
Received 19 February 2024, accepted 2 March 2024, date of publication 7 March 2024, date of current version 22 March 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3374513

Graph Processing Scheme Using GPU With
Value-Driven Differential Scheduling
SANGHO SONG 1, HYEONBYEONG LEE1, YUNA KIM2, JONGTAE LIM1, DOJIN CHOI3,
KYOUNGSOO BOK4, AND JAESOO YOO 1
1Department of Information and Communication Engineering, Chungbuk National University, Seowon-gu, Cheongju-si, Chungcheongbuk-do 28644, South Korea
2Department of Big Data, Chungbuk National University, Seowon-gu, Cheongju-si, Chungcheongbuk-do 28644, South Korea
3Department of Computer Engineering, Changwon National University, Uichang-gu, Changwon-si, Gyeongsangnam-do 51140, South Korea
4Department of Software Convergence, Wonkwang University, Iksan-si, Jeollabuk-do 54538, South Korea

Corresponding author: Jaesoo Yoo (yjs@cbnu.ac.kr)

This work was supported by Chungbuk National University Korea National University Development Project, in 2022.

ABSTRACT Researchers have recently been using GPUs to process large quantities of graph data. However,
the challenges in Host–GPU data transfer must be addressed to effectively use GPUs for graph processing.
Although existing frameworks have attempted to mitigate this problem by managing active graph data
transfers, issues persist owing to the need to divide graphs into subgraphs for parallel processing across
multiple GPU cores. This division often leads to duplicated data transfers, resulting in high transmission
overhead and low bandwidth utilization. To address these challenges and expedite graph computation, this
study proposes a graph processing scheme using a GPU with value-driven differential scheduling. This
approach involves dividing large graphs into subgraphs of similar sizes and contiguous vertices, allowing
efficient parallelization on the GPU. The value of each subgraph is assessed based on its activity level, and
its computation load is estimated using a differential subgraph scheduling technique. The proposed scheme
distinguishes between high-value and low-value subgraphs and allocates them to different graph processing
engines. This reduces the redundant data transmissions and enhances the transmission rate of active edges,
thereby reducing the Host–GPU data transmission overhead. Experimental results demonstrate that the
proposed scheme achieves a notable speedup of up to 6.6 times compared to the existing GPU-accelerated
graph processing systems, including GraphCage and Subway.

INDEX TERMS GPU, graph processing, graph partitioning.

I. INTRODUCTION
Real-world applications of graph processing include
pathfinding, social network analysis, and machine learn-
ing algorithms [1], [2], [3], [4], [5]. GPU-leveraging graph
processing schemes are particularly promising for large par-
allel systems as they provide outstanding performance for
graph algorithms that involve repetitive operations [4], [5],
[6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16],
[17], [18], [19], [20], [21]. A GPU, originally designed for
graphics processing, inherently excels at executing several
parallel operations. This parallelism is facilitated by the
single instruction multiple data (SIMD) architecture inherent

The associate editor coordinating the review of this manuscript and

approving it for publication was Massimo Cafaro .

to GPUs. In SIMD computing, several values are processed
simultaneously using a single instruction, contrastingwith the
typical structure of CPUs. Consequently, GPUs necessitate
specific data structure and scheduling approaches to fully
exploit their parallel capabilities [12], [18], [19], [20], [21],
[22], [23]. Owing to their relatively smaller memory than
the Host, GPUs can only accommodate a subset of the
complete graph as input. When the size of the input graphs
exceeds the GPU memory capacity, existing GPU-based
systems encounter limitations [11], [15], [16], [20], [24],
[25], [26], [27], [28], [29], [30], [31], [32]. This challenge
becomes increasingly pronounced as the graph sizes in social
networks expand alongside advancements in the network
technology. Notably, data from platforms like Facebook
now scale into the terabyte range, prompting researchers

41590

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0009-0002-4321-7069
https://orcid.org/0000-0001-9926-9947
https://orcid.org/0000-0003-1118-7109

S. Song et al.: Graph Processing Scheme Using GPU With Value-Driven Differential Scheduling

to turn to GPUs for processing such massive graph
data [4], [5].

Recently, there has been a notable focus on providing
GPU-enabled graph processingwhile utilizing theHost mem-
ory for high-performance GPU graph processing and storage
of large graphs. Achieving low bandwidth utilization is cru-
cial for GPU graph processing, given the significant data
transfer overhead between the Host and GPU memory. The
bandwidth of the Host–GPU, typically via a PCIe inter-
face, is approximately ten times slower than the bandwidth
of the GPU global memory. In graph algorithms designed
for GPUs, especially those dealing with structured graphs,
accessing several vertices simultaneously is common, leading
to challenges such as low work efficiency, high synchroniza-
tion cost, and suboptimal data adjacency [6]. Excessively
large graphs exacerbate issues such as cache misses and
high memory access latency, particularly in graph algo-
rithms with frequent graph input and output operations.
Conversely, an overly small subgraph size leads to a prolif-
eration of subgraphs, causing the overhead of merging partial
results. Cache blocking, a well-established optimization strat-
egy, addresses these challenges by partitioning the graph to
enhance adjacency [3].

Graph partitioning is a fundamental technique used to
process large graphs on GPUs with limited memory. Typi-
cally, graph processing algorithms involve iteratively sending
messages from source vertices to other vertices. As this
process iterates, the number of messages to be processed
increases exponentially until the values of the receiving ver-
tices no longer update, indicating convergence. This iterative
process continues until the values of the vertices converge.
In graph processing, active vertices refer to those that undergo
updates during the iterative procedure, whereas inactive ver-
tices remain unchanged. The majority of graph processing
algorithms iterate until no active vertices remain [1]. This
approach typically considers vertex-centered graph process-
ing, where the algorithm iteratively operates on the graph at
the vertex level. During each iteration, the algorithm focuses
solely on active vertices, updating their adjacent edges and
vertices accordingly. This process continues iteratively until
no active data remain. Subsequently, previously processed
subgraphs undergo reprocessing in the subsequent iteration.

