to optimize task offloading and resource allocation
in multi-UAV-enabled IoT edge networks. By optimizing the
task offloading and resource allocation process, the study
aims to improve the overall system performance, which in
turn will lead to better QoS for users. This is achieved
by reducing task completion time and improving network
throughput, which are two key factors that contribute to
the overall user experience. The determination of the 2D
positions of the drones is addressed in this study. However,
it is important to note that the serviceability of each UAV
is not taken into account. Furthermore, the SINR threshold,
which is a crucial parameter in evaluating the quality of
wireless communication, is not considered in this article.
In [28], a deep reinforcement learning (DRL) algorithm
is used to optimize the placement and mobility of UAVs
for content caching in mobile edge networks. The goal
is to maximize the QoS of users by reducing content
delivery latency and improving the network throughput. The
DRL-based approach involves training a UAV agent to learn
how to make decisions about content caching and placement
based on the current state of the network. The determination
of the 3D positions of the drones is addressed in this study.
However, it is important to note that the serviceability of
each UAV is not taken into account. Furthermore, the SINR
threshold, which is a crucial parameter in evaluating the
quality of wireless communication, is not considered in this
article.

B. MOTIVATION AND CONTRIBUTIONS
In this paper, a multi-UAV system has been investigated
to serve and cover fixed-ground users. Additionally, UAVs
have been used as BSs. A new algorithm is proposed to
optimize the placement of multiple UAVs as BSs to provide
coverage to ground users. Our goal is to minimize the
number of drones required by clustering users appropriately,
improving the coverage rate by 3D optimization of the
drones and adjusting the appropriate altitude of drones, and
frequency band allocation to avoid inter-cluster interference.
By clustering users and optimizing the placement of drones,
the algorithm aims to achieve maximum coverage with the
minimum number of drones required.

In this article, compared to related articles, a smaller
number of drones have been used to serve ground users, and
the coverage rate of drones has increased, so that a coverage
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rate of 100% has been achieved. The received power has
increased and the interference power has decreased. Also, the
execution time of the program to solve the problem is less
than other algorithms.

This article’s main contributions are as follows:
1) The proposed solution involves formulating a 3D

deployment problem that takes into account both
the service ability of UAVs and the QoS require-
ments of each user. This problem is shown to be
a mixed-integer programming problem with NP-hard
complexity, which means that finding an optimal
solution is computationally difficult. Therefore, the
proposed solution offers a sub-optimal approach that
involves three steps: determining the maximum ser-
vice radius, clustering users based on their QoS
requirements, and deploying UAVs in a 3D space to
maximize the number of users servedwhile minimizing
interference and collisions.

2) In the first step of the proposed approach, the proposed
solution uses the Karush-Kuhn-Tucker (KKT) condi-
tions to derive the optimal altitude and corresponding
maximum service radius for each UAV. The KKT
conditions are a set of necessary conditions for
optimization problems with constraints, and they allow
us to find the optimal solution by considering both the
objective function and the constraints. In this case, the
objective is to maximize the number of users served
while ensuring that the QoS requirements are met,
and the constraint is the altitude limit of the UAVs.
By using the KKT conditions, the optimal altitude and
service radius can be determined for each UAV, which
maximizes the coverage area and ensures fairness in the
number of users served by each UAV.

3) In the second step of the proposed approach, the
goal is to minimize the number of user clusters while
taking into account the maximum service radius and
the serviceability of each UAV. To achieve this goal,
a user clustering algorithm based on the RLP algorithm
is proposed. The RLP algorithm is used to optimize
the placement of UAVs to maximize the number of
users served while minimizing the number of drones
required. The user clustering algorithm then uses this
optimized placement to group users into clusters that
can be served by a single UAV. The goal is to minimize
the number of clusters while ensuring that each cluster
can be served by a single UAV within its service radius
and serviceability constraints.

4) In the third step of the proposed approach, the appro-
priate altitude is determined by considering various
factors such as the coverage area, interference, and
energy consumption. The altitude of each UAV is
optimized to maximize coverage while minimizing
interference and energy consumption. Once the optimal
3D location and altitude of each UAV are determined,
the frequency bands are assigned to each cluster. The
goal is to ensure that no two identical frequency bands

FIGURE 1. System model.

are adjacent to each other, as this can cause interference
and degrade the QoS of users.

5) In this step, the efficiency of the RLP algorithm in
the network is described and compared with other
methods. According to the simulation results, the RLP
algorithm has performed better than other algorithms in
minimizing the number of drones used in the commu-
nication system, increasing coverage rate, increasing
received signal power, reducing interference signal
power, and then having the lowest system processing
time.

C. ORGANIZATION
The system model for drone deployment and problem
formulation is introduced in Section II. The solution to the
problem is presented in section III. Additionally, the RLP
algorithm is proposed for user clustering and minimizing the
number of drones. The simulation results and comparison
of the proposed method with other algorithms are presented
in section IV. Finally, the conclusion is presented in the V
section.

II. SYSTEM MODEL AND PROBLEM FORMULATION
Figure 1 shows a downlink wireless communication system
with several drones that are used as BSs, and transmit data and
information to ground users. In our communication system,
network backbone connections between the drones and
access links are used between drones and ground users [29],
[30]. Users in the system are randomly distributed in a 2D
area A = {(xA, yA)|xmin ≤ xA ≤ xmax , ymin ≤ yA ≤ ymax}.

A set of users is represented by the set U = {1, 2, . . . ,U}
in the system. Each user u ∈ U has a fixed position in
the 2D environment, and the fixed location of every user
is denoted by pu = [xu, yu]T ∈ R2×1. UAVs must be
deployed in the 3D region such thatPk = {(xk , yk , hk )|xmin ≤
xk ≤ xmax , ymin ≤ yk ≤ ymax , hmin ≤ hk ≤ hmax}, and
xmin < xmax , ymin < ymax , hmin < hmax . The set of UAVs is
represented by K = {1, 2, . . . ,K }. The 3D location of every
UAV is represented k ∈ K by pk = [xk , yk , hk ]T ∈ R3×1.
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FIGURE 2. Channel model.

The set of frequency bands in the network is represented by
the set F = {1, 2, . . . ,F}, and it is assumed that the same
frequency bands are not assigned to two adjacent clusters so
that there is less interference in the system. Each UAV uses
only one frequency in the communication system to serve the
fixed users. The frequency band of the drone k is presented
by fk , and Kf represents a set of drones that work with the f
band. Smax shows the serviceability of each UAV. Therefore,
Smax is the maximum number of users that the drones can
support in the system.

