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ABSTRACT Design and analysis of energy-efficient and fault-tolerant dominating set (DS) algorithms are
vital tasks for Industrial Internet of Things (IIoT) scenarios, as operational efficiency is a key objective in
most industries. Such algorithms must maintain topology control, clustering, routing, and data aggregation.
An IIoT deployment is said to pose the self-stabilization property if it can always recover to a steady state
in a bounded time without any interruption whenever it is started at an unstable state. Self-stabilization is
a fruitful principle for building fault-tolerant IIoT deployments. This paper proposes a novel distributed
fault-tolerant capacitated DS (capDS) algorithm for IIoT systems. The algorithm is the first self-stabilizing
capDS approach to the best of our knowledge. Proofs concerning the asynchronous behaviors of the
algorithm, as well as the self-stabilization feature with regard to convergence and closure properties, are
provided. Besides, our theoretical analysis showed that the algorithm’s approximation ratio is 6 for IIoT
setups implemented as unit disk graphs. Measurements made using our testbed of 40 IRIS motes and
the extensive TOSSIM simulations revealed that the proposed algorithm is up to 55% better in terms of
coefficient of variation, requires up to 61% fewer moves, causes up to 13% less data traffic, and consumes
up to 14% less energy when compared to a randomized approach and aminimum ID priority-based approach.

INDEX TERMS Industrial Internet of Things (IIoT), minimum capacitated dominating set, distributed
algorithms, self-stabilizing algorithms, fault tolerance.

I. INTRODUCTION
The Internet of Things (IoT) is a revolutionary paradigm that
allows interconnecting a vast amount of devices to each other
(and to the internet), and thus, it enables continuously gather-
ing information from the environment and supports making
collaborative decisions [1]. An industrial IoT (IIoT) system
consists of independent and interconnected computing nodes
that are capable of sensing data from devices, products,
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buildings, and the environment [2], [3], [4], [5]. These
nodes also help monitor and manage physical resources like
electrical energy or waste.

Wireless technologies have become pervasive in IIoT
due to their irreplaceable benefits, including wider area
coverage, mobility, higher scalability as well as lower
maintenance costs [6], [7], [8], [9]. As hundreds, even
thousands, of geographically scattered nodes may form these
networks; therefore, the design, analysis, and implementation
of distributed algorithms targeting to solve various IIoT
problems are vital in the field of research [10]. Depending on
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the application setup, IIoT nodes may be deployed in harsh
environments including but not limited to ocean beds, tun-
nels, and underground mines where nodes are left unguarded
and prone to failures. Hence, fault tolerance is of the utmost
importance for IIoT. This is where self-stabilization comes
in handy, as it is a feasible technique for introducing fault
tolerance to IIoT applications. An IIoT instance is said to be
self-stabilizing [11] if it can begin from any state and regain a
steady-state (also called a valid or legitimate state) in a limited
time without any interrupt.

A self-stabilizing distributed algorithm should have the
closure and convergence properties [12]. In an IIoT deploy-
ment, each node may (or may not) execute the same
instructions and may modify its state concurrently, provided
that the instructions executed by each node check the
preconditions of its rules. If all the preconditions of a rule
are satisfied, then the rule can be enabled. When a node has
at least one enabled rule, it is called ‘‘privileged,’’ and it can
be selected by a scheduler to execute the given action for the
particular node. If a privileged node changes its state, it is
called a ‘‘move’’. It is a common practice to assume that each
move is executed atomically. An unfair distributed scheduler
may choose a nonempty subset of the privileged nodes for
execution (i.e., a privileged node may execute its rules in a
fully asynchronous way.), and such a scheduler can be highly
suitable and is realistic for the IIoT case [13].

A. PROBLEM STATEMENT
An IIoT deployment can safely be modeled as a unit disk
graph (UDG) G = (V ,E), where V is the set of included
nodes (i.e., vertices) and E is the set of links (i.e., edges)
connecting the nodes [14], [15]. Any arbitrary node pair,
say v1 and v2, are considered neighbors and the edge (v1,v2)
exists in E if and only if the Euclidean distance between
nodes v1 and v2 is shorter than a predefined threshold (i.e.,
transmission range). Some domination problems of Graph
theory (and their solutions), including but not limited to the
maximal independent set (MIS), dominating set (DS), and
connected dominating set (CDS) paradigms, can be exploited
to enhance the energy efficiency [16] and fault tolerance [17]
in distributed computing systems, like IIoT deployments.

An independent set of a graph G(V ,E)) is a subset
IS of V , such that there are no two (or more) adjacent
(i.e., neighboring) nodes in IS. The node cardinality of an
independent set implies its size. After an arbitrary search
process, if an independent set can no longer be extended with
other nodes inG, then this set is called amaximal independent
set. Further, the largest of such independent sets is called
the maximum independent set. Nonetheless, a dominating
set [14], [18], consisting of nodes D, is another subset of V ,
where every node included is either a member of D or is a
neighbor of a member of D. Formally, D ={v ∈ V :∀t ∈

V − D: ∃d ∈ D:(d, t) ∈ E }. Likewise, CDS is a special
(i.e., connected) case of DS.

A capacitated DS (CapDS) S is a subgraph of G (also a
subset ofV ), where S is a DS, and every single non-dominator

(also called a dominatee) is associated with a dominator,
provided that the number of dominatees a dominator can be
matched with may not be larger than its (preset) capacity
(c). Let a dominatee be mapped to a dominator with the
mapping function: V/S → S. In a more formal notation,
CapDS can be expressed as S = {v ∈ D: |{u ∈ V − D :

m(u) = v}| ≤ c }. Finding efficient ways to minimize the
set S is an open problem and is NP-hard [19]. The design
of a CapDS algorithm is crucial for achieving low-energy
clustering and convergent load-balancing methods for IIoT
deployments, where cluster sizes are bounded by a cap. We
can more formally define our problem using the following
formulations. The decision variables are:

xi = 1 ⇐⇒ i ∈ CDS

zij = 1 ⇐⇒ i ∈ CDS, and let j be assigned to i

The objective function is:

min
∑
i∈V

xi

And the limitations are:∑
j∈0(i)∪{i}

xj ≥ 1 ∀i ∈ V

zij ≤ xi + xj ∀ij ∈ E, i ∈ V

zij ≤ 2 − xi + xj ∀ij ∈ E, i ∈ V∑
j∈0(i)

zij ≤ xici + (1 − xi) ∀i ∈ V

xi, zij ∈ {0, 1} ∀i, j ∈ E, ∀i ∈ V

where xi shows if node i dominates or not, and 0(i) is
neighbors list of node i.