However, due to the limited memory of GPUs, the existing
method involves transmitting the entire subgraph of active
vertices to the GPU, which not only wastes the Host–GPU
bandwidth but also leads to duplicate data transfers. In this
context, the Host refers to the system responsible for running
the GPU and controlling the RAM data, while the GPU
manages the global memory data.

Recent studies have focused on scheduling subgraphs for
reuse, allowing them to be computed numerous times before
being erased from the GPU memory [7]. Graphcage, for
instance, divides data structures into smaller blocks and
optimizes each block to fit into the cache, thereby accel-
erating graph operations by reordering memory accesses
during computation [6]. However, Graphcage attempts to

store all subgraphs in the limited GPU memory, resulting
in challenges when integrating these subgraphs. Moreover,
relying solely on cache blocking may not sufficiently reduce
data transmission, especially given the high Host–GPU trans-
fer time, which dominates the computation time of graph
processing algorithms using GPUs. In contrast, Scaph divides
a graph into subgraphs and calculates their values to schedule
iterative operations on them [7], using a greedy vertex-
cut approach [1]. It organizes the subgraph data in GPU
memory into categories such as useful data (UD), poten-
tially useful data (PUD), and never-used data (NUD) across
current and future iterations. However, Scaph overlooks a
graph partitioning scheme tailored to the GPU structure.
Therefore, a processing technique is needed that considers
the memory constraints and parallelized structures of GPUs,
effectively dividing the graph and transmitting each subgraph
independently.

In this paper, we propose a graph processing scheme
using GPUs with value-driven differential scheduling. Our
proposed scheme employs a subgraph partitioning algorithm
tailored to the SIMD architecture of the GPU. Through
experiments on load balancing, we dynamically divide the
partitioned subgraph into appropriately sized graphs. To effi-
ciently handle frequently utilized subgraphs in real-world
graph processing, we introduce a differential subgraph pro-
cessing scheme depending on their contribution to the overall
graph. Subgraphs that are frequently accessed are identified
as high value subgraphs, whereas those with lower usage fre-
quency are categorized as low-value subgraphs. High-value
subgraphs are transmitted to the GPU, while subgraphs likely
to be reused in the future are stored in the GPU memory.
By prolonging the storage of high-value subgraphs on the
GPU, we aim to reduce redundant transfers. The optimal
subgraph size is determined by comparing the number of
subgraphs generated and the processing time of the graph
algorithm using our partitioning scheme. The contributions
of our proposed scheme are as follows.
• We propose a subgraph partitioning scheme and a sub-

graph management method that consider the Host–GPU
transfer rate.
• The subgraph partitioning scheme considers the con-

nectivity of the subgraphs and divides them based on the
maximum number of vertices.
• It present a GPU-accelerated graph processing scheme

called VDS, designed to optimize task scheduling and min-
imizes the Host–GPU duplicate transfers. This scheme is
built upon our subgraph transfer management method, which
considers the features of high and low-value subgraphs to
enhance overall performance.

In this study, the performance is assessed using real-
world graphs. The experimental results demonstrate a sig-
nificant improvement, with a speedup of up to 10.7x
compared to the state-of-the-art system, GraphCage [6], aver-
aging 7.25x. Furthermore, compared to Subway [9], the
speedup reaches up to 5.73x with an average improvement
of 1.61x.

VOLUME 12, 2024 41591

S. Song et al.: Graph Processing Scheme Using GPU With Value-Driven Differential Scheduling

This paper is organized as follows: Section II exam-
ines related literature and outlines the problem statement.
Section III elaborates on the proposed GPU-based graph
algorithm processing scheme, detailing its process and fea-
tures. Section IV demonstrates the superiority of the proposed
scheme through system environment setup and performance
evaluation. Finally, Section V presents the conclusion and
outlines avenues for further studies.

II. RELATED WORK
Graph processing algorithms using conventional GPUs have
been the focal point of recent research [12], [18], [19], [20],
[21], [22]. Studies have delved into graph partitioning tech-
niques and schemes for graph processing tailored to GPU
architectures.

A. EXISTING GRAPH PARTITIONING SCHEMES
Preprocessing becomes necessary when performing opera-
tions that entail dividing the graph into subgraphs or trans-
ferring data for utilization on GPUs with limited memory
capacity. Various graph partitioning schemes such as cache-
blocking partitioning, greedy vertex-cut, and digraph have
been explored [1], [6], [12]. However, conventional cache-
blocking schemes, initially designed for CPU architecture,
prove inefficient on GPUs. To address this, a cache-blocking
partitioning scheme tailored for the GPU’s L2 cache has been
proposed, aiming to mitigate cache utilization deterioration
resulting from inefficient memory accesses [6]. Partitioning
the existing graph data into subgraphs based on vertices
can reduce synchronization time between the cache and the
global memory, thereby decreasing processing time. After
processing each subgraph, the partial results are stored and
aggregated. Subgraphs are divided to ensure that the vertex
values of each subgraph can be accommodated in the cache.
To aggregate partial results, a mapping of global and local
IDs of vertices is maintained to construct an array of partial
results. Rather than directly computing the sum, the partial
result of each subgraph is stored in a partial result array, and
all partial result arrays are aggregated after processing all
subgraphs to obtain the final sum accurately.

The greedy vertex-cut algorithm [1] is a graph partitioning
scheme that selects the vertex with the highest weight and
divides the graph into two subgraphs based on this vertex.
Although it does not guarantee an optimal partition at each
step, it is highly efficient in most scenarios.