A. CHANNEL MODEL
In wireless communication, the environment is not always
LoS, and because of obstacles such as buildings and trees, the
communication between drones and users may be blocked,
and the existence of these obstacles creates a non-line-of-
sight (NLoS) environment. A complex urban environment
is considered, so the channel model includes a mixed
environment of LoS and NLoS environments. Figure 2 shows
the communication of UAVs with ground users.

Therefore, between the drone k and the user u, the channel
scale factor is defined according to [31] by the equation (1):

ξk,u(dk,u) =

{
ξ0d
−ν
k,u , LoS environment,

τξ0d
−ν
k,u , NLoS environment,

(1)

In equation (1), for the LoS environment, ξ0 represents the
path loss in d0, where d0 = 0 m is the reference distance,
τ indicates the attenuation loss of NLoS environments, and
ν represents modeling the parameter that relates to path loss,
and dk,u represents the distance between the drone k and the
user u, dk,u is defined as an equation (2):

dk,u =
√
hk2 + sk,u2 =

sk,u
cos θk,u

, (2)

In equation (2), hk represents the altitude of UAVs, sk,u
represents the predicted 2D distance between UAV k and
user u, which is defined as sk,u =

√
(xu − xk )2 + (yu − yk )2,

and θk,u represents the altitude angle between the UAV k and
the user u.
The probability of the LoS link between drone k and the

user u according to [31] is defined as an equation (3):

PrLoSk,u (θk,u) =
1

1+ α exp(−β(θk,u − α))
, (3)

In equation (3), α and β are represent the environment
modeling parameters.

The probability of the NLoS link between the drone k and
the user u is defined as an equation (4):

PrNLoSk,u (θk,u) = 1− PrLoSk,u (θk,u), (4)

The average probability of path loss is defined as an
equation (5) by [32]:

0 = PrLoSk,u × PL
LoS
k,u + Pr

NLoS
k,u × PL

NLoS
k,u , (5)

In equation (5), PLLoSk,u and PLNLoSk,u indicate path loss of the
LoS link and the NLoS link, respectively, are obtained by
equations (6) and (7) [32]:

PLLoSk,u = 20 log(
4π fcdk,u

c
)+ ζLoS , (6)

PLNLoSk,u = 20 log(
4π fcdk,u

c
)+ ζNLoS , (7)

In equations (6) and (7), fc is the carrier frequency.
By combining environmental constant parameters and

equations (3), (4), (6), and (7) in (5), equation (8) is
obtained [32]:

PLmax =
W

1+ α exp(−β[arctan( hkrk )− α])

+ 10 log(hk2 + rk2)+ Z , (8)

In the above equation, hk and rk are the altitudes and the
coverage radius or the service radius of the drone respectively,
and also W = ζLoS − ζNLoS and Z = 20 log fc+
20 log( 4πc )+ ζNLoS .
According to equation (8), there is a relationship between

the radius of drone coverage and altitude, and it is defined as
equation (9) [32]:

∂rk
∂hk
= 0, (9)

According to the above equation, if the coverage radius of
a drone is available, the optimal height of the 3D deployment
of drones can be obtained.

The channel gain between the drone k and the user u is
defined as equation (10) [31]:

ḡk,u(dk,u, θk,u)
△
= PrLoSk,u (θk,u)ξ0dk,u

−ν

+ PrNLoSk,u (θk,u)τξ0dk,u−ν

= P̂LoSk,u (θk,u)ξ0dk,u
−ν, (10)
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In equation (10), P̂LoSk,u (θk,u) = PrLoSk,u (θk,u) + PrNLoSk,u (θk,u)τ
represents a regular LoS link [29], which includes both
environments LoS and NLoS.

For every user u, SINR represents the measurement of
communication quality and is defined by equation (11) [10]:

Nk,u =
Pk,u

Iu + σ 2 , (11)

In equation (11), Pk,u represents the received signal power by
user u from drone k , Iu represents the power of interference
in user u, and σ 2 represents the Gaussian white noise power.
Pk,u, and Iu can be defined by equations (12) and (13),
respectively [10]:

Pk,u = ḡk,u × PT , (12)

Iu =
∑

k ′∈Kb\k

Pk ′,u (13)

In equations (12) and (13), PT represents the signal power
sent to every user u and f represents the band used by drone
k . The power of the transmitted signal is assumed to be the
same for every user in the communication system. Therefore,
the maximum transmitted power for every drone is at the
upper limit with SmaxPT . When Nk,u ≥ N0, user u has
successfully communicated with UAV k , and N0 represents
the SINR threshold.

The index function ηk,u to show the relationship between
UAVs and users is defined as equation (14) [10]:

ηk,u =

{
1, user u is covered by drone k,
0, otherwise,

(14)

In equation (14), when ηk,u = 1, this means that the user u
is supported by drone k , and otherwise, if ηk,u = 0, it means
that user u is not served by drone k . Then, the coverage rate C
is obtained by equation (15), which represents the percentage
of users successfully supported by UAVs [10]:

C =

∑
k∈K

∑
u∈U

ηk,u

U
, (15)

B. PROBLEM FORMULATION
This article aims to utilize a minimum number of drones
to support a maximum number of users. To improve user
coverage, more drones are needed to serve users. As a
result, to establish a balance between the number of drones
and the drone coverage rate, the objective function should
be formulated as a weighted sum between the number of
drones and the drone coverage rate. The location of drones,
communication between the drones and all ground users,
as well as the allocation of frequency bands, is optimized as
an equation (16) [10]:

min
{pk },{ηk,u},{Kb}

ρ1|M| +
ρ2

C
(16)

s.t. pk ∈ Pk , ∀k ∈ K, (16a)

ηk,u ∈ {0, 1}, ∀u ∈ U, ∀k ∈ K, (16b)

∑
k∈K

ηk,u ≤ 1, ∀u ∈ U , (16c)∑
u∈U

ηk,u ≤ Smax , ∀k ∈ K, (16d)⋃
b∈B

Kb = K, (16e)

Kf

⋂
Kq = ∅, ∀f , q ∈ F , b ̸= q, (16f)

Nk,u ≥ N0ηk,u, ∀u ∈ U, ∀k ∈ K, (16g)

In equation (16), ρ1, and ρ2 represent weight coefficients and
ρ1 ≪ ρ2 shows the priority of coverage rate over reducing the
number of UAVs. Equation (16a) limits the operating area of
the 3D position of UAVs. Equation (16b) shows the range of
the ηk,u. Equation (16c) shows that every user is supported
with a maximum of one drone. Equation (16d) shows that the
number of users covered by every drone should not exceed
Smax . Equations (16e) and (16f) show that every drone can
use a frequency band to support users. Equation (16g) shows
the SINR requirement, that is, the QoS for communication
between the drone k and the user u.

