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ABSTRACT We propose a novel approach for video anomaly detection. Existing video anomaly detection
methods train only on normal frames, with the expectation that the quality of the abnormal frames will
decrease, and utilize the reconstruction error with the ground truth to detect anomalies. However, a challenge
exists owing to the powerful generalization capability of deep neural networks, as they tend to proficiently
generate abnormal frames. To address this issue, we introduce a novel method to make anomalies more
anomalous by destroying abnormal areas in abnormal frames. Accordingly, we propose the frame-to-label
and motion (F2LM) generator and Destroyer. The F2LM generator predicts a future frame by utilizing
the label and motion information of the input frames, thereby degrading the quality of abnormal regions.
The Destroyer destroys abnormal regions by transforming low-quality areas into zero vectors. Both models
were trained individually, and during testing, the F2LM generator degraded the quality of abnormal
regions, and the Destroyer subsequently destroyed these areas. Our proposed video anomaly detection
method demonstrated superior performance compared to state-of-the-art models with three benchmark
datasets (UCSD Ped2, CUHK Avenue, Shanghai Tech.). Our code and models are available online at
https://github.com/SkiddieAhn/Paper-Making-Anomalies-More-Anomalous.

INDEX TERMS Deep learning, future frame prediction, video anomaly detection, video surveillance.

I. INTRODUCTION
Intelligent video surveillance systems are crucial infrastruc-
ture for preventing accidents and ensuring swift response
after incidents, as they are able to analyze video information
to automatically detect abnormal behavior. Therefore, video
anomaly detection is crucial for establishing a safety network
for society.

In the field of video anomaly detection, unsupervised
learning methods are commonly employed because abnormal
situations do not occur frequently. Two predominant unsu-
pervised learning methods are utilized for video anomaly
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detection: reconstruction-based [1], [2], [3], [4], [5], [6], [7],
[8], [9] and prediction-based methods [5], [10], [11], [12],
[13], [14], [15], [16], [17]. During training, both methods
learn the characteristics of normal frames. In testing, when
abnormal frames are encountered, they are reconstructed or
predicted to be normal. The discrepancy between the recon-
structed or predicted frames and the actual abnormal frames
is then used to identify anomalies. In general, reconstruction-
based and prediction-based methods use encoder-decoder
based generators to reconstruct or predict abnormal frames.
However, according to recent studies [18], [19], [20], [21],
because of the strong generalization capacity of deep
neural networks, contrary to expectations, these methods can
effectively generate anomalous frames, as shown in Fig. 1.
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FIGURE 1. Image quality comparison of the anomalous regions in a
generated frame for reconstruction-based model, prediction-based
model, and our proposed model.

These studies have indicated that even abnormal situations,
such as objects or actions that were not visible during training,
can be generated. To solve this problem, previous studies
have used pseudo-anomaly images [18] or self-supervised
methods for learning abnormal situations [20], [21]. Recently,
a method for storing latent vectors of normal frames utilizing
a memory mechanism has also been proposed [5], [6]. This
approach utilizes the feature representations of normal frames
stored in memory to generate frames, thereby reducing the
ability to generate abnormal frames. However, these methods
heavily depend on memory size, and smaller memory sizes
may not adequately store the diverse feature representations
of normal frames. Consequently, this limitation may also
affect the capability to generate normal data [9], [22].
To address these issues, we propose a frame-to-label

and motion (F2LM) generator that predicts a future frame
with lower quality in abnormal regions, and a Destroyer
that transforms low-quality areas into zero vectors, thus
destroying the abnormal regions.

The F2LM generator is a prediction-based network that
takes four consecutive video frames as input to predict
the future frame. It is trained in an unsupervised manner.
The goal of the F2LM generator is to predict low-quality
future frames in abnormal video sequences. To achieve this,
we propose a feature transform convolutional block (FTC)
and use triplet loss [23] for this training. First, we obtain
video sequences for both label and motion from the input
video sequence using DeepLabv3 [24] and FlowNet2 [25],
respectively. Then, we extract features for frame, label, and
motion using individual encoders. The FTC block is trained
to transform the frame feature into label and motion features.
Triplet loss encourages the FTC block to transform the frame
feature to be similar to either the label or motion feature
from the encoders while pushing the transformed features
away from the frame feature. Thus, when an abnormal video
sequence is input, the FTC block struggles to transform the
label or motion feature, which leads to low-quality future
frame prediction. Therefore, the F2LM generator effectively
predicts a future frame for a normal video sequence but

struggles to predict a future frame for an abnormal video
sequence.

The Destroyer is a network that takes the future frame
generated by the F2LM generator as the input and aims to
destroy low-quality abnormal areas. During training, because
only normal data are available, it uses a self-supervised
approach by adding noise to the future frame to create
arbitrary abnormal areas for training. The goal of the
Destroyer is to identify low-quality areas as abnormal
regions and transform them into zero vectors to make
the future frame appear even more anomalous. To create
arbitrary abnormal regions, we divide the future frame into
non-overlapping patches and add random noise to some
patches. The Destroyer is trained to transform noisy patches
into zero vectors and to reconstruct patches with no added
noise. Noise is not added during testing, and the Destroyer
destroys the low-quality areas in the future frame generated
by the F2LM generator. Therefore, the Destroyer increases
the quality difference between normal and abnormal frames
by destroying abnormal regions, thereby improving video
anomaly detection performance.