B. CONTRIBUTIONS
This paper studies the CapDS problem, particularly for the
IIoT case. Our contribution to the field can be summed up
under three directions and are listed below:

• Although finding dominating sets of a graph has been
well studied since the graph theory emerged [17], [20],
[21], [22], [23], [24], [25], [26], [27], [28], [29], [30],
as far as we know, a self-stabilizing distributed algorithm
for the CapDS problem was not developed. Hereby,
we proposed the first capacitated MIS and capacitated
CDS algorithms in earlier works [31], [32]. Note that
any maximal independent set is also a dominating set.
However, not vice versa. A dominating set may include
two neighboring nodes in the DS, but this is not allowed
for the MIS case. So, this paper introduces the first
self-stabilizing distributed CapDS algorithm, and it is
tailored for IIoT.

• We present a theoretical analysis of the algorithm by
evaluating various aspects. We also proved the correct-
ness of our algorithm per the closure and convergence
analyses. For the widely used UDG model, it is proven
that the approximation ratio of our algorithm is 6.
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We study the upper limit of the move count produced
by the proposed algorithm to estimate its worst-case
resource occupation.

• We implemented the algorithm on testbeds made of IRIS
sensor motes and the TOSSIM simulator environment
against different parameters, such as the node count and
average node degrees. From extensive measurements,
we show that the proposed algorithm is favorable in
terms of move counts, received byte counts, coefficient
of variation, energy consumption, and the time to first
node failure.

Consequently, the related works are proposed in Section II.
The proposed algorithm is represented in Section III. The
theoretical analysis is given in Section IV. Section V includes
our testbed experiments and simulations. The conclusions are
finally given in Section VI.

II. RELATED WORKS
DS has been studied pervasively by lots of researchers
such that it is used for efficient identification of web
communities [33], food webs [34], a quantitative analysis
of secondary RNA structure in bioinformatics [35] and
distributed computing [36], [37]. We can mainly categorize
the algorithms as central and distributed. Due to time,
energy, and communication constraints, central algorithms
are unsuitable for distributed systems. Moreover, managing
large-scale networks from a central node is generally inef-
ficient under various dynamic network scenarios. DS algo-
rithms are widely used for clustering and routing. Thus,
plenty of efficient algorithms for various DS problems and
their derivations, such as connected DS, are proposed in
the literature as central [38] and distributed [29]. Since
all algorithms mentioned in this paragraph are not self-
stabilizing, they are out of our scope.

A self-stabilizing algorithm can cope with failures to
provide fault tolerance in IIoT. Under a central scheduler by
using a dominating bipartition concept, Hedetniemi et al. [39]
presented two self-stabilizing DS algorithms. Xu et al. [40]
presented a synchronous self-stabilizing approach calculating
a minimal DS. The algorithm has O(n) rounds time com-
plexity where n is the node count. Goddard et al. designed a
self-stabilizing algorithm running by a centralized scheduler
to find a minimal DS. Turau [13] proposed a distributed
self-stabilizing DS algorithm using a distributed scheduler.
Its time complexity is O(n). Another self-stabilizing DS
algorithm that stabilizes in linear time under a distributed
scheduler is Goddard et al.’s [41]. Chiu et al. [42] proposed a
self-stabilizing DS approach having 4nmove and running on
an unfair distributed scheduler. Although all these algorithms
are fault-tolerant, they do not provide a capacity constraint.

In 2007, the (soft) capacitated domination problem was
put forth by Kao and Liao [43] as a matter of finding
a DS with the minimum node cardinality that considers
the capacity and demand parameters. They formulated a
linear-time 3/2-approximation algorithm. From a different

standpoint, Dom et al. [44] elaborated on the characteristics
of the capacitated DS considering the parameterized com-
plexity perspective, showing that CapDS is W[1]-hard if
parameterized by the treewidth and the solution size k of the
CapDS.

The first bi-dimensional variation of the CapDS problem,
namely the planar CapDS problem, was pointed out by
Dom et al. [44] as an open research problem. It was
later resolved by Bodlaender et al., in [45], where they
revealed that the planar CapDS is W[1]-hard. For the
minimum CapDS problem, the first distributed solution
was proposed by Kuhn and Moscibroda [46], as earlier
works preferred centralized approaches. Kao and Chen [47]
presented algorithms provided that the tree width and the
maximum capacity of the nodes were utilized as parameters.
Another approximation approach for the minimum CapDS
problem was proposed by Shang and Wang in [48]. This was
a centralized algorithm and is a good starting point in the
journey of unveiling the CapDS problem. However, exact
solutions are also not unreachable. Such an approach that
solves the CapDS problem inO(1.89n) time-complexity class
was proposed by Cygan et al. [49]. Potluri and Singh [50]
showed that heuristics could also be useful. They proposed
a heuristic approach (with several editions) to construct
CapDS. In addition, it provides better performance when
compared to competitors.

Kao et al. [51] surveyed the capacitated domination prob-
lem’s complexity and the existing approximation approaches.
Liedloff et al. [52] presented a solution for the CapDS
problem in O∗(1.8463n) time by benefiting from dynamic
programming over subsets. Further, Becker [53] suggested a
polynomial-time approximation method for CapDS, particu-
larly for planar and unweighted graphs, where the maximum
capacity and maximum demand are both bounded. On the
other hand, Li et al. [54] proposed a local search algorithm
to solve CapDS. Our extensive literature review yielded
no self-stabilizing algorithm for the CapDS problem. The
algorithm we proposed is the first successful attempt in this
sense.