Digraph [12] employs a depth first search (DFS) technique
to partition a subgraph into a set of edges starting from a
designated starting vertex. The path generation process typi-
cally comprises two steps: Firstly, one root vertex is selected
from each partition. Secondly, the graph is explored using
DFS initiated from these root vertices to generate paths. Path
lengths are often limited to be evenly distributed, achieved by
setting a maximum search depth (i.e., the maximum number
of vertices visited in DFS). This approach facilitates graph
partitioning, which is particularly useful in distributed com-
puting scenarios. Each partition can be allocated to a different

server or CPU, and the uniform distribution of computational
load across all partitions is ensured by controlling the path
length. Furthermore, each path is transformed into a directed
acyclic graph (DAG) sketch, allowing the utilization of DAG-
based algorithms.

B. EXISTING GRAPH PROCESSING SCHEMES
To minimize the Host–GPU data transfers, novel graph pro-
cessing schemes employing differential partitioning have
been proposed [7], [17]. Scaph [7] adopts a strategy
where subgraphs are constructed through greedy vertex-
cuts. During computation, these subgraphs are classified
and dispatched to two graph processing engines for one-
hop iterations, managed through value-driven differential
scheduling. The graph calculation continues until conver-
gence is achieved. In Fig. 1, three forms of edge data based on
repeatedly generated active vertices are illustrated. UD rep-
resents edge data adjacent to active vertices of a subgraph,
such as V1→V3, V1→V4, and V2→V4 in Fig. 1. All edges
originating from V1 and V2 are considered UD because V1
and V2 are active vertices. In the current iteration, UDs must
be processed and sent to the GPU.

The edge data associated with all UD emerging from active
vertices in the current iteration of the subgraph are termed
PUD. In Fig. 1, V4 is a vertex connected to both active
vertices V1 and V2. A V4→V5 transition exemplifies PUD,
which, unlike UD, represents data not used in the current
iteration but potentially essential for future calculations.

Edges associated with a vertex that converges and never
becomes active are termed NUD. NUD represents edge data
that will not be used in future computations.

The subgraph can assess the processing workload by mea-
suring the edge data used in a one-hop unit iteration. This
estimated workload can be expressed by the value of the sub-
graph. Subsequently, subgraphs are assigned to two distinct
processing engines based on their workload values.

The filter method is used for high-value subgraphs, which
involves sending the entire subgraph to the GPU for computa-
tion multiple times before being cleared from GPU memory.
To minimize Host–GPU transfers, low-value subgraphs use
the compaction method, extracting only UD data within
the subgraph. With the filter method, the entire subgraph
containing active vertices is sent to the GPU, where it under-
goes multiple computations before being erased from the
GPU memory. This method often results in high volumes
of duplicate transfers, especially when transmitting active
vertices. However, in cases where the partition is predomi-
nantly comprised of active vertices, it can effectively utilize
PCIe bandwidth to its fullest extent. Meanwhile, the com-
paction approach significantly reduces transfers to the GPU
by extracting only UD data within the subgraph. Nonetheless,
it introduces compression overhead proportional to the ratio
of active edges. It is worth noting that the compression step
of compaction consumes approximately 34.5% of the total
runtime [9]. Zero Copy utilizes the Host memory pinned to
the GPU address space [8] to directly access the Host mem-

41592 VOLUME 12, 2024

S. Song et al.: Graph Processing Scheme Using GPU With Value-Driven Differential Scheduling

FIGURE 1. Three types of edge data.

ory using PCIe transaction layer packets (TLPs). Each TLP
can simultaneously handle up to 256 memory requests, with
each request capable of transferring 32/64/96/128 bytes of
data, depending on the accessible data volume. Consequently,
Zero Copy can simultaneously access edges of multiple dis-
tributed active vertices, with each occupying one or more
memory requests. Zero Copy boosts low transfer overhead
as it bypasses additional page access overhead. However, it is
important to note that Zero Copy does not support data reuse,
resulting in retransmission of the same data upon reuse.

C. ANALYSIS OF THE EXISTING SCHEMES
GraphCage successfully reduced cache utilization degra-
dation by employing cache blocking techniques during
subgraphs partitioning. However, the scheme’s method of
maintaining partial result arrays without directly record-
ing the sum of partial operations in the subgraphs led to
increased GPU memory usage and necessitated additional
operations to obtain the sum of partial operations. In contrast,
Scaph increased the Host–GPU bandwidth usage by calcu-
lating data necessary for iterative processes and scheduling
value-oriented subgraph activities. However, it overlooked
the parallel structure of the GPU and partitioned the graph
using a graph partitioning scheme in its graph portioning
scheme. Furthermore, preprocessing and sending low-value
subgraphs to the GPU incurred labor overhead that required
rebalancing. To address these limitations, our study intro-
duces a subgraph partitioning scheme and a differential sub-
graph processing scheme. The subgraph partitioning scheme
divides the subgraph into independent units suitable for GPU
computation, ensuring an even combination of subgraph sizes
while considering the parallel processing structure of the
GPU and the connectivity of the partitioned subgraphs. These
combined subgraphs are then categorized into high- and
low-value subgraphs according to the frequency of active
vertices. Each subgraph is managed separately by storing it
in a worklist. High-value subgraphs are processed using filter
and compaction techniques within an explicit transfer frame-
work, whereas Zero Copy is used for processing low-value
subgraphs within an implicit transfer framework.

III. PROPOSED GRAPH PROCESSING SCHEME
A. OVERALL STRUCTURE
Efficient graph partitioning and processing schemes compat-
ible with GPUs with limited memory are essential. This study
proposes an efficient graph processing scheme using GPUs,
aiming to address challenges inherent in existing approaches.
By partitioning the graph and predicting subgraph values
using an optimized graph partitioning scheme, the proposed
method minimizes processing time for repeated graph data
while optimizing Host–GPU transmissions.

Fig. 2 shows the complete system architecture of our pro-
posed scheme. It comprises three main modules: the graph
partitioner, dispatcher, and value-driven subgraph process
engine. The graph partitioner module divides the graph into
subgraphs. The dispatcher module computes the subgraph
values and routes them to different processing engines based
on their values.