We utilize the F2LM generator and Destroyer together to
destroy abnormal areas in video frames, thereby increasing
the difference in anomaly scores between normal and
abnormal frames, as shown in Frame destruction (Ours)
in Fig. 1. Our proposed model achieves superior results
compared to state-of-the-art models on video anomaly
detection benchmarks. The contributions of this study are as
follows.

• We propose the novel F2LM generator, which utilizes
a training strategy to transform the feature of an input
video sequence into label and motion features and
focuses on learning transformations that do not perform
effectively with abnormal video sequences. Through this
process, when an abnormal video sequence is provided,
the model predicts a low-quality future frame.

• We propose the novel Destroyer, which identifies
low-quality areas as abnormal regions and turns
them into zero vectors, thereby destroying them. The
Destroyer significantly enhances the anomaly score
difference between a normal and abnormal frame, thus
improving video anomaly detection performance.

• We evaluate the F2LM generator and Destroyer using
three public benchmarks. The results demonstrate
that our approach outperforms other state-of-the-art
methods.

II. RELATED WORKS
A. RECONSTRUCTION-BASED METHODS
Reconstruction-based methods train a model to minimize
the reconstruction error of a normal video sequence. The
expectation is that once trained in this manner, the model will
struggle to effectively reconstruct abnormal events during
the testing phase. Chong and Tay [3] proposed a method
in which normal frames are input into a convolutional long
short-term memory (ConvLSTM) [2] to extract features
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FIGURE 2. The architecture of the frame-to-label and motion (F2LM) generator. The F2LM generator includes a module to transform a frame feature into
label and motion features in bottleneck areas. If a frame with abnormal objects or behavior is input, the transformation from frame features into other
features becomes challenging, limiting the prediction of future frames.

with spatio-temporal information. These features are then
reconstructed using a decoder. Nguyen and Meunier [8]
propose an approach that uses one encoder and two decoders.
The first decoder is trained to reconstruct the input frames,
whereas the second is trained to predict the optical flow
representing the movement between time steps t and t+1.
This structure aims to maximize both the reconstruction and
prediction errors for abnormal data. Further Zhong et al. [9]
attempted video anomaly detection by connecting a network
that reconstructs video frames with one that predicts the
magnitude (size) and orientation (direction) of the optical
flow. Through this structure, when abnormal data are input,
the goal is to make reconstructed frames of low-quality
increase the optical flow prediction error.

B. PREDICTION-BASED METHODS
Prediction-based methods involve training a model to take
input from a normal video sequence and predict a future
frame. The expectation is that the model, once trained in
this manner, will struggle to predict an abnormal future
frame during the testing phase. Liu et al. [10] were the first
to propose a prediction-based method using a generative
adversarial network (GAN) [26] structure. They employed
the U-Net [27] as a generator and utilized the PatchGAN
classifier from pix2pix [28] as a discriminator to predict a
more realistic future frame. Additionally, they trained the
model to approximate real optical flow by leveraging a
pre-trained FlowNet2 [25]. Ye et al. [11] proposed a model
called AnoPCN, which consists of a predictive coding
module (PCM) and an error refinement module (ERM).

The PCM predicts future frames by inputting reconstructed
previous frames and reconstruction errors (RGB difference)
into a ConvLSTM. The ERM module improves the qual-
ity of the predicted future frames by adding prediction
errors to the future frames predicted by the PCM. This
structure explicitly utilizes reconstruction errors as motion
information, reducing prediction errors for normal future
frames. Moreover Yuan et al. [12] proposed a video anomaly
detection model named TransAnomaly based on U-Net and
the video vision transformer (ViViT) [29]. The convolutional
neural network (CNN) features extracted by the encoder part
of U-Net are encoded by a modified ViViT. As a result, the
encoded features provide better spatio-temporal information.
When reconstructed using the decoder, the model reduced
the prediction errors for a normal future frame compared to
existing methods.

Thus, deep learning-based reconstruction and prediction
methods for video anomaly detection have demonstrated
promising performance through various approaches. How-
ever, according to several studies [18], [19], [20], [21],
deep neural networks utilizing CNN architectures in
reconstruction-based and prediction-based methods are adept
at generating abnormal frames owing to their powerful
generalization capabilities. Therefore, these two methods
cannot ensure discrimination between anomaly scores for
normal and abnormal frames.

C. MEMORY-BASED METHODS
Memory-based methods have been introduced to address
the challenge of effectively generating abnormal frames.
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MemAE [6] aggregates the most similar features from the
information stored in memory, which correspond to the fea-
tures extracted by the encoder for the input image, and sends
it to the decoder.MNAD [5] introducesmultiple prototypes to
capture various patterns in normal videos. The CNN is trained
using feature separateness loss, which encourages similar
features to form clusters. These memory-based methods
employ an approach in which, for abnormal frames, similar
information is not stored in memory, resulting in a higher
reconstruction error for the decoder’s output. However, these
memory-based methods may encounter limitations in fully
learning representations for normal frames depending on
the size of the memory. This constraint could restrict the
generative capacity for normal frames.