III. PROPOSED ALGORITHMS
How the proposed method works is formally expressed in
Algorithm 1 (referred to as ACapDS ). Yet all the acronyms
and definitions of ACapDS are shown in Table 1. A unique
identifier, denoted by idi, is assigned to each node i in the
IIoT deployment. Ni and ci denote the neighbors of the node
i and its capacity value, respectively. Si is the local state of
an arbitrary node i, which may be either one of the ‘‘OUT’’
or ‘‘IN’’ states. For any node i, having Si = OUT shows
that it is already not an element of CapDS. Otherwise, if it
is in CapDS, Si must be ‘‘IN’’. Dominatori stands for the
node i’s dominator. The NULL is represented by ⊥. The term
Dominateesi is the set of dominatees of the node i. Whenever
node i’s capacity becomes (resp. is not) full, and i is (resp.
is not) the dominator node of all dominatees in Dominateesi,
then isFulli set to true (resp. false).
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Algorithm 1 ACapDS
Inputs. idi, Ni, ci.
Variables. Si, Dominatori, Dominateesi, IsFulli
Macros.
EmptyCapacityi: |ci − |Dominateesi||.
CanDominateesi: {j ∈ Ni|Sj = OUT ∧ Dominatorj =⊥ ∧ j /∈
Dominateesi}.
CanDominatorsi: {j ∈ Ni|Sj = IN ∧ i ∈ Dominateesj ∧

EmptyCapacityj ≥ 0}.
MinNbri: min{j ∈ Ni}, MaxNbri: max{j ∈ Ni}.
MaxEmptyNbri:j ∈ Ni|Sj = IN ∧ ∀t ∈ Ni(St = IN ∧ j ̸= t ∧

EmptyCapacityj ≥ EmptyCapacityt ).
IsFullMaci ∈ {true, false}:

if(Si = IN ∧ EmptyCapacityi = 0 ∧ ∀j ∈

Dominateesi[Dominatorj = i])thenIsFullMaci := true.
if(Si = OUT ∨ (Si = IN ∧ (EmptyCapacityi ̸= 0 ∨ ∃j ∈

Dominateesi[Sj = IN∨Dominatorj ̸= i])))thenIsFullMaci := false.
Rules.
Rule 1. if Si = IN ∧ EmptyCapacityi ̸= 0∧ ∃j ∈ Ni[ Sj = IN ∧ j <
i ∧ ¬IsFullj] then
Si := OUT , Dominatori :=⊥

Rule 2. if Si = IN ∧ |Dominateesi| > ci then
repeat

Pick MaxNbri ∈ Dominateesi
Dominateesi := Dominateesi\{MaxNbri}

until Si ̸= IN ∨ |Dominateesi| <= ci
IsFulli := IsFullMaci

Rule 3. if Si = IN ∧ EmptyCapacityi > 0 ∧ CanDominateesi ̸=

ø then
repeat

Pick MinNbri ∈ CanDominateesi
Dominateesi := Dominateesi ∪ {MinNbri}
CanDominateesi := CanDominateesi \ {MinNbri}

until Si ̸= IN ∨ EmptyCapacityi = 0∨ CanDominateesi = ø
IsFulli := IsFullMaci

Rule 4. if Si = IN ∧ ∃j ∈ Dominateesi[ (Dominatorj ̸= i ∧

Dominatorj ̸=⊥) ∨ j /∈ Ni ∨ Sj = IN ] then
repeat
Dominateesi := Dominateesi\{j}

until Si ̸= IN ∨ ∀j ∈ Dominateesi[ (Dominatorj = i ∨

Dominatorj =⊥) ∧ j ∈ Ni ∧ Sj ̸= IN ]
IsFulli := IsFullMaci

Rule 5. if Si = OUT ∧ Dominatori = ⊥ ∧ CanDominatorsi ̸= ø
then
Pick MaxEmptyNbri from CanDominatorsi
Dominatori := MaxEmptyNbri

Rule 6. if Si = OUT ∧ Dominatori ̸= ⊥ ∧ [ i /∈
DominateesDominatori ∨ Dominatori /∈ Ni ∨ SDominatori = OUT ]
then
Dominatori :=⊥

Rule 7. if Si = OUT ∧ Dominatori = ⊥ ∧ ∀ j ∈ Ni[ (Sj = OUT ∧

(i < j∨ Dominatorj ̸=⊥)) ∨ (Sj = IN ∧ IsFullj)] then
Si := IN , Dominateesi := ø, IsFulli := IsFullMaci

Rule 8. if Si = IN ∧ ¬ R1 − R7 ∧ IsFulli ̸= IsFullMaci then
IsFulli := IsFullMaci

EmptyCapacityi is used to keep track of the highest number
of extra dominatee assignments to the dominator i, required
to complete its preset capacity. CanDominateesi represents
the set of dominatee candidates which can be associated with
the dominator node i. Likewise, CanDominatorsi is the set of
possible dominator nodes, one of which can be selected as the
dominator node for the dominatee i. ParametersMinNbri and

MaxNbri represent the maximum and minimum neighbors of
node i, subsequently. Lastly, IsFullMaci is designated to set
the value of the IsFulli parameter.
The proposed algorithm has eight defined rules (each

referred to as R#). The nodes in the OUT state (i.e., the
dominatees) execute R5, R6, and R7, whereas IN nodes
(i.e., the dominators) execute the others. Over and above,
R8, R7, and R1 are directly related to building a DS, while
the remaining define and enforce the capacity constraint. R1
implies that if a node i is having IN state, it has an IN neighbor
node which has a lower ID, its capacity is not full and also
isFull = false, then the node i transforms into the OUT state
and sets its Dominatori to NULL. Any two IN nodes that do
not have their capacities full are not eligible to be neighbors,
yet this property is maintained by R1. When a node i has IN
state, and the cardinality of the dominatees of the node i is
greater than the capacity, then it runs R2 as well as deletes
the nodes from its dominatees until the cardinality of this
set becomes not greater than the capacity The cardinality of
Dominateesi can overflow its capacity in the start state. R2
exactly addresses this issue. Per R3, the dominators select
their dominatees, considering their available capacities. If the
cardinality of the set of dominatees of an IN node i is smaller
than its capacity and there exists one or more candidate
dominatee that did not choose a dominator yet, it executes
R3 and writes the dominatee candidates into its dominatees
set until its capacity becomes full. R4 dictates that if a node j
is maintained in the dominatees set of the dominator node i,
but the node j is associated with another dominator, then the
node j is removed from the node i’s dominatees set to prevent
a double-affiliation issue.

