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ABSTRACT In a modern industrial process, the accurate measurement of two-phase flow signals is of
vital importance for various purposes including condition-based monitoring of pipelines, the avoidance of
costly material and environmental damages, and danger to the operational personnel. In this work, a novel
blind approach for denoising two-phase liquid and gas flow in a horizontal liquid-gas pipe is proposed.
This approach employs the structured signal subspace (SSS) method on the multichannel signal acquired
from the transducers connected to the wall of the pipe. The proposed approach utilizes only the output
observations from the sensor, i.e, the recorded signal, and does not require any knowledge of the input signal
or the channel. The multichannel signals recorded are first pre-processed using the principal component
analysis (PCA) and then the blind SSS method is used to denoise the input signal before estimating it. The
numerical results showed that the proposed algorithm outperforms the state-of-the-art algorithms (SOTA)
which includes the eigen value decoposition (EGD)-based method and the independent component analysis
(ICA)-based method, while the proposed PCA-SSS method achieved a performance of −22.7dB in the
presence of Gaussian noise, the EGD and ICA acheived−16.39dB and−18.09dB, respectively, showing the
superiority of the proposed method. Similar analysis were performed in the presence of a non-Gaussian noise
and colored noise and the proposed algorithm also outperformed the other methods. Hence, the PCA-SSS
method can be used for a better characterization of a slug flow regime by exploiting the Toeplitz structure
embedded in the signal vector acquired from the array of sensors via the communication model for denoising
the two-phase flow, and does not rely on the knowledge of the input signal vector.

INDEX TERMS Two-phase flow, structured signal subspace, principal component analysis, Toeplitz
structure.

I. INTRODUCTION
The design of different industrial equipment andmulti-phase-
flow pipelines calls for a detailed analysis of a two-phase
flow. A two-phase flow often occurs in different modern
industrial processes such as crude oil production, nuclear
reactor, and others. One of the most important regimes in a
two-phase flow system is the slug flow regime, where pockets
of liquid and gas form alternatively in the pipe-flow system.

The associate editor coordinating the review of this manuscript and

approving it for publication was Vicente Alarcon-Aquino .

Acoustic passive sensing is one several flow monitoring
methods used to analyze and characterize this type of flow
regimes. In it, each time a pocket of gas or liquid passes
through a particular section of the pipeline, a different
sound or flow noise is generated which can be collected by
a pipeline-mounted microphone and used for flow regime
identification and accurate sound interpretation.

In recent times, many researchers have worked extensively
on related aspects including flow phase distribution, flow
regimes, void fraction. However, accurately measuring the
two-phase flow rate still poses a great challenge to engineers
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and remains a challenging problem. In the oil and gas indus-
try, the multi- phase measurements and flow characterization
is essential for production monitoring, production allocation,
well testing, and reservoir management. Thework of [1] gives
a detailed review of into the significance of three-phase flow
measurement, the primary approaches and technologies for
metering such complex flows, and an insightful assessment
of the current state of available solutions in this domain.
The operators’ understanding and use of the integration of
Multi-phase Flow Meters (MFM) as a crucial measure for
maximizing the potential of marginal fields is well explained
in [2]. This prompted us to suggest here a new approach
for the development of the next generation MFM capable of
tackling yet-unsolved problems.

Onemain aspect of flowmonitoring is determining the type
of flow regime in the pipe, in difficult situations, such in oil
and gas pipelines, where visual access is not possible. The
type of flow regime can affect the operation and be harmful in
cases of unwanted slug flow regimes. Slug flows have proved
to be difficult to handle inmulti-phase flowmeasurement, due
to the intermittent nature of its flow condition where pockets
of gas and liquid flow alternatively in a random way.

The literature is replete with a wide variety of tech-
niques for slug flow measurement, including the electrical
impedance technique [3], ultrasonic methods [4], radiation
attenuation methods [5], and optical and video methods [6].
The work in [7] focuses on the hydrodynamic characteristics
of slug flow in gas-liquid piping by using a capacitive probe
for dynamic measurements in horizontal air-water slug flows,
analyzing signals to characterize different flow regimes
through Power Spectrum Density (PSD) and Probability
Density Function (PDF) analysis.