The goal of the graph partitioner module is to enable
vertex-independent vertex processing on GPUs for parallel
computation. It achieves this by considering the maximum
number of vertices per subgraph and evenly dividing them to
distribute the workload among the GPU cores. To mitigate
the Host–GPU transfer time, which constitutes a signifi-
cant portion of the calculation time for graph processing
algorithms using GPUs, the dispatcher module distinguishes
between subgraphs that require transfer and those that do
not. The differential subgraph partitioning module comprises
three components: Filter, Compaction, and Zero Copy. The
filter module fully copies the subgraph to GPU memory.
The compaction module compresses the subgraph based on
active vertices and transfers them to GPU memory. The Zero
Copy module processes subgraphs by handling independent
memory requests for vertices and transferring active edges to
the GPU. The distributed worklist undergoes modifications
until the graph converges.

Fig. 3 shows the flowchart outlining the subgraph pro-
cessing scheme. Upon receiving a graph as input, the
graph partitioner module divides it into subgraphs. Subse-
quently, the dispatcher module evaluates the values of these
subgraphs, proceeding to explore the next subgraph for com-
putation. These subgraphs are then directed to the appropriate
differential subgraph processing engine based on their values.
The results from these processing engines are iteratively syn-
chronized. Upon completion of vertex transversal, the results
of the graph processing algorithm are produced as output.

B. GRAPH PARTITIONING
Recent advancements in handlingmassive graphs that surpass
the capacity of GPUmemory have been proposed to facilitate
large-scale graph processing utilizing GPUs [9], [10], [13],
[16], [17]. These approaches typically involve dividing large
graphs into several subgraphs or chunks of uniform size that
can fit within the global memory of the GPU and are subse-
quently transferred to the GPU for processing. This approach

VOLUME 12, 2024 41593

S. Song et al.: Graph Processing Scheme Using GPU With Value-Driven Differential Scheduling

FIGURE 2. System architecture of the proposed scheme.

significantly reduces GPU data access costs, accelerates ver-
tex state propagation, and enhances overall GPU utilization.

The process of partitioning a graph for GPU parallel
computing typically involves the following steps. Initially,
a vertex from the graph is randomly selected. The graph is
then divided based on the vertices connected to this selected
vertex. Subsequently, the divided subgraph undergoes further
partitioning, with consideration given to the vertex having
the highest number of edges. This procedure is iteratively
repeated until the subgraph reaches the desired size.

In recent GPU architectures, particularly focusing on the
last level cache, or L2 cache, is crucial due to its role in
optimizing latency and bandwidth between the LLC and the
DRAM, which often serve as the bottleneck. To leverage
this, static blocking is commonly employed, involving the
partitioning of the graph into subgraphs before executing the
algorithm. Alternatively, dynamic blocking uses intermediate
buffers, dynamically distributing data across multiple buffers
to enable each to enter the cache, thereby accumulating partial
results. While dynamic blocking requires minimal alteration
to the data structure, it can consume a significant amount
of memory space due to the intermediate buffers. Moreover,

FIGURE 3. The overall graph processing of the proposed scheme.

the dynamic overhead incurred by adding data and reading
data from these buffers must be considered. Given that graph
algorithms typically involve a high number of iterations,
static blocking is often preferred to mitigate dynamic over-
head. This choice leads to a relatively large performance gain
from preprocessing, facilitating the partitioning of the graph
into subgraphs that operate efficiently on the GPU, thereby
enhancing memory access efficiency.

Table 1 provides a summary of the edge data distribution
in the graphs before and after partitioning, encompassing all
data utilized in the performance evaluation. Prior to parti-
tioning, it was observed that 79.1% of the subgraph vertices
had fewer than nine edges, whereas 20% had more than nine
edges. Following partitioning, over 90% of the subgraph ver-
tices exhibited fewer than eight edges, with all vertices having
fewer than 16 edges. This distribution reflects a balanced
allocation of edges per vertex in the subgraph, indicative of
effective load balancing.

Fig. 4 shows a partitioning scheme-generated subgraph.
The greedy vertex-cut method adheres to three rules. Firstly,
an edge must be allocated to the intersecting subgraph if it
intersects subgraphs SG(s) and SG(d). Secondly, if only one
subgraph of either vertex is assigned, the edge is allocated to
that subgraph. Thirdly, if both vertices are indecisive, the edge
is allocated to the subgraph with the fewest stored vertices.
Greedy vertex-cut, shown in Fig. 4(a), considers adjacency
in graphs during division. Consequently, the resulting sub-
graphs exhibit varying widths. Notably, certain subgraphs,
like Subgraph 3 in Fig. 4(a), may be larger than others.
To promote load balancing, the proposed scheme calculates
the average size of partitioned subgraphs and assigns edges
from larger subgraphs to smaller ones. This approach ensures
an even distribution of edges among subgraphs. As shown in
Fig. 4(b), partitioning subgraphs according to these principles

41594 VOLUME 12, 2024

S. Song et al.: Graph Processing Scheme Using GPU With Value-Driven Differential Scheduling

TABLE 1. Number of edges per vertex in a graph.

yields evenly distributed subgraphs with adjacency between
vertices and edges. By optimizing subgraph partitioning, the
utilization of the L2 cache in the GPU can be enhanced,
thereby accelerating internal GPU calculations. Furthermore,
since the Host–GPU transfer time dominates the processing
time of graph algorithms using GPUs, limiting the number of
regularly transmitted subgraphs to the GPU by sequentially
generating subgraphs can further optimize performance.

C. DIFFERENTIAL SUBGRAPH SCHEDULING
A comparison of the quantities of UD, PUD, and NUD
within a subgraph, applied for a graph algorithm operating
on Twitter, reveals that as iteration progress, more NUD
are redundantly transmitted [33]. Existing graph process-
ing schemes often inefficiently utilize Host–GPU bandwidth
by repeatedly transferring data. Typically, there is signifi-
cant redundant transmission of PUDs in the initial iteration,
followed by redundant transmission of NUDs as iteration
advances. Throughout iterations, the engagement of the same
vertex can occur numerous times, resulting in dynamic vari-
ations in UD, PUD, and NUD. Considering PUDs alongside
UDs can improve total graph processing time by preemptively
sending PUDs to the GPU. Although not used in the current
iteration, PUDs may be employed in subsequent iterations,
thereby optimizing processing efficiency.