If any node i is in the OUT state, there is one or more IN
neighbors of i in its dominatees set, and the dominator of i
is NULL; then the node i runs R5 by selecting a dominator
node among the ones in its CanDominators set and assigning
it as its dominator. This results in a dominator request and
is replied to by a dominatee that does not currently have an
agreed dominator and is already selected by a dominator.
Hence, that node achieves a matching as a result of R5.
A dominatee node pointing to an incorrect dominator resets
its dominator value by executing R6.

In case of a bad match-up between a dominatee and a
dominator, if any, R4 and R6 together help address this issue.
As R7 dictates, if a node i is in the OUT state, it is not
associated with a dominator node, each dominatee neighbor
of i with a lower ID is associated with a dominator, and
all dominator neighbors of the node i have its capacity full,
then the node i self-assigns itself a dominator by altering its
state to IN. Yet, R7 assures that there is a dominator node in
every cluster, excluding the fully occupied dominators and
their dominatees. Nevertheless, IsFulli allows a dominator
and its neighbors to communicate and inform each other
regarding whether the dominator’s capacity is full or not.
If none of the rules R1 to R7 are enabled, and the variable
IsFulli is false, then the node i can update it by eventually
executing R8.
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TABLE 1. Symbols and abbreviations.

TABLE 2. The steps of ACapDS when it converges as in Fig. 1.

Fig. 1. A sample execution of ACapDS a) Initial state b) Steady state.

Fig. 1 provides an example run of ACapDS , where the black
balls represent the nodes that are in the IN state, whereas the
white ones represent the nodes in the OUT state, while the
capacity is set to two. If a dominatee selects its dominator,
it points to its dominator with an arrow. Fig. 1.a. presents
the system’s initial state. The nodes, excluding 1 and 5, are
initially in the OUT state. Nodes 1 and 5 are in IN state,
where node 1 is overflowed. Nodes 2, 3, and 4 do not have
a dominator, and the variable IsFull5 is false. In the first
step, node 1 executes R2, trying to reduce its overflowed
capacity. Nodes 2 and 3 execute R5 to set node 1 as their
dominator. Node 4 executes R7 since IsFull5 is true. Node

5 executes R1 due to having an IN neighbor (i.e., node 1) with
a lower ID. Further, node 6 executes R6 to fix its dominator
as NULL. In the second step, node 1 executes R8 and sets
the IsFull1 variable. Consequently, nodes 1, 2, and 3 are now
stabilized. Node 4 executes R3 and adds nodes 5 and 6 into
its Dominatees4 set. In the upcoming step, nodes 5 and 6 set
node 4 as their dominator. Finally, node 4 executes R8 and
sets the IsFull4 variable. Following the completion of these
steps, there are no more enabled rules. Fig. 1.b demonstrates
the steady state of the given system. Nodes 1 and 4 are in
CapDS, and their ‘‘isFull’’ variables are set to true. Node 1 is
the dominator of nodes 2 and 3, whereas node 4 dominates
nodes 5 and 6. The step-wise convergence of ACapDS can be
observed in Table 2, which also includes the executed rules
and the corresponding state transitions.

IV. THEORETICAL ANALYSIS
A. CLOSURE
Lemma 1: Dominatori = j if and only if i ∈ Dominateesj,

provided that a system is in the steady state.
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Proof: Assume that the initial system is in a steady
state. Additionally, Dominatori = j but i /∈ Dominateesj
by contradiction. As a result of this situation, vertex i runs
R6. When i ∈ Dominateesj and Dominatori ̸= j, it gives
rise to two cases. In the first case, if Dominatori =⊥,
vertex i executes R5. When it comes to the second case,
if Dominatori ̸=⊥ and Dominatori ̸= j, vertex j executes R4.
It is obvious that there is one or more move(s) in the steady
state. Therefore, a contradiction is encountered.
Theorem 1: The set S closures a CapDS when no vertex is

enabled.
Proof: Assume that the state of the system is steady

and there is not any enabled vertex. However, S is not a
CapDS. There are two cases: (i) S is not a DS, or (ii) S is
a DS but not capacitated. First, consider (i); if S is not a DS,
there must be one or more vertex i /∈ S not having an IN
neighbor. If all OUT neighbors of vertex i with a lower ID
have a dominator, IsFull of all its IN neighbors are true, and
having the least ID in its neighborhood makes R7 enable. R5
or R7 is enabled if there is at least one neighboring vertex
with a lower ID in the OUT state. This circumstance yields
a contradiction against the assumption, which claims that
there is no enabled vertex. Secondly, j is a vertex in S that
has an overflow capacity by considering (ii). This makes R2
enable. After that, no rule makes the capacity of Dominateesj
overflow. Since S is a DS, a vertex out of S must have at least
one IN neighbor. If the capacity of the neighbor vertex (j)
not having a dominator of vertex i is not full, it makes R3
enable. When the capacity of vertex j is full, i or one of its
OUT neighbors not having a dominator neighbor vertex with
a lower ID executes R7. Now, a contradiction arises against
our assumption. Lemma 1 supports a pair of dominators and
dominatee to match correctly; there is no rule to be enabled.
Consequently, our theorem holds.

B. CONVERGENCE
Lemma 2: IsFull flag of a vertex in the IN state is precisely

correct as a result of the first move.
Proof: Throughout the first move, all the vertices that

are in IN states get to know the dominators of all of their
OUT neighbors. Let j be a vertex in IN state; if the cardinality
of Dominateesj is identical to the capacity value, vertex j
is the dominator of all OUT neighbors in set Dominateesj,
so the statement ‘‘IsFullj = false’’ changes to true. Otherwise,
it remains incorrect. After the first move, there is no rule to
let the IsFullj be false.
Lemma 3: R8 can be enabled at most twice, where the

first occurrence must constitute the first move, and the last
occurrence must constitute the last move.