Another promising technique for monitoring two-/multi-
phase flow, widely used in industry, is the electrical resistance
tomography (ERT). Dong et al. [8] combine the dual-plane
ERT system with the cross-correlation method to measure a
two-phase gas-liquid flow where the continuous phase is a
conductive liquid. Hanus et al. [9] proposed the use of three
main flow regimes, namely plug, bubble, and transitional
plug-bubble, and employed the time- and frequency-domain
signal features, to build an artificial neural network that
recognizes a two-phase flow in a horizontal pipeline. Also,
the principal component analysis (PCA) is used to reduce the
number of features needed [10].
Though the literature shows that numerous researchers

have worked on two-phase flow measurements using differ-
ent techniques, the deleterious effect of the noise corrupting
the sensors’ flow measurements, on the accuracy of the
two-phase flow rate measurement, did not receive adequate
attention. As such, obtaining an accurate two-phase flow
measurement remains a challenging task in the face of the
corrupting noise emerging either from sensor measurements
and/or from the noisy environment surrounding the flow
system itself. Hence, given its importance in ensuring an
accurate flow rate measurement, reducing the level of noise in
the measurement via a pre-processing stage is a much-needed

task in a two-phase measurement. This is bound to greatly
improve flow rate measurement accuracy and bring about
other concomitant advantages.

This work proposes a new general framework for denoising
multichannel two-phase liquid and gas acoustic signals col-
lected from passive pipeline wall-mounted acoustic sensors.
This requires neither prior knowledge of the input signal
and the channel nor the noise level. Consequently, in our
work, flow mass or rate is not measured, and only the noise
collected from a slugging flow regime is identified to describe
the frequency of the slugs and to filter any noise not related
to the flow system. The proposed method first employs the
PCA to denoise the multichannel signals and then uses the
structured signal subspace (SSS) method to estimate the input
signals from the sensors, as these are used for the estimation
of the required flow characteristics based on the observed
flow regime. Particular attention is given to the slug flow
regime, in which pockets of gas and liquid flow alternatively.
For the treatment of the acoustic signals measured, the prime
motivation for using a blind approach here stems from the fact
that, in this study, only the output signals from the sensors are
assumed available, as is widely expected in practice where the
user has no prior knowledge about either the signal input or
the channel. Therefore, our adoption of the blind approach is
very well justified as it accurately characterizes the slugging
flow regime generated. To the best of our knowledge, this
is the first time that this method is applied to a physical
system as considered here. The aim is to develop a simple and
cost-effective method to detect and qualify slug flow regimes
in industrial flow lines.

The main contributions of this work comprise the
following:

• Detailed study of the blind structured subspace (SSS)
approach which (a) exploits the Toeplitz structure
embedded in the signal vector acquired from the array of
sensors via the communication model for denoising the
two-phase flow, and (b) does not rely on prior knowledge
of the input signal vector.

• Judicious exploitation of the advantages of the PCA
technique to reduce the dimensionality of the received
signal vector and the power of the blind SSS approach to
build a workflow that effectively denoises the two-phase
flow signal without any dependence whatsoever on the
input knowledge.

• Development of an effective workflow to analyze both
the synthetic data set and the real data set.

The novelty of our proposed blind SSS approach stems
from its first-ever application to a practical problem, and its
effectiveness, in terms of noise impact mitigation, enhanced
signal quality and overall accuracy, in the face of an
incomplete information about the two-phase flow in real-
world scenarios. Hopefully, this will usher in a new research
area in the field of measurement.

In this manuscript, the notations ()H , ()T , ()∗, ()−1,
Tr() represent the conjugate transpose, the transpose, the
conjugate, the inverse and the trace operations, respectively.
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Bold lowercase alphabet a represents a vector, bold uppercase
alphabet A represents a matrix, ∥ . ∥

2 and ∥ . ∥
2
F represent the

Euclidean and Frobenius norms, respectively, Ib represents
an identity matrix of size b× b and 0a,b is an all-zero matrix
of size a×b. a(i, j) and Re() refer to the (i, j)th entry of matrix
A and to the real part of a complex number, respectively.

The rest of the paper is organised as follows: Section II
presents the system model, the principal component analysis,
the structured signal subspace method, and the computational
complexity. Section III explained the experimental setup
used in this work. Section IV presents the results and their
discussion. Finally, Section V concludes the paper.

II. THEORETICAL BASIS THE STRUCTURED SUBSPACE
METHOD
A. SYSTEM MODEL
Consider a pipe in which multiple sensors are placed around
a particular region in such a way that each sensor records the
flowrate of the multiphase flow at a specific time interval.
In this case, these multiple sensors concurrently record a
multitude, or a vector, of signals at the same time instant
through different channels. Thus, this signal acquisition
system can be viewed as a single-input, multiple-output
(SIMO) system with a single input signal passing through
different channels, and resulting in multiple separate outputs
that are recorded by different sensors.