In Fig. 5, the iterations of the graph algorithm are depicted.
During the first iteration, vertices 4 and 7 are activated,
subsequently triggering vertices 1 and 6 in the second iter-
ation. Notably, subgraph 2, having already been broadcasted,
is omitted from transmission to save transmission time.

Table 2 presents the formula for calculating the overhead
of each subgraph during processing in the study [14]. In the
formulas, D(v) denotes the number of edges connected with
a vertex, d1 denotes the memory occupancy of the vertex,
m denotes the maximum request capacity of the memory, and
MR denotes the maximum number of TLP requests in PCIe
3.0, indicating the compression throughput. Additionally, am
denotes the additional transfer overhead for Zero Copy to
access edge arrays with non-aligned vertices. The number of
genuine TLPs is calculated as d1/ m / MR. RTT refers to the
round-trip time for TLP processing on PCIe.

The transmission overhead of the filter is computed asD(v)
∗ d / m / MR. Compaction includes a CPU-based compression
method, thus it includes both data transport and compression
overhead. The transmission overhead is represented by D(v)
∗ d + |Ai|∗d, while the compression overhead is denoted
by D(v) d1 +|Ai | d2/T. In the case of Zero Copy, each

FIGURE 4. Processing according to the partitioning scheme.

active vertex triggers a separate request. Consequently, the
transmission overhead is calculated as ((D(v) ∗ d / m) +
am(v)) / MR.

To schedule subgraphs efficiently, we calculate their data
transmission costs and prioritize sending them in order of
low transmission costs. Table 2 shows equations for the
Filter, Compaction, and Zero Copy methods to compute
graph processing overhead. The method with the most effi-
cient transmission overhead, as determined by the equations,
is selected. Specifically, if the transmission overhead exceeds
80% of the threshold, the Compaction method is chosen.
For transmission overhead between 40% and 80%, the filter
method is selected. If the overhead is less than 40%, the Zero
Copy method is preferred. Filter and Compaction subgraphs
primarily comprises UDs, with the majority of the subgraph
transmitted to the GPU. In contrast, Zero Copy subgraphs are
primarily composed of NUDs. Consequently, only UDs are
extracted from the CPU and transmitted to the GPU for Filter
and Compaction subgraphs, ensuring maximum utilization of
edge data for calculation in both scenarios.

In scenarios where active edges are present within the
subgraph, the filter method employs cudamemcpy to transmit
the entire subgraph to the GPU. Conversely, compaction
minimizes the volume of data transferred by using addi-
tional CPU-based compression, thereby transmitting only
active edges to the GPU for processing. However, due to the
additional CPU-based compression overhead, compaction is
employed when its overhead exceeds 80% of that of the Fil-

VOLUME 12, 2024 41595

S. Song et al.: Graph Processing Scheme Using GPU With Value-Driven Differential Scheduling

FIGURE 5. Iterative of a graph algorithm.

TABLE 2. Graph processing overhead.

ter method. For processing Zero Copy subgraphs containing
unused NUDs, Zero Copy is utilized to handle each active
vertex with an individual memory request.

Algorithm 1 depicts the subgraph scheduling algorithm
employed in the proposed graph processing scheme. Initially,
Graph G is partitioned into subgraphs G1 through Gn. Ensur-
ing that Filter and Compaction subgraphs can effectively
utilize UD and PUD edge data, regularly provided to the
GPU, is crucial. Following comparison of the graph process-
ing overhead, the Filter, Compaction, and Zero Copymodules
are distinguished into worklists and transmitted accordingly.
These three worklists operate independently and in parallel.
In iterative graph processing, the proposed graph scheduling
scheme maximizes the use of subgraph UDs and PUDs.
Zero Copy subgraphs reduce the quantity of data exchanged
between the Host and GPU by extracting the UDs and trans-
mitting them to the GPU. At the conclusion of each iteration
(line 15), updated vertices are transferred from the GPU to
the CPU. Notably, only edges that have been updated are
transmitted.

IV. PERFORMANCE EVALUATION
To showcase the superiority of our proposed graph parti-
tioning scheme, we conducted a performance comparison

FIGURE 6. Graph algorithm processing time according to the subgraph
size.

FIGURE 7. Graph algorithm processing time by partitioning scheme.

with existing strategies. Table 3 provides a summary of the
performance evaluation environment. The Host system runs
on a Linux-based Ubuntu operating system, powered by an
Intel (R) Core (TM) i7-9700KF CPU @ 3.60 GHz 64-bit
architecture, and equipped with 32 GB memory. The GPU
utilized is a GeForce RTX 3060TI with 8 GB of GPU RAM.
The graph data comprises a set of edge data.

Table 3 presents the datasets sourced from Stanford’s
extensive network dataset collection [34]. Our performance
evaluations were conducted using the five real graph datasets
shown in Table 3. These datasets include: LiveJournal (LJ),
which includes data extracted from the online social net-
work LiveJournal; Com-Orkut(CO), sourced from the online
social network Orkut; UK-2005 (UK), directed web graph
datasets; Twitter (TW), a directed social network dataset; and
Friendster-snap (FS), an undirected social network dataset.

We explored the impact of varying subgraph sizes on the
performance of our proposed system. The number of ver-
tices per subgraph was adjusted within the range of 64 to
1024k during the partitioning process. Through our perfor-
mance evaluations, we identified the optimal subgraph size.
Fig. 6 depicts the processing time of the graph algorithm
plotted against the number of subgraphs. The horizontal

41596 VOLUME 12, 2024

S. Song et al.: Graph Processing Scheme Using GPU With Value-Driven Differential Scheduling

FIGURE 8. Comparison with other systems.

axis represents the size of the partitioned subgraph, whereas
the vertical axis represents the percentage improvement in
graph algorithm processing performance. For our evaluations,
we utilized the PageRank algorithm and evaluated its perfor-
mance across five real graph data sets. It is important to note
that excessively small subgraphs may introduce overhead,
while overly large subgraph sizes can compromise memory
efficiency.