Proof: Let j be a vertex in IN state in G. If IsFullj is
correct and set to true within the initial configuration, then no
rule makes j execute any of the rules. In order for a dominatee
vertex i in Dominateesj can run R6, j must run R3 to delete
i from its Dominateesj. Nevertheless, i must run R6 so that j
may run R3. Hence, there is an obvious deadlock concerning
i and j. In this situation, if IsFullj is correct and set to true

in the initial move, it remains unchanged. Now assume that
IsFullj is incorrect at the beginning and node j does not run
any rule among all rules, but R8, then the vertex j can execute
R8, and IsFullj will be correct after the first move as shown
by Lemma 2. If IsFullj is set to true after the initial move,
it remains so. If node j runs R8 in any step following the first
move, it cannot run any rule. Because when the capacities
of vertices in Dominateesj are full, and all dominatees in
Dominateesj select j as the dominator, it sets IsFullj to true
(from false). There is not any rule that lets IsFullj be false
again. Therefore, we prove that a vertex can execute R8 at
most twice so that the first one should be the initial move,
and the last one should be the final move.
Lemma 4: A vertex may run R2 at most once and as its

initial move.
Proof: Since the first configuration of the systemmay be

in any state, it is possible that the cardinality of Dominateesj
of IN vertex j can initially have an overflow capacity in the
initial state. Consequently, R2 can be run for the initial move,
and it does not make the number of elements in Dominateesj
overflow the current capacity. Following that, no rule is
designed to force the capacity of Dominateesj to overflow.
Therefore, a vertex has a mere opportunity to run R2 once
within its first move.
Lemma 5: Any vertex may enable R1 at most once and

R7 at most twice. During the execution of ACapDS under an
unfair distributed scheduler, solely the following two state
sequences (as well as their suffixes) are possible:

‘‘OUT - IN - OUT’’
‘‘OUT - IN - OUT - IN’’
Proof: Assume that Dominatori of a vertex i in the

OUT state is initially NULL, IsFull variables of all IN
neighbors having lower IDs are true and incorrect, and all
OUT neighbors having lower IDs have a dominator. In this
situation, i runs R7 to change its state to IN (creating an
‘‘OUT - IN’’ sequence), so any IN neighbor having a lower
ID runs R8 and switches its IsFull to false. Vertex i runs
R1 as the second move and makes a state transition to OUT
again. Hence, vertex i creates the sequence ‘‘OUT - IN -
OUT’’. For executing R7 one more time, all IN neighbors of
vertex i with lower IDs must run R8 and set their IsFull to
true, and all OUT neighbors having lower IDs should select
their dominator by running R5. In this situation, i runs R7
for the second time and does not make a transition. Since
IN neighbors do not run any rule after the second R8, as of
Lemma 3. Conversely, even if anyOUT neighbor with a lower
ID sets the dominator toNULL by R6, it cannot impose vertex
i to execute R1. Vertex i has a ‘‘OUT - IN - OUT - IN’’
sequence after these phases.

Now suppose that the vertex i initially is in IN state; if there
exists any neighboring vertex jwith a lower ID in the IN state,
and has IsFullj = false, then vertex i executes R1 to make a
transition to the OUT state. If vertex i does not run R7 and any
IN neighbor j accumulates vertex i to Dominateesj, vertex i
then executes R5 without executing another rule. After these
steps, i creates a state sequence of ‘‘IN - OUT’’.

VOLUME 12, 2024 38821



O. Arapoglu et al.: ACapDS: An Energy-Efficient and Fault-Tolerant Distributed capDS Algorithm

Lemma 6: R5 and R6 may be run at most n2 times
depending on whether the system state is steady.

Proof: In the initial state, assume that vertex i is in the
OUT state, so it can run R7, R6, or R5. If the Dominatori
does not equal to NULL and the vertex i is not residing in
the dominatees of Dominatori, R6 will be enabled in the
first move and lets Dominatori be NULL. Later on, if an
IN neighbor j of vertex i included i in its Dominateesj, R5
is executed by vertex i. Then, vertex j changes its state to
OUT by executing R1. Under such a condition, vertex i runs
R6 one more time. R6 and R5 rules can be run as a loop
during i holds IN neighbors, keeping i as a member of their
Dominatees set and executing (‘‘IN - OUT’’) move with R1.
On the other hand, there must be one IN neighbor k in the
system, and k remains in the IN state as long as its ID is the
smallest among its IN-state neighbors. When vertex k assigns
vertex i a member of Dominateesk and vertex i sets k as its
dominator, it is unable to run any rule since no rule may break
the match-up of vertices i and k .
As Dominateesk does not include i, an OUT neighbor m

had been running R1 before can later execute R7 and makes
i a member of Dominateesu by R3. Moreover, m cannot
execute R1 again as directed by Lemma 5. So, u becomes
the dominator of i. Vertex i cannot execute any of the rules,
breaking the match-up between i andm. Vertex i can make an
‘‘OUT - IN - OUT’’ sequence and remains as is per Lemma 6.
From here, the cumulative move count for R6 and R5 must
be multiplied by two. The equation given below presents the
maximum possible number of moves of R6 and R5, where n
is the member vertices of a graph G:

= 4xy(x = |{Si = OUT }|, y = |{Sj = IN }|, n = x + y)

= 4x(n− x)

= −4x2 + 4nx

xmax =
n
2 and 4 n

2

4 = n2 is clearly the largest move count for
the system-of-interest.
Lemma 7: Until the system state becomes steady, rules R3

and R4 may be enabled at most 2n2
3 times.

Proof: An IIoT system can be started from an arbitrary
unstable state or configuration, as mentioned earlier. Assume
that there is initially an unstable system that consists of n
vertices. There is a vertex i that is in IN state. Let D be
the dominator vertices set in CapDS, E be the dominatee
vertices set; further, |D| = d and |E| = e. Each vertex in
E has at least one neighbor vertex in CapDS. Now consider
the first move: d vertices can run R3, and all of them may
put the same vertex into their Dominatees set. At least one
vertex in E turns R5 enable as the second move. Therefore,
each vertex in D has a capacity of 1, the same in the worst
case. Then, (d-1) vertices can run R4 and delete the matched
vertex among E from their Dominatees set as the third
step. For the fourth move, (d-1) vertices can run R3 and
write the same vertex into their Dominatees set from E
except for the matched vertex. At least one vertex in E
makes R5 enable and selects a dominator from D for a fifth

move. By the way, the vertex i can make an ‘‘IN - OUT -
IN’’ state sequence and remains so by Lemma 5. After that,
the total number of moves for R3 and R4 should be multiplied
by two. The equations below prove that the dominators can
run at most R3 and R4 until the system enters a steady state.