III. PROBLEM SOLUTION
A non-optimal solution is used to solve the problem (16).
It is a mixed integer programming problem with NP-hard
complexity [33], proposed by [10]. In the communication
system, because the coverage rate is prioritized over the
number of drones, drones serve all ground users. Therefore,
fewer drones are used to provide services. Additionally, the
altitude of drones is optimized to obtain the largest coverage
radius or service radius and reduce the maximum interference
power, and also the number of users who are covered by
drones must be close to Smax [10]. So, the RLP algorithm
is proposed for user clustering to minimize the number
of clusters or drones in the communication system. Then,
the 2D locations of the drones are optimized to have the
maximum received power. To establish the SINR of every
user, a frequency band is assigned to every drone.

A. MAXIMUM COVERAGE RADIUS
The maximum coverage radius or Rmax is the biggest 2D
distance between a user u and a drone k [10]. According to
equation (10), themaximum coverage radius or service radius
is achieved by optimizing the flight altitude of UAVs. In this
subsection, a solution to the maximum coverage radius of
the drones is presented [10]. P0 is defined as the minimum
required power, and ḡ0 =

P0
PT

is defined as the minimum gain
of the channel.

Equation (17) is defined to maximize the service radius of
the UAVs [10]:

max
rk ,hk

rk (17)

s.t.
1+ ταe−β(arctan hk

rk
−α)

1+ αe−β(arctan hk
rk
−α)

ξ0(rk2 + hk2)−
ν
2 ≥ ḡ0, (17a)

hmin ≤ hk ≤ hmax , (17b)
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In equation (17), hk shows the altitude of the drone and rk
represents the service radius of the drone. Problem (17) is
non-convex. It can be solved using the KKT condition [10].
The parameter θk,u indicates the altitude angle of a UAV
relative to the ground user. Using the trigonometric equation
hk = rk tan θk,u, equation (17) is defined as a solvable
equation (18) [10]:

min
rk ,hk
−rk (18)

s.t. ḡ0 −
1+ ταe−β(θk,u−α)

1+ αe−β(θk,u−α) ξ0(
rk

cos θk,u
)−ν
≤ 0, (18a)

rk tan θk,u − hmax ≤ 0, (18b)

hmin − rk tan θk,u ≤ 0, (18c)

The Lagrange function is defined as equation (19) [10]:

L(rk , θk,u, γ1, γ2, γ3)

= −rk + γ1[ḡ0 −
1+ ταe−β(θk,u−a)

1+ αe−β(θ−α) ξ0(
r

cos θk,u
)−ν]

+ γ2(rk tan θ − hmax)+ γ3(hmin − rk tan θk,u), (19)

In equation (19), coefficients γ1, γ2, and γ3 represent
Lagrange coefficients.

To simplify the equations, intermediate variables are used,
which are defined by equations (20), (21), (22), and (23),
respectively [10]:

ḡ∗ =
1+ ταe−β(θ∗k,u−α)

1+ αe−β(θ∗k,u−α)
ξ0(

Rmax
cos θ∗k,u

)−ν, (20)

ḡ′1 =
ξ0(

Rmax
cos θ∗k,u

)−ν

[1+ αe2]2
, (21)

ḡ′2 =
180
π

(1− τ )αβe2 − ν tan θ∗k,u(1+ ταe2)(1+ αe2),

(22)

2 = [−β(
180
π

θ∗k,u − α)]. (23)

In equation (20), ḡ∗ indicates the optimal channel gain, which
is obtained by replacing Rmax and θ∗k,u in the equation (10).

Therefore, the parameters must satisfy all the conditions
of equations (24a) to (24i) according to the conditions of
KKT [10]:

ḡ0 − ḡ∗ ≤ 0, (24a)

Rmax tan θ∗k,u − hmax ≤ 0, (24b)

hmin − Rmax tan θ∗k,u ≤ 0, (24c)

γ ∗1 ≥ 0, γ ∗2 ≥ 0, γ ∗3 ≥ 0, (24d)

γ ∗1 (ḡ0 − ḡ
∗) = 0, (24e)

γ ∗2 (Rmax tan θ∗k,u − hmax) = 0, (24f)

γ ∗3 (hmin − Rmax tan θ∗k,u) = 0, (24g)

∂L
∂θk,u

= −γ ∗1 ḡ
′

1ḡ
′

2 +
γ ∗2 Rmax
cos2 θ∗k,u

−
γ ∗3 Rmax
cos2 θ∗k,u

= 0, (24h)

∂L
∂rk
= −1+

γ ∗1 ν

cos θ∗k,u

1+ ταe2

1+ αe2

(
Rmax

cos θ∗k,u
)(−ν−1)

+ γ ∗2 tan θ∗k,u − γ ∗3 tan θ∗k,u = 0, (24i)

The optimal values of Rmax and θ∗k,u parameters are
obtained according to three theorems 1, 2, and 3 [10].
Theorem 1: If γ ∗2 = γ ∗3 = 0, the value of parameter Rmax

is obtained from the equation (25):

Rmax = (
ḡ0

P̂LoSk,u (θ
∗
k,u)ξ0

)−
1
ν cos θ∗k,u. (25)

Proof: If γ ∗2 = γ ∗3 = 0, then hmin < Rmax tan θ∗k,u <

hmax is obtained according to the equations (24f) and (24g).
Therefore, equations (24i) and (24h) are defined as equa-
tions (26) and (27):

∂L
∂rk
= −1+

γ ∗1 ν

cos θ∗k,u

1+ ταe2

1+ αe2
(
Rmax

cos θ∗k,u
)(−ν−1)

= 0,

(26)
∂L

∂θk,u
= −γ ∗1 ḡ

′

1ḡ
′

2 = 0. (27)