III. METHOD
A. F2LM GENERATOR
The F2LM generator comprises four main components: an
encoder, a feature transform convolutional (FTC) block,
a squeeze and excitation (SE) block [30], and a decoder. The
overall architecture follows the structure of U-Net [27], with
the bottleneck composed of the FTC and SE blocks. The
detailed structures of the encoder and decoder are presented
in Section IV-B1. Fig. 2 illustrates the overall structure of the
F2LM generator. Detailed explanations of each component
are as follows.

1) ENCODER
The F2LM generator comprises three encoders, Ef ,El,Em,
each responsible for extracting frame, label, and motion
features. Given a sequence of continuous video frames
I1, I2, . . . , It ∈ RH×W×3, DeepLabv3 and FlowNet2 are
utilized to generate label sequence I l1, I

l
2, . . . , I

l
t ∈ RH×W×21

and motion sequence Im1 , Im2 , . . . , Imt−1 ∈ RH×W×2. These
generated sequences pass through their respective encoders,
producing the frame feature Zf = Ef (I1:t ), label feature
Zl = El(I l1:t ), and motion feature Zm = Em(Im1:t−1). Deep-
Labv3 is a model used in semantic segmentation tasks and
can effectively label images on a pixel basis. FlowNet2
is a model used in optical flow estimation tasks and is
effective in identifying visual movement by quantifying the
pixel movement between video frames. Because both models
also show good generalization performance with benchmark
datasets for video anomaly detection, we extract label and
motion features to utilize information regarding the object
class of the video sequence and the motion or movement of
each object.

2) FTC BLOCK
The FTC block, which is composed of 2D convolutional
layers, transforms Zf into the frame-to-label feature Z ′

l and
frame-to-motion feature Z ′

m. We use triplet loss to ensure
that Z ′

l and Z
′
m generated from Zf are similar to Zl and Zm,

respectively. Triplet loss aims to minimize the distance
between an anchor and a positive feature while maximizing
the distance between the anchor and a negative feature.

FIGURE 3. The architecture of the squeeze and excitation block.

For label and motion, we use Z ′
l and Z

′
m as anchors, Zl and Zm

as positive features, and Zf as a negative feature. The
formulation for the triplet loss is as follows:

L ltriplet (Zf ,Zl,Z
′
l ) = max{d(Z ′

l ,Zl) − d(Z ′
l ,Zf ) + α, 0},

(1)

Lmtriplet (Zf ,Zm,Z ′
m) = max{d(Z ′

m,Zm) − d(Z ′
m,Zf ) + α, 0},

(2)

Ltriplet (Zf ,Zl,Zm,Z ′
l ,Z

′
m) = L ltriplet (Zf ,Zl,Z

′
l )

+ Lmtriplet (Zf ,Zm,Z ′
m), (3)

where d(x, y) represents the Euclidean distance between
vectors x and y. L ltriplet and L

m
triplet denote the label and motion

triplet losses, respectively. α is a hyperparameter to increase
the distance between the anchor and the negative feature.

The structure using the FTC block and triplet loss is
designed to penalize abnormal video sequences. An FTC
block trained exclusively on a normal video sequence will
transform Zf into Z ′

l and Z ′
m with minimal differences

between Zl and Zm for a normal video sequence. However,
for abnormal video sequences, the differences between Zl , Zm
andZ ′

l , Z
′
m increase. Therefore, usingZf , Z ′

l , andZ
′
m generated

from abnormal video sequences to predict the future frame
results in poor generation, increases the anomaly score and
contributes to performance improvement.

3) SE BLOCK
After channel-wise concatenating Zf with Z ′

l and Z
′
m gener-

ated by the FTC block, we use this concatenated feature as
the input for the SE block. The SE block is identical to the
structure proposed by Hu et al. [30], as shown in Fig. 3. The
SE block is an attention module that focuses on important
channels within the channel information. Formally, the input
feature X ∈ RH×W×3C , undergoes a 3 × 3 convolution to
produce U ∈ RH×W×C and global pooling is performed
on each channel, resulting in the vector Z ∈ R1×1×C .
Subsequently, the vector of scale factor S ∈ R1×1×C is
calculated as follows:

S = σ (δ(Z ·W1) ·W2), (4)

where σ is the sigmoid activation, δ is the ReLU activation,
W1 ∈ RC×

C
r and W2 ∈ R

C
r ×C represent the weight matrices

of two consecutive fully connected layers, and r is the
reduction ratio.

The last step is the multiplication of S and U on each
channel, producing the final tensor Ũ ∈ RH×W×C containing
recalibrated features maps [31]. The SE block has the
advantage of adaptively recalibrating features with few
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FIGURE 4. The architecture of the Destroyer. The Destroyer takes a generated future frame as the input and detects low-quality regions and destroys
them. This enhances the abnormality in the output.

parameters, thereby allowing crucial channels from the three
features to pass to the decoder. This advantage enhances the
generation capability of future frames, ultimately improving
anomaly detection performance by reducing false positives.
Table 4 shows the related experiments. Finally, the future
frame Ît+1 ∈ RH×W×3 is generated by the decoder.