=


d + 2

d−1∑
i=1

(d − i), d ≤ e (1)

d + 2
e−1∑
i=1

(e− i) + d − e, d > e (2)

Case 1: if d ≤ e

d + 2
∑d−1

i=1
(d − i) = d + 2(

∑d−1

i=1
d −

∑d−1

i=1
i)

= d2

dmax =
n
2 and 2n2

4 =
n2
2 is the greatest move count.

Case 2: if d > e

d + 2
∑e−1

i=1
(d − i) + d − e

= d + 2(
∑e−1

i=1
d −

∑e−1

i=1
i) + d − e

= 2(n− e)e− e2

f (y) = 2ne− 3e2

f (e) = 2n− 6e = 0

ymax =
n
3 and 2n2

3 is the highest move count. Due to n2
2 <

2n2
3 for n ≥ 0, thus R3 and R4 can be executed maximum
2n2
3 times until the system enters in steady state.
Theorem 2: ACapDS is considered self-stabilizing under

the command of an unfair distributed scheduler. Furthermore,
it converges to a stable state, including a CapDS after at most
( 5n

2

3 +6n) moves.
Proof: Per Lemma 5, a vertex may run R1 at most once

and R7 twice. That limitation yields at most 3n moves. As in
Lemma 4, a vertex may run R2 at most once. Thence, it yields
at most n moves. Lemma 7 allows at most 2n2

3 moves owing
to R3 and R4. R5 and R6 can be run at most n2 times as
explained in Lemma 6, whereas Lemma 3 proves that R8may
be run twice by any vertex; therefore, at most 2n times by
n vertices. Ultimately, the total move count can be found as
3n+ n+

2n2
3 + n2 + 2n =

5n2
3 + 6n.

Theorem 3: ACapDS yields a solution for the CapDS
problem with an approximation ratio of 6, given that a UDG
model is accepted and all vertices have a uniform capacity.

Proof: Let us assume that the set D∗ stands for the
minimum CapDS of V of a UDG G. So the size of D∗ can
be formulated as |D∗

| = V/(c+ 1). Also, let S be the CapDS
generated by ACapDS . Assume that S

′

is the set of vertices
in S whose degrees are at least equal to the capacity, and
S ′′ is the set of other vertices in S. The vertices in S

′

can
dominate a maximum of c vertices. The vertices in S ′′ create
a MIS. Because, it is not possible for IN vertices in S ′′ to be
neighbors of each other, and every OUT vertex already has

38822 VOLUME 12, 2024



O. Arapoglu et al.: ACapDS: An Energy-Efficient and Fault-Tolerant Distributed capDS Algorithm

Fig. 2. An example IIoT setup with IRIS motes as the testbed.

an IN neighbor existing in S ′′. IsFull variable of an IN vertex
in S ′′ cannot be true because of its degree being lower than
the capacity. Any vertex in MIS can dominate at most five
vertices in G. As S

′

≤ D∗ and S ′′
≤ 5D∗, and S ≤ 6D∗,

ACapDS has 6 approximation ratio.

V. PERFORMANCE EVALUATION
Wehave evaluated the performance of the proposed algorithm
both via testbed experiments and simulations.

A. EXPERIMENTS ON TESTBED
A thorough experimental evaluation of ACapDS was done
on a testbed system that includes IRIS wireless sensor
nodes in our laboratory environment.We generated numerous
topologies with node cardinalities ranging from 10 to 40 by
augmenting 10 nodes in each trial. The created topologies
were undirected, and each node was assigned a unique
ID. The topologies used in the experiments were sparse,
medium, and dense, with degrees of four, six, and eight,
respectively. The number of moves, received byte counts,
and energy consumption were calculated as cost indicators
Our test scenario involves randomly killing 20% of the
existing nodes in each experiment round. Those experiments
were iterated 20 times for each measurement, and the mean
averages were recorded. All the nodes initially sent a Hello
packet to their neighbors immediately at a 1-hop distance
in order to announce their initial states. If any node i is
a dominator, it sends its idi, Si, IsFulli and Dominateesi
parameters in a message, whereas a dominatee j sends its
idj, Sj and Dominatorj parameters. Each node attached to the
network was able to run the algorithm at the same moment.
If a rule’s preconditions were all satisfied, the node could
move by executing its rule(s). When a node changed its
state, it broadcasted its new state, allowing neighbors to be
acknowledged. When no enabled node was left, the network
was stabilized, and a CapDS was created. It translates as each
dominatee found a dominator, and each dominator constituted
a set of dominatees whose size did not exceed the available
capacity.

The energy utilization for each node is deduced by
accounting for the bytes transmitted (S) and received (R).
The IRIS motes, operating at a data transmission rate of
250 kbps-which corresponds to 31.25 kB/s-draw a current

of approximately 16 mA in the receive mode and 17 mA
in the transmit mode at a transmission power of TX =

3 dBm. With an operational voltage of 3300 mV, the energy
expenditure (E) is estimated using the fundamental electrical
power equation E = V × I ×T . Hence, the energy consumed
(E) is approximated by the formula:

E ≈

(
S × 17 + R× 16

31.25

)
× 3.3 mJ

Figure 2 provides a visual representation of our testbed
platform, which is designed to simulate a typical IIoT
deployment. This platform comprises 40 IRIS motes, which
are high-performance, IEEE 802.15.4-compliant wireless
sensors. These motes are strategically distributed to mimic
the real-world distribution of devices in an IIoT network.
Each mote is equipped with a variety of sensors to collect
data, and they communicate with each other to form a
mesh network, reflecting the interconnected nature of IIoT
systems. The testbed also includes a sink device, which serves
as the central point of data collection and communication.
This device is connected to a PC, allowing for monitoring,
controlling, and analyzing the data collected from the motes.
The sink device plays a crucial role in managing the network,
as it is responsible for tasks such as data aggregation, network
routing, and the coordination of the motes.

Fig. 4 shows the (average) number of moves in a run of
ACapDS per varying node counts and densities. Per definition,
the number of moves directly affects the received data size
(i.e., number of bytes) and eventually the energy consumption
as each node declares its new state info to its neighbors
more often (as states change). Clear from the figure is
that when the node cardinality increases, the number of
required moves increases linearly. Besides, the move counts
are generally stable against varying node densities. Fig. 4
illustrates the received number of bytes during ACapDS
against the node cardinality and also density. The average
node degree is larger in denser topologies as the intercon-
nections between the nodes are more in number. Per the
measurements, the received byte count positively correlates
with the number of nodes and the node densities. Fig. 5
provides an insight into the energy consumption of running
ACapDS with varying node numbers and densities. The energy
consumption measurements yielded results similar to those
of the received byte counts. That may not be a surprise
as it has a crucial contribution to the system’s total energy
consumption. Thence, the energy consumption scales up or
down proportionally to the number of nodes involved and also
their topological density. These experimental results of IRIS
nodes suggested that our algorithm consumes a reasonable
amount of resources, and this behavior is quite stable even
when node counts and degrees vary.