Now, assume that each channel i in the SIMOmeasurement
system, is linear with a discrete impulse response hi(k) and
that each sensor measurement is corrupted by its associated
noise ni(t).Then, at time t , the signal received by the ith

sensor, as a result of the input signal s(t) passing through
its own ith linear channel, with its discrete impulse response
hi(k), will generate, through the channel’s convolutive effect,
the output yi(t) which can be modelled as follows:

yi(t) =

L∑
k=0

hi(k)s(t − k) + ni(t), t = 0, . . . ,N − 1. (1)

Here, N represents the data size and L represents the channel
order. The channel-specificmodel in (1) can now be expanded
to a system-wide model to cover the entire SIMO system,
by rewriting (1) in a vector form so as to capture all of the
available M sensor outputs into a single output vector y(t)
modelled as follows:

y(t) =

L∑
k=0

h(k)s(t − k) + n(t), (2)

where

y(t) = [y1(t), y2(t), . . . , yM (t)]T , (3)

h(k) = [h1(k), h2(k), . . . , hM (k)]T , (4)

and

n(t) = [n1(t), n2(t), . . . , nM (t)]T . (5)

Assuming that a window of W samples is taken by stacking
the data into a vector/matrix representation, the model can
now take its matrix form as follows:

yW (t) = HW sK + nW (t), (6)

where K = W + L,

yW (t) = [yT (t), . . . , yT (t −W + 1)]T , (7)

sW+L(t) = [s(t), . . . , s(t − K + 1)]T , (8)

and nW (t) is stacked in a similar fashion as yW (t) and HW is
an MW × K block Toeplitz matrix defined as:

HW =

 h(0) · · · h(L) 0
. . .

. . .

0 h(0) · · · h(L)

 . (9)

Now, consider N data samples, the following will hold:

Y = [yW (W − 1) yW (W ) · · · yW (N − 1)]

= HWSK + NW , (10)

where

SK =


s(W − 1) s(W ) · · · s(N − 1)
s(W − 2) s(W − 1) · · · s(N − 2)

...
...

...

s(W − K ) s(W − K + 1) · · · s(N − K )


(11)

SK is the signal’s Hankel matrix of dimension
K × (N −W + 1).

B. PROPOSED PCA-SSS METHOD
The proposed principal component analysis PCA-based
structured signal subspace (SSS) framework for denoising
two-phase multichannel signals takes advantage of the PCA
method’s benefits for signal denoising while simultaneously
leveraging the SSS method’s capacity to blindly estimate the
input signal without previous knowledge of the input signals.
The fundamental reason for using the SSS technique is that
in actuality, the user only has access to the noisy output
signal from the sensors. Hence, the SSS can effectively deal
with such situations by estimating the actual input in a blind
context. It is worth mentioning that the SSS method has
been applied to both linear [11] and nonlinear [12] systems.
Therefore, the SSS is capable of handling nonlinear dynamics
present in the two-phase multichannel signal. The denoising
PCA-SSS framework block diagram is depicted in Fig. 1.
In the first stage, PCA is applied to the multichannel signals
collected from the sensors, significantly reducing the noise
level in the signal. After that, the output of the PCA stage is
sent to the SSS stagewhere the SSS is performed to extract the
input signal and further reduce the noise level while retaining
most of the features. Finally, the output of the SSS stage is
made available at the output. Note also that to the best of our
knowledge, this type of signal analysis has not been applied
previously in similar studies.
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FIGURE 1. The flow chart of the proposed approach.

C. THE PRINCIPAL COMPONENT ANALYSIS
The overall procedure involves a hybrid method that employs
the PCA and the blind SSS method to denoise the multichan-
nel two-phase signal obtained by mounting several sensors
on the pipe’s surface. It is worthy of note that the PCA has
been widely applied in different disciplines such as pattern
recognition and signal processing [9], [13], [14], [15], [16],
[17] to denoise signals. To achieve this aim, the signal is first
transformed into the PCA domain so as to preserve the most
vital principal components and eliminate the noisy ones. The
literature has recently witnessed the emergence of several
PCA-based approaches for denoising, especially in image
processing. For example, the authors in [18] proposed an
adaptive denoising approach that employs a PCA-transform-
domain variation to preserve the local variation in the
textures of the image. The authors in [19] proposed a
denoising workflow that uses super-pixel grouping and
PCA. The PCA transform is used to factorize similar
patches and then estimate it through coefficient shrinkage
in the PCA domain. To improve denoising performance
and visualization details in image data, the authors in [20]
used a cluster-wise progressive PCA thresholding that works
based on Marchenko-Pastur (MP) law of random matrix
theory [21].
To compute the PCA of a multichannel signal, several

steps are involved. In the first step, the signal vector obtained
from each of the M̄ sensors is combined to form a matrix
Ŷ of M̄ × N and centralized by subtracting its mean (µ) as
follows:

Ȳ = Ŷ − µ, (12)

where µ = E[Ŷ ]. In the next stage, the covariance matrix of
Ȳ is estimated according to:

Cy = E[Ȳ Ȳ
T
]. (13)

Next, the symmetric covariance matrix is decomposed using
the following Eigendecomposition relation:

Cy = P6pPH , (14)

where P = [p1, p2, . . . , pM̄ ] is an M̄×M̄ matrix that consists
of orthonormal Eigenvectors and 6p = diag[σ1, σ2, . . . , σM̄ ]
represents a diagonal matrix that consists of all the eigenval-
ues in decreasing order, i.e., σ1 ≥ σ2 ≥ . . . ≥ σM̄ . The
aim of the PCA is to obtain an orthonormal transformation
matrix 8 = PH that decorrelates the matrix Ȳ into the new
matrix of Y = 8Ȳ . To denoise the signal, the first vital M
Eigenvectors are used to form a transformation matrix, such
that 8̃ = [p1, p2, . . . , pM ] with M < M̄ . The transformed
matrix is then applied to the Ȳ matrix such that

Y = 8̃Ȳ (15)

will be of the lower dimensionM ×N . This transform is also
called the optimal dimensionality reduction and is useful for
dimension reduction as well as for noise removal. This is due
to the fact that the signal energy is concentrated in a small
subset of the PCA-transformed data, while the noise energy
is spread out evenly over the whole dataset.

D. STRUCTURED SIGNAL SUBSPACE (SSS) METHOD
In this section, based on the recently developed algo-
rithms [11], [22], [23], the step-by-step method involved in
performing the structured subspace method is presented here
again. Also, the procedure of applying it in this context is
explained. Basically, the SSS method directly estimates the
transmitted signal from a convolutive mixture in the presence
of noise. The method does not require prior knowledge
of either the channel’s impulse response or the transmitted
signal as it operates in a blind manner. The advantages of
using the SSSmethod include avoiding delay ambiguities and
channel inversion which could propagate errors.

The SSS also has an implementational simplicity which is
one of the features that makes it very attractive to use. The
first implementation step involves obtaining the SVD of the
matrix Y as shown:

Y = U6uVH , (16)

where U is a matrix made of the left singular vector of
dimension MW × MW , 6u is a diagonal matrix whose
diagonal elements are the decreasing singular values of
dimension MW × (N − W + 1), and V represents a matrix
that contains the right singular vectors of dimension (N −

W + 1) × (N −W + 1). The second step involves forming a
new (W + L) × (N −W + 1) matrix V s that spans the rows
subspace of the signal matrix in the noiseless case by taking
the Hermitian transpose of the first (W + L) columns of the
matrix V .
Finally, the denoised signal is estimated as Ŝ = QV s. Here,

the Q matrix of (W + L) × (W + L) is chosen such that the
structure of the signal matrix is preserved. To achieve this,
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the following cost function is devised: (T = N − W + 1,
P = MW , and K = W + L):

J =

K−1∑
j=1

T−1∑
i=1

∣∣ŝ(i, j) − ŝ(i+ 1, j+ 1)
∣∣2 , (17)

where ŝ(i, j), is the (i, j)th entry of the estimated signal matrix
Ŝ. This cost function is built based on the Hankel structure of
the signal matrix given in (11) and can be expressed as:

J =∥ JK ŜKJT − J̃K ŜK J̃T ∥
2
F, (18)

where JK ŜKJT and J̃K ŜK J̃T are the top-left and right-
bottom submatrices of ŜK , respectively. The first pair of
selection matrices JK and JT are defined as: JK =[
IK−1 0(K−1),1

]
, where 0(K−1),1 is an all-zero column

vector that contains zeros of dimension (K − 1) × 1, and
IK−1 is a square identity matrix of size (K − 1), and
JT =

[
IT−1 01,(T−1)

]T . As to the second pair of selection
matrices J̃K and J̃T , they are similarly defined as: J̃K =[
0(K−1),1 IK−1

]
and J̃T =

[
0(T−1),1 IT−1

]T .
Next, the Kronecker product property of vec(ABC) =

((CT
⊗A)vec(B)) = ((CT

⊗A)b) is applied here to vectorize
the cost function presented in (18), where b = vec(B) and
this leads to

J =∥

(
(V sJT )T ⊗ JK − (V sJ̃T )T ⊗ J̃K

)
vec(Q) ∥

2

=∥ Zq ∥
2, (19)

where Z =

(
(VH

s JT )
T

⊗ JK − (VH
s J̃T )

T
⊗ J̃K

)
and q =

vec(Q).
The above optimization problem can be reformulated as

follows:

J = min
q

qHZHZq. (20)

In this case, the smallest Eigenvalue of the matrix ZHZ
corresponds to the Eigenvector which is the optimal solution
q under the unit-norm constraint. The matrixQ is obtained by
reshaping q into a K ×K matrix. Hence, the estimated signal
is given by ŜK = QV s.