B. DESTROYER
The Destroyer destroys low-quality regions in the future
frame predicted by the F2LM generator, considering them
anomalous areas. We employed a method for destroying
abnormal regions by transforming them into zero vectors.
During training, because the training data consists only of
normal frames, the F2LM generator is unable to generate
low-quality regions. Therefore, we add noise to the output of
the F2LM generator, generating arbitrary abnormal frames to
be input into the Destroyer. During testing, when the F2LM
generator predicts abnormal regions as low-quality noise, the
Destroyer makes these areas even more anomalous. Fig. 4
illustrates the overall structure of the proposed Destroyer.

1) PATCHING AND NOISING
Given the future Ît+1 ∈ RH×W×C predicted by the F2LM
generator, it is divided into P patches A1,A2, . . . ,Ap ∈

RH ′
×W ′

×C , where H ′
=

H
√
P

and W ′
=

W
√
P
. Among

these P patches, a random number of patches between 5%
and 50% have noise injected. Noise injection is achieved
through dropout, and the dropout rate is randomly set between
5% and 50%. P patches with injected noise N1,N2, . . . ,Np ∈

RH ′
×W ′

×C are merged and serve as input for the encoder of
the Destroyer. The locations and number of patches to which

FIGURE 5. Comparison of the future frame with the application of the
Destroyer for normal and anomalous video frames.

noise is applied are randomly set to handle abnormal regions
of various sizes and positions. Additionally, to account for the
diversity in the generator’s prediction of abnormal regions as
noise, the dropout rate is also randomly set during training.

2) DESTROYER LOSS
We propose a Destroyer loss function for training the
Destroyer. First, the ground truth frame is divided into
P patches, denoted by GT1:P; each are the same size as the
patches in the frame with injected noise N1:P. The difference
between each corresponding patch of N1:P and GT1:P,
denoted by diff1:P, are then calculated. diffp for the pth patch
is calculated as follows:

diffp = MIN(λ(1 − SSIM(Np,GTp)), 1), (5)

where λ is a hyperparameter to set the learning direction of
the Destroyer.
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FIGURE 6. Model Training Process. Phase 1 consists of unsupervised learning for the F2LM generator, while Phase 2 consists of self-supervised learning
for the Destroyer.

diffp takes values between 0 and 1 and is used as a measure
to distinguish between normal and abnormal for each patch.
We use the structural similarity index measure (SSIM) [32] to
determine the image quality difference between the injected
noise patches and the ground truth. Therefore, a smaller diffp
value indicates a normal patch, while a larger diffp value
indicates an abnormal patch. Subsequently, the video frame
R generated by the Destroyer is divided into P patches R1:P.
For each patch, if the diffp value is closer to 1, it guides the
Destroyer to transform Rp into a zero vector (Zp). Otherwise,
if it is closer to zero, it guides the Destroyer to reconstruct Rp
for the future frame patch unit generated by the F2LM
generator (Ap). The Destroyer loss, LDestroyer , is calculated as

LDestroyer (diff ,R,Z ,A) =

P∑
p=1

(diffp · ∥Zp − Rp∥22

+ (1 − diffp) · ∥Ap − Rp∥22). (6)

Therefore, during testing, the Destroyer, trained through
the Destroyer loss, further destroys abnormal areas with
degraded quality in the future frame predicted by the F2LM
generator, enhancing anomaly detection performance.

3) TEST
During testing, the input frames are not subjected to the
patching and noising processes as in training. Fig. 5 illustrates
the testing process of the Destroyer. While it reconstructs
normal frames as they are, for abnormal frames, it further
enhances their abnormal characteristics.

C. TRAINING METHOD
Our proposed framework follows a two-stage process in
which the F2LM generator is first trained, followed by
the Destroyer training. Fig. 6 illustrates the model training
process, with Phase 1 and 2 dedicated the training of the
F2LM generator and Destroyer, respectively. The F2LM

generator employs four objective functions: intensity loss,
gradient loss, adversarial loss, and triplet loss. Triplet loss
is explained in Section III-A. To ensure the predicted future
frame Î closely resembles the target future frame I , intensity
and gradient losses are utilized. The intensity loss ensures the
similarity of all the pixels in the RGB space, whereas the
gradient loss reduces the difference between the predicted
and ground truth images’ surrounding pixels to make the
two images more alike. The intensity and gradient losses are
defined as (7) and (8), respectively:

Lint (Î , I ) = ∥Î − I∥22, (7)

Lgd (Î , I ) =

∑
i,j

∥|Îi,j − Îi−1,j| − |Ii,j − Ii−1,j|∥1

+ ∥|Îi,j − Îi,j−1| − |Ii,j − Ii,j−1|∥1, (8)

where i and j represent spatial indices of a video frame.
In addition, to enhance the F2LMgenerator’s ability to pre-

dict a more realistic future frame, we employ the least squares
generative adversarial network (GAN) structure proposed
in [33]. The least squares GAN consists of a generator (G)
and a discriminator (D). D is trained to effectively classify
the ground truth and predicted images, whereas G is trained
to generate predicted images that resemble the ground truth,
making D’s classification challenging. We use the F2LM
generator as G and the PatchGAN classifier from pix2pix
as D. The adversarial loss for training discriminator (D) and
generator (G) is given by (9) and (10), respectively:

LDadv(Î , I ) =

∑
i,j

1
2
LMSE (D(I )i,j, 1)

+

∑
i,j

1
2
LMSE (D(Î )i,j, 0), (9)

LGadv(Î ) =

∑
i,j

1
2
LMSE (D(Î )i,j, 1), (10)
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where i and j represent spatial indices of a video frame. MSE
denotes mean square error.