According to the equation (26), the value of parameter γ ∗1 is
given by the equation (28):

γ ∗1 =
1

ν
cos θ∗k,u

1+ταe2
1+αe2 ( Rmax

cos θ∗k,u
)(−ν−1)

, (28)

According to the above equation, the value of parameter
γ ∗1 is positive. Therefore, according to equation (24e),
equation (29) must be satisfied:

ḡ0 − ḡ∗ = 0. (29)

Since γ ∗1 > 0 and ḡ′1 > 0, equation (27) is simplified
as ḡ′2 = 0, where the parameter θ∗k,u is our only unknown
variable, and by putting θ∗k,u in equation (29), its value is
obtained, and also, the value of the parameterRmax is obtained
by equation (25).
Theorem 2: If γ ∗2 > 0, γ ∗3 = 0, then the value of the Rmax

the parameter is obtained by the equation (30):

Rmax =
cos θ∗k,u

logν+1
(1−γ ∗2 tan θ∗k,u) cos θ∗k,u(1+αe2)

γ ∗1 ν(1+ταe2)

. (30)

Proof: If γ ∗2 > 0, γ ∗3 = 0, then according
to equations (24f) and (24g), Rmax tan θ∗k,u = hmax is
obtained. Therefore, equations (24i) and (24i) are defined as
equations (31) and (32):

∂L
∂rk
= −1+

γ ∗1 ν

cos θ∗k,u

1+ ταe2

1+ αe2
(
Rmax

cos θ∗k,u
)(−ν−1)

+ γ ∗2 tan θ∗k,u = 0, (31)
∂L

∂θk,u
= −γ ∗1 ḡ

′

1ḡ
′

2 +
γ ∗2 Rmax
cos2 θ∗k,u

= 0. (32)

According to the equation (32), the value of parameter γ ∗1 is
obtained by the equation (33):

γ ∗1 =
λ∗2Rmax

cos2 θ∗k,uḡ
′

1ḡ
′

2
, (33)
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According to the equation (24d), the value of the parameter
γ ∗1 is positive. Therefore, equation (29) must also be satisfied.

By simultaneously solving equations (29), (31), (32) and
since it is from the Rmax tan θ∗k,u = hmax theorem 2, the value
of parameters θ∗k,u, γ ∗1 , and γ ∗2 has been obtained. Also, the
value of parameter Rmax is obtained by the equation (30).
Theorem 3: If γ ∗2 = 0, γ ∗3 > 0, then the value of the Rmax

parameter is obtained by the equation (34):

Rmax =
cos θ∗k,u

logν+1
(1+γ ∗3 tan θ∗k,u) cos θ∗k,u(1+αe2)

γ ∗1 ν(1+ταe2)

, (34)

Proof: If γ ∗2 = 0, γ ∗3 > 0, then, according to the
equations (24f) and (24g), Rmax tan θ∗k,u = hmin is obtained.
Therefore, the equations (24i) and (24h) are defined as
equations (35) and (36):

∂L
∂rk
= −1+

γ ∗1 ν

cos θ∗k,u

1+ ταe2

1+ αe2
(
Rmax

cos θ∗k,u
)(−ν−1)

− γ ∗3 tan θ∗k,u = 0, (35)

∂L
∂θk,u

= −γ ∗1 ḡ
′

1ḡ
′

2 −
γ ∗3 Rmax
cos2 θ∗k,u

= 0. (36)

According to the equation (35), the value of parameter γ ∗1 is
obtained by the equation (37):

γ ∗1 =
γ ∗3 Rmax

cos2 θ∗k,uḡ
′

1ḡ
′

2
, (37)

According to the equation (24d), the value of the parameter
γ ∗1 is positive. Therefore, the equation of (29) must also be
satisfied.

By simultaneously solving equations (29), (35), (36) and
since it is from the Rmax tan θ∗k,u = hmin theorem 3, the value
of parameters θ∗k,u, γ ∗1 , and γ ∗3 has been obtained. Also, the
value of parameter Rmax is obtained by the equation (34).

The optimal height of the drone is defined as h∗k =
Rmax tan θ∗k,u, and since sk,u = Rmax , it must always satisfy
ḡk,u = ḡ0.

ηk,usk,u ≤ Rmax , (38)

The above equation expresses the distance between the UAV
k and the user u served by that UAV should not exceed the
value of the Rmax parameter.
Therefore, equation (16) is rewritten as equation (39):

min
{pk },{ηk,u}

|K| (39)

s.t. pk ∈ P, ∀k ∈ KM, (39a)

ηk,u ∈ {0, 1}, ∀u ∈ U,∀k ∈ K, (39b)∑
k∈K

ηk,u = 1, ∀u ∈ U , (39c)∑
u∈U

ηk,u ≤ Smax , ∀k ∈ K, (39d)

ηk,usk,u ≤ Rmax , ∀u ∈ U,∀k ∈ K. (39e)

Solving the equation (39) is a challenging task. Therefore,
to solve the equation (39), the RLP algorithm is presented.

The RLP algorithm is composed of two parts. In the first part,
users are clustered, so that every cluster is assigned a UAV.
In the second part, according to the clustering of users, the
3D deployment of UAVs is optimized in such a way that the
power received by the users from the UAVs is increased and
the interference power of the system is reduced. Additionally,
frequency bands are assigned to every UAV or every cluster
in such a way as to avoid inter-cluster interference.

B. USER CLUSTERING
The RLP algorithm is proposed to solve the problem of user
clustering, which is a combination of the EPP algorithm [15]
and the RL algorithm.According to the serviceability of every
drone, drone k serves users of group u. The total number of
users that every drone or every cluster can cover is equal to
Smax . The largest area covered by every drone consists of a
circular area. The center of the circle is the location of the
drone and the radius of the circle is the coverage radius of the
drone. The goal is to use the smallest number of drones to
cover the maximum number of users. So every drone should
have the largest coverage radius, and the number of users
served by every drone should be close to Smax .

The issue of clustering users can be expressed as follows:

min
{ηk,u}

|K| (40)

s.t. ηk,u ∈ {0, 1}, ∀u ∈ U,∀k ∈ K, (40a)∑
k∈K

ηk,u = 1, ∀u ∈ U , (40b)∑
u∈U

ηk,u ≤ Smax , ∀k ∈ K, (40c)

ηk,urk,u ≤ Rmax , ∀u ∈ U,∀k ∈ K. (40d)

According to Algorithm 1, users cluster in different groups,
and one drone is assigned to each cluster. As a result, all users
are grouped in the communication system.