Finally, The step-by-step procedure involved in the pro-
posed PCA-SSS method is described in Algorithm 1.

E. COMPUTATIONAL COMPLEXITY
In this section, the computational complexity of the proposed
PCA-SSS method is presented. The sequence of steps
involved in the processing of the proposed PCA-SSS method
is detailed. The first stage of the proposed method involves
performing the PCA operation: here the covariance matrix
of M̄ × N dimension input data is calculated with a cost of
O(M̄2N ). Next, the eigen decomposition is calculated with
a cost of O(M̄3) followed by the M -dimensional principal
component used to recover the data with a cost ofMM̄N .

In the second stage, the SSS is performed on the data: the
first step of the SSS involves the SVD of the data matrix
which is computed with a cost ofO(MW (N−W+1)2). Next,

Algorithm 1 Summary of the Proposed PCA-SSS Method

Obtain the signal from sensors Ỹ
Perform the PCA:
Ȳ = Ỹ − µ

Cy = E[Ȳ Ȳ
T
]

Cy = P6PH

8 = [p1, p2, . . . , pM ]
Y = 8Ȳ
Perform the SSS:
Y = U6VH

J =∥ JKQV sJT − J̃KQV sJ̃T ∥
2

Z = (VH
s JT )

T
⊗ JK − (VH

s J̃T )
T

⊗ J̃K
J = min

q
qHZHZq

Reshape q into a K × K matrix Q
Output Denoised Signal:
ŜK = QV s
End

the computation of the Eigen decomposition of the ZHZ is
performed with a cost of O(K 3).
Finally, the overall cost of computational of the proposed

PCA-SSS method is O(M̄2N ) + O(M̄3) + O(MW (N −W +

1)2) + O(K 3) + MM̄N .
Table 1 details the computational complexity of all the

steps involved in the computation of the proposed PCA-SSS
algorithm.

TABLE 1. The computational complexity of all the steps involved in the
computation of the proposed PCA-SSS algorithm.

III. EXPERIMENTAL SETUP
The experimental setup considered in this study consists of a
mixture of gas and liquid in a closed flow-loop. The flow-loop
consists of a feed tank which is connected directly to a
pump that operates with a variable speed drive (VSD). The
pump is connected to an electromagnetic flowmeter and has
amaximum capacity of 100 l/min. The pipe flow has a 3-inch
diameter and consists of two long sections; a 3-meter vertical
test section and a 2-meter horizontal test section. The system
diagram is depicted in Fig.2.

The flow in the pipe is returned back to the feed tank. It is
important to note that compressed air is used as gas in the
experiments. The air is produced by a central compression
feed to the building with a delivery pressure of 10 bars and
is injected just downstream to the flow meter at the inlet of
the test section, with a check valve that prevents reversal
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flow at the junction point. The flow is designed such that
it allows for the analysis of rapidly-generated slugs during
the experiment. The environmental temperature is highly
controlled and held constant throughout the experiment.
To ensure good coupling between the acoustic sensors and
the pipe materials, an adhesive is used to securely position the
acoustic sensor on the wall of the pipe. The acoustic sensor
is a microphone (Knowles Mic Cond Analog) that can record
in a frequency range of 280-5000 Hz. A National instrument
multi-channel acquisition system that runs with LabView,
is used to acquire the signal from the acoustic sensors
at different acquisition rates. The signal is recorded under
different flow regimes and at different superficial liquid and
gas velocities controlled using a variable speed drive (VSD).

The flow measurements were performed for different flow
conditions, the liquid rate measured with the flowmeter were
ramped up from 10 l/min to 50 l/min, and for each liquid
flow rate, the gas (compressed air) flow rates measured by a
gas meter were ramped up from 10 l/min to 100 l/min. For
each combination of liquid rate and gas rate, where a slugging
flow is observed, the flow noise measurements are captured
and treated.

FIGURE 2. The block diagram of the experimental setup.