As no distributed self-stabilizing capacitated DS
approaches can be found (as discussed in the related
works), two CapDS algorithms were derived from the
self-stabilizing DS algorithm that utilizes 4nmoves proposed
by Chiu et al. [42] by implementing the hierarchical collateral
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Fig. 3. Move count of ACapDS vs node count and density.

Fig. 4. Number of received bytes in ACapDS vs node count and density.

composition method (as used in [55]). CRandom denotes the
first algorithm, which includes a randomized approach where
the dominatees determine their dominator randomly, while
the dominator nodes implicitly write the dominatees into
their set of dominatees if the node runs no rule. CID−based
stands for the second algorithm,which is based on aminimum
ID priority-based approach where the dominatees always
determine the dominator with the minimum ID, and the
dominators put them implicitly in their dominatees sets if the
node runs no rule.

The relationship between move count and network
longevity is inversely proportional, as a higher number
of moves often translates to increased energy depletion.
The data presented in Table 3 underlines this relationship,
showcasing a linear increment in move count in tandem
with node count increments. This emphasizes the necessity
for algorithms that can minimize move count to extend the
operational lifespan of the network. Our analysis indicates
that ACapDS outperforms bothCRandom andCID−based in terms
of efficiency.

Fig. 5. Energy consumption of ACapDS vs node count and density.

TABLE 3. Move count comparison of ACapDS , CRandom, and CID−based
algorithms for real experiments.

TABLE 4. Energy consumption comparison of ACapDS , CRandom, and
CID−based algorithms for real experiments.

Energy consumption is a vital metric for assessing the
efficiency of distributed systems, particularly in the context
of wireless sensor networks. In Table 4, we examine the
energy expenditure in correlation with varying node counts.
As node count escalates, so does the energy consumption,
which is expected due to the elevated operational demands.
Notably, ACapDS demonstrates a substantial improvement in
energy conservation, with results that are significantly lower
than those of CRandom and CID−based . These findings are con-
sistent across different node densities, highlighting ACapDS ’s
adaptability to diverse network structures. Consequently,
ACapDS exhibits a robust potential for prolonging network
lifetime by ensuring minimal energy consumption compared
to its counterparts, which is a critical consideration in the
design and application of algorithms in energy-constrained
environments.

B. SIMULATIONS
Throughout the testbed experiments, we were limited to
40 sensor nodes that were available in the laboratory
setup. In order to extend our measurement efforts to a
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Fig. 6. Coefficient of variations of the algorithms vs Node count.

Fig. 7. Coefficient of variations of the algorithms vs Average degree.

Fig. 8. Move count of the algorithms vs node count.

much larger scale, we also made simulations, which not
only allowed us to use more crowded network topologies.

Fig. 9. Move count of the algorithms vs average degree.

Fig. 10. Received byte count of the algorithms vs node count.

Fig. 11. Received byte count of the algorithms vs average degree.

In addition to the real-world experiments, the described
methodology for calculating energy utilization was also
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employed in simulation scenarios. The simulation parameters
were aligned with those of the IRIS motes used in the
empirical studies. These parameters included a transmission
rate of 250 kbps, corresponding to a real-time data throughput
of 31.25 kB/s. Similarly, the simulated nodes were configured
to reflect the power consumption characteristics of the IRIS
motes, with a current draw of 16 mA in receive mode
and 17 mA in transmit mode, operating at a transmission
power level of 3 dBm. The operational voltage was set
to 3300 mV, consistent with the hardware specifications.
By adhering to these parameters, the simulations were able
to accurately emulate the energy expenditure calculated using
the formula E = V × I × T , thus ensuring the validity and
comparability of the simulation results with the actual energy
consumption observed in the real-world deployments. This
approach enabled a robust analysis of the energy dynamics,
offering relevant and applicable insights to both theoretical
and practical applications in the field.

All three topologies, being ACapDS , CRandom and CID−based
were implemented and tested on TOSSIM discrete event
simulator. Undirected and random graphs were generated
to form the topologies. The topologies were set to change
from 50 to 250 nodes in each trial (with a step size of 50).
Like in the testbed experiments, the topological densities
were divided into three classes: sparse, medium, and dense,
where the average node degrees were (approximately) four,
six, and eight, respectively. Each measurement was recorded
as a mean average of 30 repeated runs. Also presented
are a comparison of those algorithms per varying node
cardinalities and the average degrees in terms of coefficient
of variation (CV), number of moves, number of received
bytes, and energy consumption, again as done during the
real experiments. The CV is a measure of relative variability
and is expressed as CV = (Standard Deviation/Mean) ×

100. It is used to render the balance of those clusters
shaped by the cluster heads (dominators) and the members
(dominatees).

Fig. 6 demonstrates the comparison between the CV of
the algorithms per varying node cardinalities. As seen in the
figure, if the node cardinality increases, then CV decreases.
That is because the dominatees have more dominators among
neighbors to interfere within the assignment that pushes to
build more balanced clusters, provided that the number of
nodes scales up. Among all,the CV of ACapDS is the smallest
resulting that ACapDS is on average 49% better than CRandom
and 55% better than CID−based . Similarly, Fig. 7 shows the
CV values of the algorithms against varying average node
degrees. If the degree is increased, the size (i.e., cardinality)
of DS decreases, leading to a reduction in the CV values.
ACapDS performs decisively better than its competitors that
have similar results, as shown in Fig. 6. To sum up, it is safe
to state that the CV values of ACapDS are significantly better
than its competitors per varying number of nodes and node
degrees.