The RLP algorithm is described as follows:
1) Data Collection: This step contains information such

as 2D location and users’ labels, the characteristics
of UAVs such as the location, maximum radius of
coverage, number of users, and maximum number of
learning repetitions.

2) Searching Boundaries: In this step, it obtains the
search boundary and then selects the best point in
that boundary using the learning method. To determine
the search domain, the first task is to find the
user-uncovered user center Uun. According to the
following formula, the center of all uncovered users can
be found:

C0 =
1
|Uun|

∑
ui, ui ∈ Uun, (41)

C0 is obtained and the users in the boundary area are
found and their numbers are stored in Lmax . If the value
of Lmax is smaller than the maximum learning iteration,
it sets Lmax to the maximum iteration in order not to
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Algorithm 1 RLP Algorithm for User Clustering
Input: U user set, pu user’s location, Smax , Rmax , Lmax
Output: Number of UAVs K, Uk
1: Find the center of unallocated users by solving (41)
2: Find users in boundaries area
3: Save number of the users in the boundaries region in Lmax

4: if Lmax is lower than the maximum iteration then
5: Set the maximum iteration number to Lmax
6: end if
7: for each user u in the boundaries area, do
8: Calculate the distance from the center of unallocated

users by solving (42)
9: end for

10: Find the furthest user based on the distance by solv-
ing (43)

11: Save maximum distance in Dist
12: Define search ring based-no users in distance area [0.95
× Dist, Dist]

13: Set the k number to 0
14: while adding one number to k do
15: for each iteration, do
16: Find initial coverage at maximum distance and Save

it in Basecov
17: if it=1, then
18: Set the initial probability of users in the search

ring (44)
19: else
20: if coverage is greater than Basecov, then
21: Update and increase the probability of users in

the search ring
22: end if
23: if coverage is lower than Basecov, then
24: Update and decrease the probability of users in

the search ring
25: end if
26: end if
27: end for
28: Find the user with the highest probability in the search

ring
29: Set coverage number to Smax
30: for each user allocation try, to do
31: Find Smax users near the user with the highest

probability
32: Solve optimization problem by CVX toolbox to

cover selected users
33: if the minimum radius is greater than Rmax , then
34: Reduce Smax by one number
35: else
36: Remove selected users from unallocated users
37: Break
38: end if
39: end for
40: if there are no unallocated users, then
41: Break
42: end if
43: end while
44: return K, Uk

perform this search too much. Then, for each user in
the boundary area, it obtains the distance of each user
from the center according to the following formula:

D0 =

√
1x2 +1y2, (42)

After obtaining the distance, it calculates the farthest
point according to the formula below and stores the
greatest distance in (Dist):

u0 = max(D10,D20, . . .), (43)

One circle is formed with the maximum distance, and
another circle is formed with 95% of the distance.
Therefore, the search circle is obtained according to the
maximum and minimum distance.

3) Learning process: After finding the search circle, the
number of drones k is set to 0 at this stage. Adds a
number to k and assigns the first UAV to cover a cluster
of users. In each iteration, it finds the initial coverage
and stores it in Basecov. Now, if it is the initial iteration,
it sets the probability of all users in the search circle to
be selected equal to the initial value, because it is the
first iteration and has no opinion about which point is
better. The following formula can be used to calculate
the probability of the initial iteration:

prob =
1
|Ucov|

, (44)

Ucov are users covered.
Now, if it is not in the first iteration and it is selected,
it checks the coverage to see if the coverage has
improved or worsened. So, it checks that the coverage
it received is greater than Basecov. It updates the proba-
bility of users inside the search loop and finds the best
user for each iteration. Finds the user with the highest
probability in the search circle. The largest number
of users that any drone can cover is Smax . Therefore,
it finds Smax−1 users closest to the user with the high-
est probability and clusters the users. In the following,
it optimizes the position of the UAVs using the CVX
toolbox [34]. Minimizes the coverage radius of UAVs.
If the minimum coverage radius is greater than Rmax ,
it usesSmax−1, otherwise, it removes the selected users
from the set of uncovered users. These steps are carried
out until all users are covered by UAVs.

4) Output Data: The output of the algorithm will be the
number of drones, the radius of service or the coverage
radius of every drone, how many users every UAV has
supported, and also which UAV served which user.

Figure 3 shows how users are clustered in the RLP
algorithm in the UAV network. First, it finds the center of
the region it wants to cluster and then starts clustering from
the boundary region.

The complexity of an RLP algorithm for user clustering in
a UAV network can vary depending on the specific approach
used and the size of the problem being solved. In the case
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FIGURE 3. User clustering method with RLP algorithm.

of user clustering in a UAV network, the complexity of
the RLP algorithm will depend on several factors such as
the number of users, the number of UAVs, the size of the
search space, and the complexity of the reward function. The
computational complexity of the proposed algorithm for user
clustering is O(Lmax U |K|), where Lmax is the number of
training episodes, U is the number of users, and |K| is the
number of UAVs.

C. 3D DEPLOYMENT AND FREQUENCY BAND
ALLOCATION
For the set M = {M1, . . . ,M|K|}, user m ∈ Mk ,
ηk,m = 1 must be satisfied. For every cluster of users, a UAV
is assigned to cover users in the network. The purpose of
the 3D deployment of UAVs is to improve SINR. First, the
3D location of UAVs is optimized, then frequency bands are
assigned to every UAV, and finally, by adjusting the altitude,
the interference in the network is reduced.