Fig. 7 illustrates a comparison of the processing times
among graph algorithms employing graph partitioning
schemes. The graph processing time for each dataset was
determined by partitioning it using different partitioning
algorithms and subsequently applying the proposed graph
algorithm processing scheme. The horizontal axis represents
the data set, while the vertical axis represents the improve-
ment ratio with respect to the random partition processing
time, which is set to 1. Following performance evaluation, the
proposed scheme exhibited an average performance improve-

ment of 1.93x and 1.46x compared to the Random Partition
and Greedy vertex-cut division schemes, respectively. The
Greedy vertex-cut scheme lacked load balance due to its
emphasis on distributing adjacent vertices and edges to the
same data. Conversely, the proposed partitioning scheme
ensures good load balancing by evenly dividing the subgraph
sizes. Furthermore, it distributes adjacent vertices and edge
data to a single subgraph before partitioning it into equal sub-
graphs. Consequently, this approach improves the efficiency
of concurrent processing on GPUs while reducing the access
time of each subgraph. This performance evaluation demon-
strates the superior performance of the proposed partitioning
scheme.

Fig. 8 shows a comparison of the average processing time
of the graph algorithms between the existing schemes and
proposed scheme. The proposed scheme demonstrated sub-
stantial performance improvements of 4.27x, 3.82x, 2.2x,
6.6x, 3.4x for SSSP, 3.2x, 3.02x, 2.1x for CC, and 4.03x,

VOLUME 12, 2024 41597

S. Song et al.: Graph Processing Scheme Using GPU With Value-Driven Differential Scheduling

Algorithm 1 Proposed Graph Scheduling

1 Input: active vertex set {G1, . . . , GN} of N partitions,
2 Output: Transfer engine selection. Filter,

Compaction, ZeroCopy
3 VertexInitialization (G);
4 Gactive← FindActiveSubgraph (G);
5 Transfer VertexStatues from GPU to CPU;
6 while Gactive != 0 do
7 if Predictor(G) == ‘Filter’ then
8 Push(Fworklist, G);
9

else if Predictor(G) == ‘Compaction’ then
10 Push(Cworklist, G);
11

else
12 Push(Zworklist, G);
13

end
14 Gactive← FindActiveSubgraph(G);
15 Transfer VertexStatues from GPU to CPU;
16

end

TABLE 3. Graph datasets properties.

2.79x, and 2.48x for BFS, compared to GraphCage, Subway-
sync, and Subway-async. In GPUs-based graph processing,
a significant portion of the processing time is attributed
to graph transmission. GraphCage suffers from transmitting
redundant graph data, leading to inefficiencies. In contrast,
Subway mitigates unnecessary data transmission between
the GPU and CPU, thereby outperforming Graphcage. How-
ever, Subway-sync’s performance is adversely affected by
page faults during data transmission. For example, in Fig. 8,
Subway-sync underperforms compared to Graphcage due
to page faults in SSSP processing with twitter data. Addi-
tionally, Subway-async requires preprocessing time for data
compression.

CPU-based compression and preprocessing currently con-
stitute 30–40% of the overall runtime. The proposed scheme
aims to enhance GPU utilization and optimize the Host–GPU

FIGURE 9. Execution time breakdown of PageRank.

transmission efficiency by implementing one of the following
strategies: Compaction, Filter, and Zero Copy.

Fig. 9 shows the breakdown of total processing times for
Subway-async and the proposed technique during PageR-
ank computation. In Fig. 9 (a), Subway-async accounts for
33% of the average total processing time for preprocessing,
35% for graph transmission, and 32% for data operations.
Meanwhile, in Fig. 9 (b), the proposed scheme allocates
an average of 5% of the total processing time to prepro-
cessing, 35% to transmission, and 60% to data operations.
The proposed scheme shows performance improvement by
reducing redundant operations and eliminating unnecessary
graph preprocessing time in graph data processing.

Due to limitations in the experimental setup, a thorough
performance assessment could not be conducted. Scaling up
the numbers of CPUs and GPUs might potentially enhance
the efficiency of modules processed by the devices. Further-
more, integrating multiple CPUs and GPUs is anticipated to
notably decrease communication costs between the CPU and
GPU during graph algorithm processing.

41598 VOLUME 12, 2024

S. Song et al.: Graph Processing Scheme Using GPU With Value-Driven Differential Scheduling

V. CONCLUSION
In this paper, we propose a graph processing scheme using
GPU with value-driven differential scheduling, facilitated by
efficient subgraph partitioning. Our proposed approach aims
to maximize GPU parallelism efficiency by effectively man-
aging load balancing through a subgraph partitioning scheme
that considers graph independence. Furthermore, we reduce
graph transfers by minimizing duplicate graph transfers via
a differential subgraph scheduling technique. Subgraphs are
partitioned considering the GPUL2 cache and further divided
into three graph processing engines to efficiently handle
the transmission of active vertices and edges. Performance
evaluation, comparing graph processing speed and transmis-
sion volume, demonstrates that processing speed increases
with subgraph size and differential subgraph scheduling.
Our method effectively handles recursive traversal graph
algorithms like SSSP, BFS, PageRank, and CC using graph
representation and processing tailored to the SIMD structure
of the GPU. In the future, we plan to explore graph processing
algorithms leveraging multiple GPUs for enhanced scalabil-
ity and performance.

REFERENCES
[1] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin, ‘‘Pow-

ergraph: Distributed graph-parallel computation on natural graphs,’’ in
Proc. USENIX Symp. Operating Syst. Design Implement. (OSDI), 2012,
pp. 17–30.