Figure 3 shows how a single microphone sensor is installed
on the pipe-flow wall. For acoustic coupling purposes, a thin
layer of silicon oil is applied to the microphone surface
before attaching it to the pipe wall. Note that all experiments
were conducted in a laboratory setup. There is no difference
expected in the field since the observations are about changes
in the noise collected from a flow in a pipeline. Although,
the process noise might be present, in most cases the sensor
reference floor will have the same components as the signals
collected during the slugging phenomenon. Therefore, the
changes are not significant between a controlled experimental
system and a real pipeline flow system. Also, it is worth
mentioning that here we are not following the mass flow
change, since it cannot be measured with passive acoustic
signals; we are following the slugs that are formed in the
slug flow regime, i.e., the pockets of gas and liquids that
alternately flow in the pipe. In addition, we are only tracing
noise level change in the system, without analyzing the
content.

IV. RESULTS AND DISCUSSIONS
In this section, the performance of the proposed algorithm
based on the general procedure, discussed here, for denoising

FIGURE 3. Sensors installation.

FIGURE 4. (a) The Gaussian pulse train in the presence of Gaussian noise,
(b) the recovered Gaussian pulse train using PCA-SSS, (c) the recovered
Gaussian pulse train using EGD, (d) the recovered Gaussian pulse train
using ICA.

multichannel signals received from different sensors, is inves-
tigated. Specifically, this general procedure consists of the
proposed hybrid method that employs the PCA and the blind
SSS method for denoising multichannel two-phase signals
obtained by placing multiple sensors on the surface of a
pipe. In order to verify the effectiveness of the proposed
technique, a simulated data set that represents the two-phase
flow is generated. The generated data is a 0.5KHz Gaussian
pulse [24] train of 30 percent bandwidth with a repetition
frequency of 40Hz, a sampling frequency of 1KHz, and a
pulse length of 14 seconds. Here, we assumed that M̄ =

10 sensors are available and each sensor receives N =

14000 samples. Hence, the input to the PCA is a 14000 ×

10 dimensional data, the firstM = 2 principal component are
used for data recovery. As for the SSS method, the output of
the PCAwhich has now a dimension of 14000×2 is passed to
the SSS method which usesW = 5, N = 14000, andM = 2.
Figure 4 depicts a comparison of pulse recovery per-

formance between the PCA-SSS method and several state-
of-the-art (SOTA) techniques, such as the generalized
eigenvalue decomposition (EGD) [25] and the independent
component analysis (ICA) [26], under the influence of
Gaussian noise. it is crucial to emphasize that the Joint
Approximation Diagonalization of Eigenmatrices (JADE)
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ICA method is used in this case. Notably, the PCA-SSS
method demonstrates superior signal recovery capabilities
when compared with these SOTA approaches.

In the subsequent analysis, we evaluate the performance of
PCA-SSS in comparison to EGD and ICA under the influence
of non-Gaussian noise, specifically, a uniformly distributed
noise in the range [0, 1], as illustrated in Fig. 5. Remarkably,
in this particular setting, the PCA-SSS demonstrates its
superiority by achieving better signal recovery results when
compared to these SOTA algorithms.

FIGURE 5. (a) The Gaussian pulse train in the presence of Non-Gaussian
(Uniform) noise, (b) the recovered Gaussian pulse train using PCA-SSS,
(c) the recovered Gaussian pulse train using EGD, (d) the recovered
Gaussian pulse train using ICA.

In the context of colored noise, the performance of the
PCA-SSS method surpasses both EGD and ICA, showing its
effectiveness in denoising signals within this specific scenario
as depicted in Fig. 6.

FIGURE 6. (a) The Gaussian pulse train in the presence of colored noise,
(b) the recovered Gaussian pulse train using PCA-SSS, (c) the recovered
Gaussian pulse train using EGD, (d) the recovered Gaussian pulse train
using ICA.

To quantitatively compare the PCA-SSS method to the
other SOTA approaches, the mean squared error metric is
employed which is given in dB as:

MSE(dB) = 10 log10

(
1
NL

NL∑
i=1

∥ ŝi − s ∥
2
2

)
. (21)

Table 2 provides a summary of the quantitative outcomes
derived from the examination of the PCA-SSS method,
the EGD-based method, and the ICA-based method when
subjected to Gaussian, non-Gaussian, and colored noise
for a signal-to-noise ratio of 0dB. The results reveal
that, regardless of the noise type, the PCA-SSS method
outperforms the rest of the methods. To further support this
assessment, Fig. 7 illustrates a comparative analysis of the
proposed PCA-SSS, EGD, and ICAmethods interms of MSE
versus SNR. This addresses the effectiveness of the proposed
PCA-SSS method for a wide range of SNR variations.

TABLE 2. The MSE for different algorithms in the presence of different
types of noise.

FIGURE 7. The MSE versus SNR.

While Fig. 8 (a) depicts the first 300 samples of the
complete data set of the 14,000 samples and ofW = 5, Fig. 8
(b) shows its noisy Gaussain version. We observe that the
simulated noisy signal is not visually recognizable after it has
been completely mixed with noise, thus reflecting a real-life
noise-corrupted signal.