D is trained to output 1 for the ground truth frame and 0 for
the predicted frame depending on the input. G is trained to
have a predicted frame output of 1 when fed into D. The final
loss function for training the F2LM generator is

LGenerator = δintLint (Î , I ) + δgdLgd (Î , I )

+ δadvLGadv(Î ) + δtriLtriplet (Zf ,Zl,Zm,Z ′
l ,Z

′
m),

(11)

where δint , δgd , δadv, and δtri denote hyperparameters that
control the influence of each loss.
The Destroyer uses the Destroyer loss for training,

as explained in Section III-B.

D. ANOMALY SCORE
The anomaly score is used as a metric to determine normal
and abnormal conditions, obtained by calculating the scaled
score from the F2LM generator and Destroyer, followed by
normalization. The scaled score is given by (12), where SL
denotes the scaled value of the loss function, calculated as
shown in (13) and (14):

Scaled Score = γ1 · SL ltriplet + γ2 · SLmtriplet

+ γ3 · SLGeneratorMSE + γ4 · SLDestroyerMSE , (12)

SLtriplet =
Ltriplet − µ(Ltriplet )

σ (Ltriplet )
, (13)

SLMSE =
LMSE − µ(LMSE )

σ (LMSE )
, (14)

where the parameters γ1, γ2, γ3, γ4 are hyperparameters that
control the influence of each term and can vary depending
on the dataset. µ and σ denote mean and standard deviation,
respectively.

The first and second terms of the scaled score are scaled
values of the triplet loss for label and motion, respectively.
The third and fourth terms are scaled values of the MSE
loss between the outputs of the F2LM generator and
Destroyer, and the ground truth. This evaluation facilitates
the assessment of how well frame-to-label and frame-to-
motion are performed at the feature level and how closely the
generated frames resemble the ground truth at the frame level.
This enables abnormal situations to be detected. Finally, the
anomaly score is obtained by min-max normalization of the
scaled score and is represented by (15):

Anomaly Score

=
Scaled Score− MIN(Scaled Score)

MAX(Scaled Score) − MIN(Scaled Score)
. (15)

IV. EXPERIMENTS
A. DATASET
Three benchmark datasets are used to evaluate the proposed
method. The training videos for each dataset consist only
of normal videos, whereas the testing videos include both
normal and abnormal videos.

TABLE 1. Detailed network architecture of the encoder in the F2LM
generator. Abbreviations: k : kernel, p: padding, s: stride, H : height,
W : width, C : channel.

• The UCSD Ped2 dataset consists of 16 training videos
and 12 testing videos. Abnormal situations in this dataset
involve videos of pedestrians or vehicles moving on
roads [34].

• The CUHK Avenue dataset consists of 16 training
videos and 21 testing videos. Abnormal situations in this
dataset include videos with behaviors such as throwing
objects, loitering, and running. It is important to note
that, due to camera perspectives, objects of the same
identity may be different sizes [35].

• The Shanghai Tech. dataset comprises 330 training
videos and 107 testing videos, representing 13 different
scenes. This dataset includes a wide range of abnormal
situations, such as the appearance of abnormal objects
like bicycles and cars, as well as abnormal behaviors
like falling. It is considered a highly challenging
dataset [36].

B. IMPLEMENTATION DETAILS
The F2LM generator and discriminator are optimized using
the AdamW [37] optimizer, with the learning rates set to
2e-4 and 2e-5, respectively. For the UCSD Ped2 dataset,
learning rates of 1e-4 and 1e-5 are used. Additionally,
weight decay uses the same value as the learning rate of the
F2LM generator, and the iteration and batch size are set to
60,000 and 4, respectively. A single NVIDIA GeForce RTX
3090 graphics card is used in the experiment. The number of
training iterations for the Destroyer is set to 15,000, and the
remaining training configurations are the same as those for
the F2LM generator.

1) NETWORK DESIGN
a: F2LM GENERATOR
The F2LM generator is based on a modified version
of U-Net used by Liu et al. [10]. U-Net generates future
frames effectively by passing the hierarchical spatio-temporal
features extracted from each layer of the encoder to the
decoder using skip connections. The encoder and decoder
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TABLE 2. Detailed network architecture of the decoder in the F2LM
generator. Abbreviations: k : kernel, p: padding, s: stride, H : height,
W : width, C : channel.

TABLE 3. The detailed network architecture of the FTC block in the F2LM
generator. Abbreviations: k : kernel, p: padding, s: stride, H : height,
W : width, C : channel.