1) 2D Deployment: In this part, the 2D positioning of
UAVs is optimized. The channel gain of the users covered by
UAV is not considered in the clustering of users. Therefore,
the location of UAVs should be optimized, and the QoS of
every user should be considered. The parameter sk,m is the 2D
distance between the drone k and the user m inMk , and its
value should be as small as possible to maximize the channel
gain. Therefore, to minimize the value of the parameter sk,m,
equation (45) is defined [10]:

min
{xk ,yk }

max
m∈Mk

sk,m (45)

s.t. xmin ≤ xk ≤ xmax , ∀k ∈ K, (45a)

ymin ≤ yk ≤ ymax , ∀k ∈ K, (45b)

Equation (45) is convex optimization and solves the opti-
mization problem with the CVX optimization toolbox [34].
Then, it is possible to obtain the 2D coordinates of UAVs,
namely (xk , yk ). The parameter rkmin is the minimum service

radius of UAV k to cover the users in Mk , and its value is
obtained by equation (46) [10]:

rkmin = max
m∈Mk

sk,m. (46)

2) Frequency Band Allocation: When the 2D location of
the drones is optimized, it allocates frequency bands to the
drones or clusters in such a way as to prevent inter-cluster
interference. Since Pk,u ≥ p0 must be satisfied, for the
SINR of equation Nk,u ≥ N0 to hold, the upper limit of
interference of user u from UAV k ′ ∈ Kbk is obtained by
equation (47) [10]:

Pk ′,u ≤
P0/N0 − σ 2

|K| − 1
, (47)

Using equation ḡk ′,u =
Pk′,u
PT

, the channel gain between the
drone k ′ and the user u can be obtained, and the equation (47)
is equivalent to equation (48) [10]:

ḡk ′,u ≤
P0/N0 − σ 2

(|K| − 1)× PT

△
= ĝ0. (48)

The minimum 2D distance between the drone k ′ and
the user u indicates the minimum interference radius and the
channel interference should not exceed ĝ0. By substituting the
desired altitude h∗k in equation (48), the interference radius RI
is obtained. If sk ′,u ≥ RI , ∀k ′ ∈ Kbk , the user u can satisfy
their SINR constraint [10].

The frequency band allocation algorithm is defined to
reduce inter-cluster interference. Kun is a set of UAVs that
have not yet been assigned frequency bands and are defined
in line 1 of Algorithm 2. Lines 2 and 3, |F | Indicate
the frequency bands assigned to UAVs. In lines 4 to 16,
frequency bands are assigned to every UAV or every cluster,
respectively. In line 6, it determines the frequency of a
new UAV in each run, and Kf is updated so that two
UAVs or clusters next to each other do not have the same
frequency. For example, the same frequency may be assigned
to 3 clusters. So it finds the minimum distance for that
frequency. Next, remove the frequency band assigned to
that cluster from the frequency domain and assign another
frequency to that cluster. In this way, two identical frequency
bands are not assigned to two adjacent clusters, and for
this reason, inter-cluster interference is avoided as much as
possible. s(kj, kf ,near ) means the 2D distance between the
drone kj and the drone kf ,near . n(ki, kf ,near ) means the number
of drone kj’s users who experience interference greater than
ĝ0 of drone kf ,near .
3) Height Adjustment: In this section, the height of drones

is optimized to improve the SINR of users. Users served by
other drones in band f are denoted byMc. smink,m is the shortest
2D distance between the drone k and users in the setMc and
is defined as the following equation [10]:

smink,m = min
m∈Mc

sk,m. (49)

Therefore, the height of the drone k is obtained from the
following 3 methods:
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Algorithm 2 Allocation of Frequency Bands
Input: K,M, F
Output: {Kf |f ∈ F}
1: Initialization: Kun = K, Kf = ∅,∀f ∈ F .
2: Choose the UAV k1 nearest to the center of the region.
K1← k1, Kun = Kun \ k1.

3: Choose |F |−1UAVs nearest to the UAV k1, for example,
UAV k2, . . . , k|F |.
K2← k2, . . . ,KF ← k|F |,
Kun = Kun \ {k2, . . . , k|F |}.

4: for j = |F | + 1 : |K| do
5: Choose the UAV ki ∈ Kun nearest to UAV k1,Knear =

∅.
6: for f = 1 : j− 1 do
7: Choose the UAV kf ,near ∈ Kf nearest to UAV

ki, Knear ← kf ,near , calculate s(ki, kf ,near ),
n(ki, kf ,near ).

8: end for
9: for j = |F | + 1 : |M| do

10: Temp=find s(ki, kf ,near ) == F(f )
11: if Temp ∼=1 then
12: s(Temp, 1) = min

f ∈F
(s(Temp, 1))

13: end if
14: end for
15: Choose UAV kf1 and mf2 from Knear , where

UAV kf1 satisfies s(ki, kf1 ) = max
f ∈F

s(k, kf ,near ),

UAV kf2 satisfies n(ki, kf2 ) = min
f ∈F

n(k, kf ,near ).

If theUAV kf2 is not unique, select theUAVwith higher
s(ki, kf2 ).

16: if n(ki, kf1 ) = 0 then
17: Kf1 ← ki
18: else
19: Kf2 ← ki
20: end if
21: Kun = Kun \ kj, k1 = kj.
22: end for
23: return {Mf |f ∈ F}

1) If smink,m > RI
The altitude hk is obtained by the equation (50):

hk =


hmin, rkmin tan θ∗k,u < hmin,
rkmin tan θ∗k,u, hmin < rkmin tan θ∗k,u < hmax ,
hmax , rkmin tan θ∗k,u > hmax ,

(50)

2) If rkmin < smink,m < RI
The interference radius RI is obtained by the
equation (51):

RI = smink,m − ϵ, (51)

ϵ represents a small positive number.
To satisfy the interference power equation of the user
from the UAV, the altitude hk is obtained by the

TABLE 1. Simulation parameters.

equation (52):

ḡ(RI , hk ) = ĝ0, (52)

To ensure that users are covered by drones, the height
hk is obtained by the equation (53):

ḡ(RI , hk ) = ĝ0. (53)

3) If smink,m < rkmin
If sk,m = smink,m, by adjusting the radius of the drone, the
user of m will not be covered by the drone. After user
m is removed from Mc, M′c = Mc

\ m, m ∈ Mc

is obtained, where every user m satisfies sk,m > rkmin.
Then, s

′min
k,m is obtained as the minimum 2D distance

between the drone k and the users in M′c, which is
rkmin < s

′min
k,m < RI . So, the parameters RI , hk , and rk are

obtained by equations (51), (52), and (53), respectively.