To recover the original input signal, the proposed algorithm
is applied to the noisy multichannel output. First, the PCA is
applied and the recovered Gaussian pulse train using PCA is
shown in Fig. 8 (c). It can be observed from this figure, that
the PCA could not completely recover the signal efficiently.
This is expected as the PCA removes only the noise affecting
the features that were cut out but preserve the noise in the
features that have been retained. As such, the recovered
signal remains noisy and has artifacts caused by the PCA’s
truncation effect in the feature domain. Hence, the PCA
alone cannot effectively denoise the received signal. Next,
the proposed PCA-SSS method is applied to the noisy signal.
As illustrated in Fig. 8 (d), the proposed algorithm effectively
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FIGURE 8. (a) The noiseless Gaussian pulse train, (b) the noisy Gaussian
pulse train, (c) the recovered Gaussian pulse train using PCA, (d) the
recovered Gaussian pulse train using PCA-SSS method.

denoised the signal and recovered the original noiseless
signal. This clearly proves that the proposed algorithm is
robust and capable of effectively and efficiently denoising the
received noisy signal. The amplitude disparity between the
recovered Gaussian pulse train using the proposed PCA-SSS
method and the original Gaussian pulse train signal in terms
of amplitude is due to the scalar ambiguity inherent in the
blind processing technique as well as the filtering effect. It is
worth noting that all blind processing techniques have scalar
ambiguity.

To quantify the level of noise and understand the extent to
which the algorithm can perform well, the PCA is employed
to recover the original pulse train at different SNR levels
of −10dB, −5dB and 0dB as shown in Fig. 9. Obviously,
at −10dB, the PCA could not recover any meaningful
information from the noisy pulse train signal since, at this
very low SNR, the pulse train is severely corrupted by the
added noise. Also, at the low SNR of −5dB, the PCA
managed to recover a noisy version of the original signal
that bears a reasonable resemblance to it, but still contains
a significant amount of noise. Finally, at 0dB, the PCA
recovered the signal containing a high degree of information
from the original pulse train. At this stage, it is worth recalling
that the PCA has been designed to reduce noise but not
eliminate it altogether. Hence, as expected, we can notice
here that the performance of the PCA improves as the SNR
increases.

In Fig. 10, a similar analysis is performed using the
proposed PCA-SSS method so as to demonstrate the efficacy
of the SSS in removing the noise leftover from the PCA,
even in very noisy environments characterized by very low
SNRs. It can be noted from Fig. 10 (a) that, in the very
low SNR case of −10dB, the Proposed PCA-SSS method
has managed to noticeably outperform the PCA only scheme
in that, the envelope of the recovered signal bears a close
resemblance to that of the original pulse train, except for some
amount of noise-induced amplitude scaling and a slightly

FIGURE 9. The recovered Gaussian pulse train using PCA at different
SNRs.

higher amplitude of the peak of the initial pulse due probably
to some noise-induced transient behavior of the proposed
technique.

A similar remarkable improvement brought about by the
PCA-SSS method at both −5dB and 0dB is also depicted
in Fig. 10 (b) and (c), respectively, thus leading to the
conclusion that the proposed combined PCA-SSS method
has undeniably outperformed the conventional PCA method
in denoising multichannel signals even in very low SNRs
environments.

FIGURE 10. The recovered Gaussian pulse train using the PCA-SSS
method for different SNRs.

In the next stage, we investigate the frequency content
of the generated original pulse train in the noiseless
case, the noisy signal, and the recovered signal using
the proposed PCA-SSS method. Figure 11 illustrates the
repetition frequency (slug flow frequency) of the generated
noiseless synthetic data, its noisy version, and that of the
recovered signal. The frequency range of the recovered signal
corresponds to that of the original signal, the amplitude of the
recovered signal differs somewhat from that of the recovered
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signal and this may be due to the scalar ambiguity inherent in
the SSS blind algorithms.

FIGURE 11. The frequency response of the noiseless synthetic data, noisy
synthetic data, and recovered synthetic data using PCA-SSS method.

FIGURE 12. (a) The real noisy signal recorded from the sensors, (b) the
recovered signal using PCA, and (c) the recovered signal using PCA-SSS
method.