TABLE 4. AUC comparison based on the feature fusion method. Best
results are bolded.

TABLE 5. AUC comparison based on the hyperparameter α of the triplet
loss. Best results are bolded.

TABLE 6. AUC comparison based on the dropout noise method.
Abbreviations: CD: channel dependent, CI: channel independent. Best
results are bolded.

structures of the F2LM generator are presented in Table 1
and Table 2, respectively. The input video sequence consists
of four frames, DeepLabv3 generates information for
21 classes for each frame, whereas FlowNet2 generates flow
maps for x and y coordinates between adjacent frames.

TABLE 7. AUC comparison according to patch size. Best results are
bolded.

TABLE 8. AUC comparison based on the hyperparameter λ of the
Destroyer. Best results are bolded.

TABLE 9. AUC comparison based on the selection of Zp. Best results are
bolded.

TABLE 10. Hyperparameters for the entire network.

Therefore, the values of channel (C) for each encoder Ef , El ,
and Em are 12, 84, and 6, respectively. In the final layer of
the encoder, L2 normalization is applied to the output of the
encoder to calculate the triplet loss. The structure of the FTC
block is presented in Table 3. For the same reason as for the
encoder of the F2LM generator, L2 normalization is applied
to the last layer.

We investigate the performance variation of the F2LM
generator based on different feature fusion methods; the
results are presented in Table 4. Although Zf ,Z ′

l ,Z
′
m can be

simply added and used as input to the decoder, we opt for
channel-wise concatenation and the SE block for channel
attention. We observe that utilizing the SE block for feature
fusion, which can capture important information from the
three features, contributed to performance improvement.
Therefore, we employ the SE block instead of simply adding
the three features.
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TABLE 11. AUC and EER comparison with state-of-the-art methods using the UCSD Ped2, CUHK Avenue, and Shanghai Tech. datasets. Best results are
bolded. Second-best results are underlined. w/o Destroyer: without Destroyer.

FIGURE 7. ROC comparison at the frame level for the UCSD Ped2 and CUHK Avenue datasets.

b: DESTROYER
The U-Net encoder used in the Destroyer has a struc-
ture similar to that of the encoder of the F2LM
generator in Table 1. However, in the inconv layer,

C is three, and L2 normalization is not applied after the
downconv3 layer. The U-Net decoder used in the Destroyer
is the same as the decoder structure of the F2LM generator
in Table 2.

36720 VOLUME 12, 2024



S. Hong et al.: Making Anomalies More Anomalous: Video Anomaly Detection

TABLE 12. Performance results at the frame and pixel levels for the UCSD
Ped2 dataset.

FIGURE 8. AUC comparison with baseline [10]. Abbreviations: FFP: future
frame prediction, G: F2LM generator, D: Destroyer.

2) HYPERPARAMETER SETTINGS
We conduct five experiments for hyperparameters.

First, we examine the performance of the F2LM generator
with respect to the hyperparameter α in the triplet loss. The
results of this experiment are shown in Table 5. The parameter
α is used to control the distance between the anchor and
the negative feature; a larger α encourages learning a larger
distance between them.We vary α from 0.2 to 1 in increments
of 0.2. Through the experiment, we confirm that the highest
area under the curve (AUC) is recorded for all three datasets
when α is set to 0.2.

Second, we examine the performance changes of the
Destroyer based on the method of adding noise; the results
are presented in Table 6. Based on the experimental
results, we select the dropout method used in the denoising
autoencoder [54] as the noise adding method. We experiment
with two noise adding methods: channel dependent (CD),
which applies noise to all R, G, and B channels in the same
ratio, and channel independent (CI), which applies noise with
different ratios to each channel. The experimental results
confirm the CI method is more effective for video anomaly
detection. Furthermore, by comparing the performance when
applying CD or CI to the case without noise, we observe

that performance is enhanced in both cases. This verifies the
effectiveness of self-supervised learning in the Destroyer.

Third, we examine the model’s performance variation
based on patch size; the results are presented in Table 7.
We use patch sizes ranging from 16 to 128, doubling in each
step, and find that the model achieves the best performance
for all datasets with a patch size of 32.

Fourth, we investigate performance variation with respect
to the hyperparameter λ in the Destroyer loss; the results
are presented in Table 8. λ is used to control for the diffp
value in (5). Even when the quality difference between Np
and Rp is small, indicating a high SSIM value, if λ is large,
learning proceeds toward destruction. We explore the values
of λ from 1 to 6 and find that the highest AUC for all three
datasets is achieved when λ is set to 4.

Fifth, we conduct a comparative experiment with the zero
and background vectors as shown in Table 9 to set Zp for the
Destroyer learning. The experiments confirm that the highest
AUC is obtained for the three benchmark datasets when the
zero vector is used. The background vector is calculated by
averaging the pixels of the entire frame.

Finally, the hyperparameters of the entire network are
summarized in Table 10. δint , δgd , δadv, δtri are hyperparam-
eters that adjust the influence of each term in the F2LM
generator loss. γ1, γ2, γ3, and γ4 are hyperparameters that
control for the influence of each term in the scaled score.
These hyperparameters differ for each dataset, and the values
presented in Table 10 are in the order of UCSD Ped2, CUHK
Avenue, and Shanghai Tech. datasets.