IV. SIMULATION RESULTS
In this section, the simulation results are presented and
then analyzed. The communication system consists of
fixed-ground users and drones, with 200 users randomly
distributed in a complex urban environment. The environment
parameters are α = 11.95, β = 0.14, and the modeling
parameter of path loss is ν = 2 [35]. This article
was simulated in a MATLAB environment. Algorithms are
compared to extract the best algorithm based on the number
of drones for user coverage, drone coverage rate, processing
time, received signal power before and after optimization, and
interference signal power before and after optimization of
the communication system. Table 1 shows other simulation
parameters that were used to simulate the article.
In section (III-A), KKT conditions are used to obtain

Rmax and θ∗k,u. The optimal Rmax and θ∗k,u can be obtained
according to three theorems 1, 2, and 3. Therefore, according
to the conditions of KKT, the conditions (24a) to (24i) must
be satisfied. According to Figure 4, in theorem 1, all the
conditions of KKT are satisfied, and the solution of all
parameters is obtained from this proposition.
Therefore, Rmax = 578 meters, θ∗k,u = 0.69, and h∗k =

477 meters have been obtained.
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FIGURE 4. Review of KKT conditions.

FIGURE 5. Channel gain curve ĝ0 with hk when rk is constant.

Figure 5 shows the channel gain curve as a function of
altitude when the radius is constant.

Figure 6 shows the optimal altitude according to the
coverage radius of each UAV. Here, the goal is to have the
lowest path loss according to the height of the UAVs, that is,
to obtain the height of the UAVs in a way that has the lowest
path loss.

It can be seen in Figure 6 that when the height of the UAV
increases for a certain radius, the path loss first decreases and
then increases.

In this article, the ABC-based placement (OAP)
algorithm [10], theACO-based placement (OACP) algorithm,
the GA-based placement (OGP) algorithm, and the HS-based
placement (OHP) algorithm are selected, and by comparing
them, the best suitable algorithm in the communication
system is introduced.

TheOAP algorithm uses theABCmeta-heuristic algorithm
for clustering users in the communication system, which is

FIGURE 6. Coverage radius versus UAV altitude.

an ordered algorithm for UAV deployment. In this algorithm,
it is TM = 800 and PS = 500.
The OGP algorithm works similarly to the OAP algorithm

to find the user k0, but it uses the genetic algorithm (GA)
algorithm to cluster the users in the communication system.
k0 is the user of the boundary area and has the largest distance
from the center of the area that is not covered by the UAV.
In this algorithm, it is TM = 800 and PS = 500.

The OACP algorithm works similarly to the OAP
algorithm to find the user k0, but it uses the ant colony
optimization (ACO) algorithm to cluster the users in the
communication system. The OACP algorithm uses the
traveling salesman problem (TSP) in the ACO algorithm.
It specifies a path with boundary points, and by moving these
points, the shape of the path can be changed. Therefore, the
path can be determined using these points. According to the
center point obtained in each iteration, the largest path can be
drawn around this center point. The maximum radius of the
distance from the center point to the edge points should not be
more than 2Rmax , because later it can make its circle tangent
to its center point and get a new center. In this algorithm, it is
TM = 800 and PS = 500.

The OHP algorithm works similarly to the OAP algorithm
to find the user k0, but it uses the harmony search (HS)
algorithm to cluster the users in the communication system.
In this algorithm, the maximum iteration times, size of the
memory harmony, and number of new harmonies of the HS
algorithm are 800, 500, and 200, respectively. 200 users
are randomly distributed in a region of 6 × 6 km. The
serviceability of every UAV is 8, as well as the number of
bands used in the communication system of 8 frequency
bands.

Figure 7 shows the clustering of users before the opti-
mization by each of the algorithms. In user clustering before
optimization in the communication system, the service radius
or coverage radius of the UAVs is the same for clustering all
users in different groups and is equal to Rmax = 578 meters.

Figure 8 shows the clustering of users after the optimiza-
tion by each of the algorithms. In this section, in addition to
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FIGURE 7. Clustering of users in each algorithm before optimization.

FIGURE 8. Clustering of users in each algorithm after optimization.

optimizing the 2D position of the drones, the service radius
of drones is updated by optimizing with the CVX toolbox.

The frequency band allocation for each UAV in each
algorithm is shown in Figure 9. According to the figure, it is
not possible to allocate two identical frequency bands in two
adjacent clusters, so the interference in the communication
system is less.

The results of user clustering in the 3D deployment of
drones by algorithms are shown in Figure 10. According to
Figure 10, the RLP algorithm uses fewer drones to cover or
serve all ground users than other algorithms.

Figure 11 presents the number of drones used in different
algorithms with different test areas, different serviceability,
and different numbers of users. The Monte Carlo method has
been used to distribute users, and each point in the figure is a
representation of 100 different user distributions. Algorithm
RLP has used less number of drones to cover ground users
than other algorithms, and also algorithm OACP has used
more drones to cover all users than other algorithms.

Figure 11(a) compares the number of drones used in the
different algorithms based on different test areas. According
to the figure, as the area of the test area increases, more
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FIGURE 9. Frequency band allocation of each cluster in each algorithm.

FIGURE 10. 3D deployment of UAVs in each algorithm.

drones are needed to cover all users. The ideal solution is to
assume that the Service radius or coverage radius of drones
is infinite, and the number of drones is defined as |U |

Smax .
According to the figure, when the area of the test area is
small, the RLP algorithm is closer to the ideal solution than
other algorithms. However, when the area of the test area
increases, in terms of solving the clustering problem, the
distance between the RLP algorithm and the ideal solution
increases, and the RLP algorithm uses more UAVs to cover
all users in the communication system.

Figure 11(b) compares the number of drones used in the
different algorithms based on different serviceability. As the

serviceability of drones increases, fewer drones are needed
to cover all users. According to the figure, with the increase
in the serviceability of the RLP algorithm compared to other
algorithms, it has used a smaller number of drones to cover
all users.

Figure 11(c) compares the number of drones used in the
different algorithms based on different users. The figure
indicates that as the number of users increases, more drones
are required to cover all users.

According to the simulation results in Figure 11, regardless
of whether different test areas, different serviceability,
or different numbers of users, the RLP algorithm has used
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FIGURE 11. Comparison based on the number of drones used in the communication system under different conditions.

FIGURE 12. Comparison based on the received signal power and the interference signal power before and after optimization in the RLP
algorithm.

a smaller number of drones to cover or serve all users.
Therefore, the RLP algorithm has performed better in terms
of the minimum drone used in the communication system.

Figure 12 presents a comparison based on received signal
power and interference signal power before optimization and
after optimization in the RLP algorithm for PT = 30 dBW,
with different test areas, different serviceability, and different
number of users.