[2] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin, and
I. Stoica, ‘‘GraphX: Graph processing in a distributed dataflow frame-
work,’’ in Proc. 11th USENIX Symp. Operating Syst. Design Implement.
(OSDI), 2014, pp. 599–613.

[3] A. Kyrola, G. Blelloch, and C. Guestrin, ‘‘Graphchi: Large scale graph
computation on just a PC,’’ in Proc. USENIX Symp. Operating Syst. Design
Implement. (OSDI), 2012, pp. 31–46.

[4] G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski, ‘‘Pregel: A system for large-scale graph
processing—‘ABSTRACT,’’’ in Proc. 28th ACM Symp. Princ. Distrib.
Comput., New York, NY, USA, Aug. 2010, pp. 135–145.

[5] A. Ching, S. Edunov, M. Kabiljo, D. Logothetis, and S. Muthukrishnan,
‘‘One trillion edges: Graph processing at facebook-scale,’’ Proc. VLDB
Endowment, vol. 8, no. 12, pp. 1804–1815, Aug. 2015.

[6] X. Chen, ‘‘GraphCage: Cache aware graph processing on GPUs,’’ 2019,
arXiv:1904.02241.

[7] L. Zheng, X. Li, Y. Zheng, Y. Huang, X. Liao, H. Jin, J. Xue, Z. Shao,
and Q.-S. Hua, ‘‘Scaph: Scalable GPU-accelerated graph processing with
value-driven differential scheduling,’’ in Proc. USENIX Annu. Tech. Conf.
(ATC), 2020, pp. 573–588.

[8] S. W. Min, V. S. Mailthody, Z. Qureshi, J. Xiong, E. Ebrahimi,
and W. M. Hwu, ‘‘EMOGI: Efficient memory-access for out-of-memory
graph-traversal in GPUs,’’ Proc. VLDB Endowment, vol. 14, no. 2, 2020,
pp. 114-127.

[9] A. H. N. Sabet, Z. Zhao, and R. Gupta, ‘‘Subway: Minimizing data transfer
during out-of-GPU-memory graph processing,’’ in Proc. 15th Eur. Conf.
Comput. Syst., Apr. 2020, p. 12.

[10] L. Ma, Z. Yang, H. Chen, J. Xue, and Y. Dai, ‘‘Garaph: Efficient
GPU-accelerated graph processing on a single machine with bal-
anced replication,’’ in Proc. USENIX Annu. Tech. Conf. (ATC), 2017,
pp. 195–207.

[11] F. Khorasani, K. Vora, R. Gupta, and L. N. Bhuyan, ‘‘CuSha: Vertex-centric
graph processing on GPUs,’’ in Proc. 23rd Int. Symp. High-Performance
Parallel Distrib. Comput., Jun. 2014, pp. 239–251.

[12] Y. Zhang, X. Liao, H. Jin, B. He, H. Liu, and L. Gu, ‘‘DiGraph: An efficient
path-based iterative directed graph processing system on multiple GPUs,’’
in Proc. 24th Int. Conf. Architectural Support Program. Lang. Operating
Syst., Apr. 2019, pp. 601–614.

[13] M. Wang, C.-C. Huang, and J. Li, ‘‘Supporting very large models using
automatic dataflow graph partitioning,’’ in Proc. 14th EuroSys Conf.
New York, NY, USA: Association for Computing Machinery, Mar. 2019,
pp. 1–17.

[14] W.Han, D.Mawhirter, B.Wu, andM. Buland, ‘‘Graphie: Large-scale asyn-
chronous graph traversals on just a GPU,’’ in Proc. 26th Int. Conf. Parallel
Architectures Compilation Techn. (PACT), Sep. 2017, pp. 233–245.

[15] A. H. N. Sabet, J. Qiu, and Z. Zhao, ‘‘TIGR: Transforming irregular graphs
for GPU-friendly graph processing,’’ in Proc. ACM SIGPLAN Notices,
Assoc. Comput. Machinery, 2018, pp. 622–636.

[16] H. Wang, L. Geng, R. Lee, K. Hou, Y. Zhang, and X. Zhang, ‘‘SEP-
graph: Finding shortest execution paths for graph processing under a hybrid
framework on GPU,’’ in Proc. 24th Symp. Princ. Pract. Parallel Program.,
Feb. 2019, pp. 38–52.

[17] Q. Wang, X. Ai, Y. Zhang, J. Chen, and G. Yu, ‘‘HyTGraph: GPU-
accelerated graph processing with hybrid transfer management,’’ in Proc.
IEEE 39th Int. Conf. Data Eng. (ICDE), Los Alamitos, CA, USA,
Apr. 2023, pp. 558–571.

[18] H. Zhu, L. He, S. Fu, R. Li, X. Han, Z. Fu, Y. Hu, and C.-T. Li, ‘‘WolfPath:
Accelerating iterative traversing-based graph processing algorithms on
GPU,’’ Int. J. Parallel Program., vol. 47, no. 4, pp. 644–667, Aug. 2019.

[19] V. Jatala, R. Dathathri, G. Gill, L. Hoang, V. K. Nandivada, and K. Pingali,
‘‘A study of graph analytics for massive datasets on distributed multi-
GPUs,’’ in Proc. IEEE Int. Parallel Distrib. Process. Symp. (IPDPS),
May 2020, pp. 84–94.

[20] M. A. Awad, S. Ashkiani, S. D. Porumbescu, and J. D. Owens, ‘‘Dynamic
graphs on the GPU,’’ in Proc. Int. Parallel Distrib. Process. Symp.,
May 2020, pp. 739–748.

[21] M. Winter, D. Mlakar, R. Zayer, H.-P. Seidel, and M. Steinberger, ‘‘Faim-
Graph: High performance management of fully-dynamic graphs under
tight memory constraints on the GPU,’’ in Proc. Int. Conf. High Perform.
Comput., Netw., Storage Anal., Nov. 2018, pp. 754–766.