C. EVALUATION CRITERIA
We evaluate the quantitative performance of the proposed
model based on two criteria: frame and pixel levels. At the
frame level, a test frame is considered anomalous if it
contains one or more abnormal events. By contrast, the pixel
level specifies the locations of abnormal events. Pixel level
evaluation is more challenging than frame level evaluation
owing to the complexity of anomaly localization. The frame
level and pixel level AUC performance comparisons for the
UCSD Ped2 dataset are presented in Table 12. In the case
of the CUHK Avenue dataset, because the ground truth of
the abnormal area of each frame is set as a rectangular
bounding box, there is a problem in that the abnormal
area of the ground truth includes not only foreground but
also background pixels. Therefore, we ignore pixel level
measurements for the CUHK Avenue dataset and used only
frame level measurements for testing [42].

D. COMPARISON WITH STATE-OF-THE-ART MODELS
Table 11 presents the comparison of our model to other deep
learning-based models. We gradually adjust the threshold
value of the anomaly score for existing methods that utilize
frame level prediction methods and for our proposed model
to generate a receiver operating characteristic (ROC) curve,
as shown in Fig. 7. We also calculat the AUC and equal error
rate (EER) for performance evaluation.
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FIGURE 9. t-SNE results of normal and anomaly features generated by the F2LM generator on the CUHK Avenue dataset. Abbreviations: f: features Zf
extracted from encoder Ef , l: features Zl extracted from encoder El , m: features Zm extracted from encoder Em, f-to-l: features Z ′

l transformed from
FTC block, f-to-m: features Z ′

m transformed from FTC block.

FIGURE 10. t-SNE results for output features of the F2LM generator and Destroyer for the UCSD Ped2 dataset. Abbreviations: normal: features of normal
frames, anomaly: features of anomaly frames.

TABLE 13. AUC comparison based on combinations of frame, label, and motion encoders (Ef , El , Em) and FTC block (FTC). Best results are bolded.

In terms of AUC performance, our proposed method has a
better AUC than existing state-of-the-art methods except for
the HF2-VAD [17] model using an object detection method;
particularly, it achieves state-of-the-art AUC for the CUHK
Avenue and Shanghai Tech. datasets. Additionally, as can

be seen from the pixel level comparison in Table 12, the
AUC for the UCSD Ped2 dataset is superior to that of
the other methods, except for the Siamese [41] model. The
Siamese’s approach appears to achieve a high AUC at the
pixel level when using supervised learning based on labeled
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data [48]. However, our experimental results show com-
petitive performance in anomaly detection and localization
tasks despite using unsupervised learning methods and not
applying memory modules or object detection methods.

Fig. 8 illustrates the performance comparison between
our model and the baseline, future frame prediction [10].
Compared with the baseline, the F2LM generator showed
improvements of 2.1%, 3.1%, and 1.5% for the UCSD
Ped2, CUHK Avenue, and Shanghai Tech. datasets. This
indicates the effectiveness of utilizing the label and motion
information. When using the Destroyer in conjunction,
performance improvements of 2.8%, 6.1%, and 3.7% were
achieved for the UCSD Ped2, CUHK Avenue, and Shanghai
Tech. datasets.

This demonstrates that the Destroyer effectively enhances
performance by increasing the anomaly score difference
between normal and abnormal data through the destruction of
abnormal regions. In particular, we confirm that the Destroyer
can better distinguish abnormal areas in datasets such as
the CUHK Avenue, where occlusions are less frequent, and
successfully destroy abnormal areas.

E. QUALITATIVE EVALUATION
1) NORMAL AND ABNORMAL FEATURE VISUALIZATION
We visualize how the F2LM generator transforms features
for label and motion, representing normal and abnormal
features, using t-SNE in Fig. 9. In the visualization of normal
data, as shown in Fig. 9s, we observe that the frame-to-
motion(f-to-m) feature (depicted as purple ‘‘x’’) is closer to
the positive motion feature (m) (depicted as green ‘‘+’’),
than to the negative frame feature (f) (depicted as blue ‘‘·’’).
However, in the visualization of anomalous data, we observe
that the distance between f-to-m and m is similar to that
between f-to-m and f, as shown in Fig. 9b. Similarly, a pattern
is observed in which the distance between f-to-l and l is
similar to that between f-to-l and f. This indicates that the
F2LM generator performs well for feature transformation for
normal data but struggles for abnormal data. Consequently,
features converted from frames to labels and motions act as
noise for anomalous inputs, resulting in low-quality future
frames.

Furthermore, we visualize the output features of the F2LM
generator and Destroyer to confirm whether the Destroyer
effectively destroys abnormal regions within the future
frame generated by the F2LM generator, making it easier
to distinguish between normal and abnormal frames. This
process is illustrated in Fig. 10. The F2LM generator shown
in Fig. 10a distinguishes between normal and abnormal
clusters well, but the distance between the two clusters is
relatively close compared to that from the Destroyer. For the
Destroyer, as shown in Fig. 10b, it is evident that the two
clusters are better separated, resulting in a greater distance
between them. This suggests that the Destroyer enhances
the discrimination between normal and abnormal regions by
effectively destroying abnormal regions, leading to a clearer
separation between the clusters.