Next, after validating the proposed PCA-SSS method with
the generated synthetic data, the method is applied to a real
data scenario obtained from theM different sensors placed on
the wall of the pipe. The signals are recorded simultaneously
from the sensors while the two-phase liquid flows along the
pipe. The received signal is a multichannel signal with each
sensor receiving its signal from its own separate channel.
While Fig. 12 (a) depicts the original noisy signal, Fig. 12
(b) shows the results of applying only the PCA to the real
multichannel signal. We observe that the PCA-recovered
signal is quite noisy, random like, and does not reveal any
specific trend. Ultimately, in Fig. 12 (c), the denoised signal
using the developed PCA-SSS method is illustrated. Thus,
comparing the outputs of the PCA-only, with that of the
proposed PCA-SSS method, clearly shows that the latter
method is highly effective and superior to the former one in

FIGURE 13. The frequency response of the real noisy signal recorded
from the sensors, and that of the recovered signal using PCA-SSS method.

denoising the signal. Note also that this superiority has also
been shown earlier at very low SNRs.

Finally, the frequency content of the real noisy signal and
its recovered version using the proposed PCA-SSS method
is depicted in Fig. 13. The slug flow frequency, which is
of interest to us, is seen in the magnitude spectrum of the
recovered signal using the PCA-SSS method.

V. CONCLUSION
A novel approach for denoising the sensors’ output signals in
a multichannel two-phase liquid and gas has been proposed
and developed in this paper. The proposed approach offers
a new solution to the two-phase liquid/gas flow problem
which is of paramount importance in several industrial
applications as clearly explained in the Introduction Section.
Such signals are invariably plagued with unavoidable noise
signals, particularly in industrial settings. Moreover, the
channel input and impulse response are rarely known or may
require extra techniques for their separate estimation. This
therefore calls for the use of efficient estimation techniques
that avoid these two problems. Our approach, as shown in
this work, was designed to plug these two gaps in the current
literature by tackling these two unavoidable difficulties and
offering an efficient solution to the multi-channel two-phase
flow problem.

Our approach exploits the intrinsic powers of the PCA
and the SSS methods and combines them into a single new
PCA-SSS method to first denoise the signal received from
multiple sensors attached to the wall of the pipeline carrying
a two-phase liquid-gas fluid. As such, it uses the PCA as a
pre-processing stage to reduce the noise level, before feeding
the resulting ‘‘cleaned’’ signal to the SSS stage to remove
the remaining amount of noise and efficiently denoise the
received signal so as to recover the original one. Our method
showed that the powerful SSS technique, whilst doing away
with the knowledge of either the input signal or the channel’s
impulse response, and hence operating in a completely blind
manner, derives its signal denoising power from exploiting
the Toeplitz structure present in the signal matrix.
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The effectiveness, robustness, and power of the proposed
method were proven through its successful application to
a synthetic signal and then to a real one to emphasize
its practical application in real-world applications. It was
clearly demonstrated that the proposed combined PCA-SSS
method significantly outperforms the conventional PCA-only
method, in denoising a noisymulti-channel signal from a two-
phase flow, and can even exhibit a reasonable performance
even in very-low-SNR environments, where the PCA-only
method remains totally powerless and hopelessly ineffective.
This satisfactory noise-related performance in very-low SNR
scenarios further illustrates the applicability of our proposed
multi-channel two-phase method to real-world applications.
The results obtained under various SNR levels and for both
synthetic and real signals corroborate verywell the theoretical
underpinnings of the proposed method and thus give ample
encouragement for embedding this new technique in modern
flowmeters to greatly enhance their flow rate estimation
accuracy. Moreover, the present work will offer a simple and
easily implemented method, and tool to better detect slugging
flows when they occur in a non-transparent pipe flow such
as in real industrial systems. Another added advantage of
the proposed method is its use, in real-world applications,
as a low-cost detection method that can guide and help
the operator take decisions to better manage the event of
unwanted slug flow regimes, thus improving the overall
efficiency and performance of the system and reducing its
energy consumption and running cost.

Additionally, in practical real-world applications where
ground truth is unavailable, we firmly believe that use of
the blind approach, as demonstrated in this work, is the
‘‘go-to’’ approach as it assumes, at its core, either the total
lack, or at best very little, of the ground truth, specifically
the information of the quality of the inputs impinging on
the process and the noise corrupting them and whether
these are either of the colored Gaussian or non-Gaussian
types.

As such, the blind approach adopted in our study makes
its performance hardly sensitive to the quality of the input
data and, instead, draws all of its needed data from the
received outputs thanks to its use of the blind SSS technique.
It is important to note here that the experimental data used
in this paper emanate from an operational scenario that is
commonly found in real-world applications. As such, the
results obtained for this practical operational scenario provide
a reliable prediction of the expected performance of our
proposed method.

Finally, all of the above-mentioned attractive practical
features of our proposed method amply demonstrate its
practical applications to real-world multi-channel two-phase
problems.
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