[22] L. Wan, W. Zheng, and X. Yuan, ‘‘Efficient inter-device task scheduling
schemes for multi-device co-processing of data-parallel kernels on hetero-
geneous systems,’’ IEEE Access, vol. 9, pp. 59968–59978, 2021.

[23] L. Wan, W. Zheng, and X. Yuan, ‘‘HCE: A runtime system for efficiently
supporting heterogeneous cooperative execution,’’ IEEE Access, vol. 9,
pp. 147264–147279, 2021.

[24] D. H. Kim, R. Nagi, and D. Chen, ‘‘Thanos: High-performance CPU-
GPU based balanced graph partitioning using cross-decomposition,’’ in
Proc. 25th Asia South Pacific Design Autom. Conf. (ASP-DAC), Jan. 2020,
pp. 91–96.

[25] W. Guo, Y. Li, M. Sha, B. He, X. Xiao, and K.-L. Tan, ‘‘GPU-accelerated
subgraph enumeration on partitioned graphs,’’ in Proc. ACM SIGMOD Int.
Conf. Manage. Data, Jun. 2020, pp. 1067–1082.

[26] A. Barvinok and P. Soberón, ‘‘Computing the partition function for graph
homomorphisms with multiplicities,’’ J. Combinat. Theory A, vol. 137,
pp. 1–26, Jan. 2016.

[27] B. Goodarzi, F. Khorasani, V. Sarkar, andD. Goswami, ‘‘High performance
multilevel graph partitioning on GPU,’’ in Proc. Int. Conf. High Perform.
Comput. Simul. (HPCS), Jul. 2019, pp. 769–778.

[28] R. Panja and S. S. Vadhiyar, ‘‘HyPar: A divide-and-conquer model
for hybrid CPU–GPU graph processing,’’ J. Parallel Distrib. Comput.,
vol. 132, pp. 8–20, Oct. 2019.

[29] M. S. Kim, K. An, H. Park, H. Seo, and J. Kim, ‘‘GTS: A fast and scal-
able graph processing method based on streaming topology to GPUs,’’ in
Proc. ACM SIGMOD Int. Conf. Manag. Data, Assoc. Comput. Machinery,
Jun. 2016, pp. 447–461.

[30] S. Maass, C. Min, S. Kashyap, W. Kang, M. Kumar, and T. Kim, ‘‘Mosaic:
Processing a trillion-edge graph on a single machine,’’ in Proc. 12th Eur.
Conf. Comput. Syst., Apr. 2017, pp. 527–543.

[31] A. Gharaibeh, L. B. Costa, E. Santos-Neto, and M. Ripeanu, ‘‘A yoke
of oxen and a thousand chickens for heavy lifting graph processing,’’ in
Proc. 21st Int. Conf. Parallel Architectures Compilation Techn. (PACT),
Sep. 2012, pp. 345–354.

[32] Y. Wang, A. Davidson, Y. Pan, Y. Wu, A. Riffel, and J. D. Owens,
‘‘Gunrock: A high-performance graph processing library on the GPU,’’
ACM SIGPLAN Notices, vol. 50, no. 8, pp. 265–266, Dec. 2015.

[33] H. Kwak, C. Lee, H. Park, and S. Moon, ‘‘What is Twitter, a social network
or a news media?’’ in Proc. 19th Int. Conf. World Wide Web. New York,
NY, USA: Association for Computing Machinery, 2010, pp. 591–600.

[34] J. Leskovec andA. Krevl. (Jun. 2014). SNAPDatasets: Stanford Large Net-
workDataset Collection. [Online]. Available: http://snap.stanford.edu/data

VOLUME 12, 2024 41599

S. Song et al.: Graph Processing Scheme Using GPU With Value-Driven Differential Scheduling

SANGHO SONG received the M.S. degree
in information and communication engineering
from Chungbuk National University, South Korea,
in 2022. His research interests include big
data processing, graph partitioning, and graph
processing.

HYEONBYEONG LEE received the B.S. and
M.S. degrees in computer engineering from
Korea National University of Transportation,
South Korea, in 2016 and 2018, respectively,
and the Ph.D. degree in information and com-
munication engineering from Chungbuk National
University, South Korea, in 2023. His research
interests include big data processing, indexing
schemes, and distributed computing.

YUNA KIM received the M.S. degree from the
Department of Big Data, Chungbuk National
University, South Korea, in 2022. Her research
interests include location-based services, big data
processing, machine learning, and social network
services.

JONGTAE LIM received the B.S., M.S., and
Ph.D. degrees in information and communica-
tion engineering from Chungbuk National Uni-
versity, South Korea, in 2009, 2011, and 2015,
respectively. He is currently a Research Professor
with Chungbuk National University. His research
interests include moving object databases, spatial
databases, location-based services, P2P networks,
and big data.

DOJIN CHOI received the B.S. and M.S. degrees
in computer engineering from Korea National
University of Transportation, South Korea, in
2014 and 2016, respectively, and the Ph.D. degree
in information and communication engineering
from Chungbuk National University, South Korea,
in 2020. He is currently an Assistant Professor
of computer engineering with Changwon National
University. His research interests include location-
based services, big data processing, continuous

query processing, and distributed computing.

KYOUNGSOO BOK received the B.S. degree
in mathematics and the M.S. and Ph.D. degrees
in information and communication engineering
from Chungbuk National University, South Korea,
in 1998, 2000, and 2005, respectively. He is
currently an Assistant Professor of software con-
vergence technology with Wonkwang Univer-
sity, South Korea. His research interests include
database systems, location-based services, mobile
ad-hoc networks, big data processing, and social
network services.

JAESOO YOO received the M.S. and Ph.D.
degrees in computer science fromKoreaAdvanced
Institute of Science and Technology, South Korea,
in 1991 and 1995, respectively. He is currently
a Professor of information and communication
engineering with Chungbuk National University.
His research interests include database systems,
storage management systems, sensor networks,
distributed computing, big data processing, and
social network services.

41600 VOLUME 12, 2024