FIGURE 11. Visualization results of the F2LM generator and Destroyer for
each dataset. The red regions represent ground truth abnormal frames.
This indicates that the Destroyer lowers the PSNR of abnormal frames,
resulting in a higher anomaly score. Best viewed in color.
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TABLE 14. AUC results when applying our Destroyer to generators in existing methods. To ensure consistent model comparisons, we did not employ the
sliding windows strategy for calculating AUC. w/ Destroyer: with Destroyer, w/o Destroyer: without Destroyer.

TABLE 15. Comparison of computational time during testing (seconds per frame). w/o Destroyer: without Destroyer.

2) VISUALIZATION ANOMALY SCENE
In Fig. 11, the AUCs of the F2LM generator and Destroyer
are compared, and visualizations are presented for specific
frames. When comparing anomaly scores, those from the
Destroyer are higher than those from the F2LM generator.
In particular, there is a significant difference in the anomaly
scores between normal and abnormal frames, making the
discrimination between normal and abnormal frames easier
and resulting in improved AUC performance. Furthermore,
the Destroyer is observed to destruct areas around abnormal
objects. In Fig. 11a, the area where a person is riding
a bicycle is identified as destructed compared to the
frame generated by the F2LM generator, and the PSNR
also decreases from 39 to 30. In Fig. 11b, the abnormal
behavior area where a child is jumping is destructed, and
the PSNR decreases from 29 to 25. In Fig. 11c, the area
where two people are riding bicycles is destructed, and
the PSNR decreases from 33 to 21. This indicates that the
Destroyer enhances video anomaly detection performance by
destroying abnormal regions.

F. ABLATION STUDY
1) F2LM GENERATOR
Traditional anomaly detection methods have primarily
focused on predicting future frames by utilizing infor-
mation from preceding frames. However, we assume that
when utilizing the encoder to extract additional label and
motion information of objects within video frames and
employing the FTC block, it would be challenging to
generate future frames when abnormal frames are input.
To validate this assumption, we conduct a comparative

evaluation using various architectures, as shown in Table 13.
Consequently, we confirm that leveraging all three pieces
of information while utilizing the FTC block is effective
in enhancing the performance of the anomaly detection
model. Furthermore, we observe that when all three pieces
of information are utilized without the FTC block, the
additional information regarding labels and motion results in
a superior generation of future frames for both normal and
abnormal scenarios, leading to diminished anomaly detection
performance. This finding substantiates the validity of our
assumption.

2) DESTROYER
We examine the generalization performance of the Destroyer
by assessing its performance using various generators,
as illustrated in Table 14. We utilize future frame pre-
diction [10], which is a representative prediction-based
approach, and TransAnomaly [12], which employs ViViT,
as generators. We train the future frame prediction model
using the official code, whereas for TransAnomaly, we use
our own code because no official code is provided. The results
show the proposed Destroyer improves performance across
all datasets. In particular, the CUHK Avenue dataset, which
has fewer occlusions, shows significant overall performance
improvement. However, for the Shanghai Tech. dataset, the
performance improvement is not significant compared to
that of our proposed F2LM generator. This suggests that
the F2LM generator may not accurately predict abnormal
regions, increasing the effectiveness of the Destroyer. These
results imply that the proposed F2LM generator is better
suited for use with the Destroyer.
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G. RUNNING TIME
Table 15 presents the analysis of the computational time
of our proposed model on a graphics processing unit
and compares it with that of state-of-the-art methods.
For the UCSD Ped2 and CUHK Avenue datasets, the
average computational times of the proposed model with-
out and with the Destroyer is 0.047 seconds (21 FPS),
and 0.052 seconds (19 FPS), respectively. Our proposed
model is equivalent to or slightly faster than DSTN [40],
TransAnomaly [12], and MsMp-net [50] and exceeds the
inference time of FFP [10], BR-GAN [21], and Multi-scale
U-Net [46]. Our proposed model requires a longer average
computational time because it is a two-stage method that
sequentially executes the F2LM generator, which comprises
three encoders, and the Destroyer. However, as shown in
Table 11, better results are obtained compared to the other
models from an AUC perspective.

V. CONCLUSION
We proposed a novel video anomaly detection method that
utilizes the F2LM generator to predict low-quality future
frames for abnormal video sequences and the Destroyer to
destroy low-quality areas. In this approach, the FTC block
in the F2LM generator is trained for feature transformation
using only normal video sequences, resulting in challenges
for feature transformation for abnormal video sequences,
which decreases the quality of predicted future frames.
Subsequently, the Destroyer identifies low-quality areas
in the future frame predicted by the F2LM generator
and destroys them into zero vectors, making them more
anomalous. This approach addresses the limitations of previ-
ous prediction-based and reconstruction-based methods and
shows superior performance across all benchmark datasets.
These results demonstrate the effectiveness of the proposed
video anomaly detection method. We anticipate the develop-
ment of various techniques to destroy abnormal regions.
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