The number of moves has critical importance in the course
of energy consumption. The number must be minimized in

order to enable a longer network lifetime. As illustrated
in Fig. 8, a positive linear correlation exists between the
move counts and the number of nodes in the network.
Furthermore, ACapDS provide 61% better results thanCRandom
and 60% better than that of CID−based . In Fig. 9, the
number of moves of algorithms are depicted per the average
node degrees, where ACapDS promises the best stats among
others regardless of the subject topology. All in all, ACapDS
clearly requires fewer moves when compared to other
options.

The received number of bytes per node count was shown in
Fig. 10 for all algorithms. IT can be observed that the received
byte counts of the algorithms increase mostly linearly when
the number of nodes increases. ACapDS has a clear advantage
as the data traffic it causes is 13% lower than that of CRandom
and 9% lower than CID−based . The relation between the node
degrees and the number of received bytes is given in Fig. 11.
Again, there is an observable linear correlation, whereACapDS
is the best performer.

The key to prolonging the network lifetime in IIoT
is obviously energy efficiency. Fig. 12 shows the energy
efficiency of the algorithms by depicting the correlation
between the estimated consumed energy and the number
of nodes in the topology. With all algorithms, the energy
consumption tends to increase if the number of nodes
increases. From the figure, ACapDS has the best energy
efficiency, as it consumes 14% less energy than CRandom
and 10% less energy than CID−based . Fig. 13, on the
other hand, presents the energy consumption per varying
average node degrees. ACapDS , again, has the lowest energy
consumption for any given average node degree. Eventually,
the measurements from the simulations suggest that ACapDS
outperforms its competitors in terms of CV, number of
required moves, number of received bytes, and the energy
consumption per varying number of involved nodes and node
densities.

A dominator’s capacity is said to be uniform (resp. non-
uniform) if all nodes in the graph share the same (resp.
variable) capacity value. ACapDS is able to work with both
uniform and non-uniform capacities, but it can provide
the 6-approximation ratio only for the case of uniform
capacities. For homogeneous IIoT deployments, uniform
capacity is highly appropriate. Nevertheless, heterogeneous
networks can generally be seen as more realistic. Wireless
communication is the major energy-consuming action in
IIoT [56]. The network lifetime in an IIoT deployment
is often described as the time span between when the
experiment begins until the first node failure in a dominating
set (due to energy outage, etc.) [56]. We calculated the
network lifetime of algorithms against the number of included
nodes and the average node degrees. Note that the size of
data that can be sent in a mere packet is limited to 127 bytes
per to packet structure defined by IEEE 802.15.4 standard.
Ei and Emax represent the energy (in mJ) of the node i and
the maximum consumed energy related to a 127 bytes-sized
packet, respectively.
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Fig. 12. Energy consumption vs node count.

Fig. 13. Energy consumption vs average node degree.

The nodes were initially assigned a random amount of
energy in the range between 1000× Emax and 10000× Emax
mJ. It is assumed that when an algorithm constructs a CapDS,
each dominatee of a dominator sends a 127 bytes-long packet
in each round. The capacity of the node i is denoted as ci,
and the degree of that node is denoted Di. Moreover, Davg
stands for the degree of the neighbors of node i, and Eavg is
the average energy level in mJ. The capacity of the nodes in
the IIoT deployment is initially calculated with the formula
below:

ci =


⌈
Ei × Davg
Eavg

⌉
, if

⌈
Ei×Davg
Eavg

⌉
≤ Di (3)

Di, if
⌈
Ei×Davg
Eavg

⌉
> Di (4)

Fig. 14 illustrates the network lifetime offered by all three
algorithms per varying number of nodes in the network.
Generally speaking, if the node cardinality increases, the time
to the first node failure reduces. Because, if the number of
nodes increases, the likelihood that a node with little energy

Fig. 14. Network lifetime of the algorithms vs node count.

Fig. 15. Network lifetime of the algorithms vs a dominator’s capacity is
said to be uniform degree.

resources being a dominator increases as well. Even so,
ACapDS has the longest network lifetime as it endures ACapDS
86% longer than CRandom and 69% longer than CID−based .
The network lifetimes per average node degree are shown
In Fig. 15. A network’s node density may affect the degrees
of individual nodes, and eventually the size of CapDS.
Therefore, the time to the first node failure drops remarkably
if the average degree is increased. In par with the previous
results is that ACapDS is the best performing one among all
in terms of network lifetime. An apparent minor drawback
for ACapDS can be its exaggerated susceptibility to increase
in the node degrees; though it is still better than alternatives,
working in denser networks may require special handling.
Overall, these results assert that ACapDS runs successfully and
prolongs the network lifetime to a large extent, even if the
capacity is non-uniform.

VI. CONCLUSION
DS is a fundamental structure for clustering and routing
in IIoT, where the research threads related to constructing
DS and its variants are still hot in many aspects. CapDS
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is a constrained version of DS in which each dominator
is matched with a bounded number of dominatee. This
strategy is significant for preserving the residual energy
of dominators due to prolonging the network lifetime.
Energy is not the only concern for these networks since
IIoT is composed of tiny sensor motes that are prone to
failures and environmental effects. Thus design, analysis,
and implementation of self-stabilizing protocols aiming at
fault-tolerance as well as energy efficiency are of utmost
importance.

This paper proposes the first distributed self-stabilizing
CapDS algorithm for energy-efficient and fault-tolerant
IIoT. To prove the correctness of the proposed algorithm,
we provide a converge and closure analysis of the proposed
algorithms. We show that the move count of the proposed
algorithm is bounded by 5n2

3 +6n. We theoretically prove
that the proposed algorithm has a 6-approximation ratio for
UDG-modeled IIoT.

We implement the algorithm in a testbed of 40 IRIS
sensor motes to measure its performance in real sensor motes.
To evaluate the proposed algorithm in large-scale settings,
we implemented it in the TOSSIM simulator and tested its
performance against various node counts and average node
degrees. Extensive experiments realized on a testbed, as well
as the simulations, reveal that the algorithm we proposed in
this paper is favorable in terms of reducing the number of
required moves, balancing clusters, consuming energy, and
prolonging network lifetime.

Future work could address several open problems in the
context of the IIoT, including designing an approximation
algorithm that can operate effectively in IIoT environments
with non-uniform capacities. Additionally, research could
focus on estimating the expected number of moves and
reducing the total move counts required in worst-case
scenarios. These advancements could further enhance the
efficiency and adaptability of the CDS algorithm in complex
IIoT settings.
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