Figure 12(a) presents the comparison of the received signal
power and the interference signal power in the RLP algorithm
based on the different test areas, before and after optimizing
the 3D locations of the drones and assigning frequency bands.
According to the figure, with the increase of the area of the
test area after optimization, the received signal power has
increased, and the interference signal power has decreased.
Hence, the figure presents that the RLP algorithm has had an
acceptable result after optimization.

Figure 12(b) presents the comparison of the received
signal power and the interference signal power in the RLP
algorithm based on the different serviceability, before and

after optimizing the 3D locations of the drones and assigning
frequency bands. According to the figure, with the increase
in serviceability after optimization, the received power
has increased, and the interference power has decreased.
Therefore, the figure presents that the RLP algorithm has had
an acceptable result after optimization.

Figure 12(c) presents the comparison of the received signal
power and the interference signal power in the RLP algorithm
based on the different users, before and after optimizing
the 3D locations of the drones and assigning frequency
bands. In this part, users are randomly distributed in a region
of 10 × 10 km.

According to Figure 12, with the increase in the users
after optimization, the received power has increased, and
the interference power has decreased. Therefore, the figure
presents that the RLP algorithm has had an acceptable result
after optimization.

Figure 13 presents the comparison of the coverage rate of
the RLP algorithm with the OAP algorithm with different test
areas, different serviceability, and different number of users.
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FIGURE 13. Comparison of the UAV coverage rate in the RLP algorithm with the OAP algorithm in the communication system under different
conditions.

In this figure, the coverage rate of each algorithm with the
number of different frequency bands 6, 7, and 8 has been
obtained, and then the coverage rate of 2 algorithms with the
same number of frequency bands has been compared.

Figure 13(a) presents the comparison of the coverage rate
of 2 algorithms based on the area of the different test areas.
In this part, 400 users are randomly distributed in the region.
According to the figure, with the increase in the area of the
test areas, the density of users is less. Then, the interference
of users in the communication system is reduced. Finally, the
coverage rate of users is increased. According to the figure,
the coverage rate of the RLP algorithm with the number of
frequency bands 6, 7, and 8 is 100%. In the OAP algorithm,
when the number of frequency bands is 8, the coverage rate
is 100% in all test areas (cyan curve). When 7 frequency
bands are used in the OAP algorithm, for example, with the
distribution of 400 users in a 6 × 6 km area, the coverage
rate of drones is 99.6%. But when 400 users are distributed
in the 11 × 11 km area, the coverage rate has reached 100%
(red curve). When 6 frequency bands are used in the OAP
algorithm, for example, with the distribution of 400 users in
a 6 × 6 km area, the coverage rate of drones is 96.4%. But
when 400 users are distributed in the 11 × 11 km area, the
coverage rate has reached 100% (blue curve).

Figure 13(b) presents the comparison of the coverage
rate of 2 algorithms based on the different serviceability.
In this part, 400 users are randomly distributed in a region
of 6 × 6 km. According to the figure, with the increase in
serviceability, fewer UAVs are used to cover ground users,
and inter-cluster interference is reduced, thus increasing the
user coverage rate. According to the figure, the coverage
rate of the RLP algorithm with the number of frequency
bands 6, 7, and 8 is 100%. In the OAP algorithm, when
the number of frequency bands is 8, the coverage rate is
100% with any number of UAVs’ serviceability (cyan curve).
When 7 frequency bands are used in the OAP algorithm, for
example, by distributing 400 users in an area of 6 × 6 km

when the serviceability of each UAV is 8, the coverage
rate of UAVs is 99.5%. But when 400 users are distributed
in an area of 6 × 6 km when the service capability of
each UAV is 11, the coverage rate has reached 100% (red
curve). When 6 frequency bands are used in the OAP
algorithm, for example, by distributing 400 users in an area
of 6 × 6 km when the serviceability of each UAV is 8, the
coverage rate of UAVs is 96.9%. But when 400 users are
distributed in an area of 6× 6 km when the service capability
of each UAV is 11, the coverage rate has reached 100%
(blue curve).

Figure 13(c) presents the comparison of the coverage
rate of 2 algorithms based on the different users. In this
part, 400 users are randomly distributed in a region
of 8 × 8 km. According to the figure, with the increase
in users, the inter-cluster interference is increasing because
it is more possible for users to be present in these inter-
cluster areas. Therefore, the coverage rate decreases, but by
increasing the frequency bands, this problem can be solved
and the coverage rate can be increased in the communication
system. According to the figure, the coverage rate of the
RLP algorithm with the number of frequency bands 6, 7,
and 8 is 100%. In the OAP algorithm, for example, with
the distribution of 100 users in an area of 8 × 8 km, the
serviceability of each drone is 8, and with the number of
frequency bands 8, the coverage rate is 100%. However with
the distribution of 600 users in an area of 8 × 8 km, and the
serviceability of each drone is 8, and the coverage rate has
reached 98.8% (cyan curve).

According to the simulation results in Figure 13, regardless
of whether different test areas, different serviceability, or the
different number of users, it can be seen that the RLP
algorithm performed better than OAP. The coverage rate of
the RLP Algorithm is always 100%.

The processing time of each algorithm to reach the solution
is shown in Figure 14. According to the figure, the processing
time of the RLP algorithm is less than other algorithms and
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FIGURE 14. The processing time of each algorithm to reach the solution.

the processing time of the OACP algorithm is more than other
algorithms.

V. CONCLUSION
In this article, when the users are fixed in the network,
a solution is presented for the 3D deployment of multiple
drones that are used as BSs to cover downlink users according
to themaximum serviceability andmaximum coverage radius
of the drones. In the first stage, theoretically, the maximum
value that the UAV coverage radius can have is obtained
using the KKT conditions. In the second stage, the RL-based
algorithm was used to cluster users in the communication
system to use the least number of drones to cover or serve
all the users so that the system is optimal in terms of
implementation cost. In the third step, frequency bands were
assigned to drones so that two identical frequency bands
are not placed next to each other in two clusters and to
prevent interference between clusters so that eventually the
interference in the communication system reaches its lowest
level. In the next step, the 3D locations of the drones
are optimized by adjusting the height. According to the
simulation results presented in section IV, the RLP algorithm
has performed better than other algorithms in terms of the
optimal number of drones, the power, the coverage rate of the
ground users, and the processing time.
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