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ABSTRACT This paper undertakes a comprehensive investigation that surpasses the conventional
examination of signal enhancement techniques and their effects on visual Simultaneous Localization
and Mapping (vSLAM) performance across diverse scenarios. Going beyond the conventional scope, the
study extends its focus towards the seamless integration of signal enhancement techniques, aiming to
achieve a substantial enhancement in the overall vSLAM performance. The research not only delves into
the assessment of existing methods but also actively contributes to the field by proposing innovative
denoising techniques that can play a pivotal role in refining the accuracy and reliability of vSLAM
systems. This multifaceted approach encompasses a thorough exploration of the intricate relationships
between signal enhancement, denoising strategies, their cumulative impact on the performance of vSLAM
in real-world applications and the innovative use of Generative Adversarial Networks (GANs) for image
inpainting. The GANs effectively fill in missing spaces following object detection and removal, presenting
a novel state-of-the-art approach that significantly enhances overall accuracy and execution speed of
vSLAM. This paper aims to contribute to the advancement of vSLAM algorithms in real-world scenarios,
demonstrating improved accuracy, robustness, and computational efficiency through the amalgamation of
signal enhancement and advanced denoising techniques.

INDEX TERMS Signal enhancement, denoising techniques, visual SLAM, object detection, simultaneous
localization and mapping (SLAM), generative adversarial network (GAN).

I. INTRODUCTION
By enabling real-time 3D reconstruction and localization
from visual sensor inputs, Visual Simultaneous Localisation
and Mapping algorithms have revolutionized computer
vision [1]. These algorithms have various applications
and use cases, including robotics, augmented reality, and
autonomous navigation. Noise in visual data, however, can
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significantly affect the performance of vSLAM algorithms,
degrading their accuracy and robustness.

A variety of factors can cause noise in visual data,
including sensor imperfections, environmental conditions,
and lighting changes [2]. It is challenging for vSLAM
algorithms to estimate and map pose accurately when these
sources of noise introduce uncertainty and distortions. For
vSLAM systems in real-world scenarios to be reliable and
effective, it is crucial to address noise-related challenges [3].

Various signal enhancement techniques have been devel-
oped in the past to address these challenges [4]. To improve
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the algorithm’s generalization ability, synthetic variations are
introduced into the training data. By adding Gaussian noise
and light noise to the training data, vSLAM can learn to
handle diverse and noisy input images effectively [5].

The introduction of noise during signal enhancement
alone, however, is not enough. Maintaining accurate pose
estimation and mapping requires appropriate handling of
the noise. vSLAM algorithms are made more efficient
by denoising techniques that mitigate the adverse effects
of noise [6]. Using these techniques, the algorithm can
make more accurate and reliable estimations by remov-
ing or reducing noise while maintaining important image
features.

Using Generative Adversarial Networks (GANs) for image
inpainting tasks has emerged as a technologically advanced
solution in recent years [7], especially in complex and
dynamic environments like train stations. The GAN is com-
prised of a generator and discriminator network that operates
within a game-theoretic framework. Generator networks
generate realistic image data in order to fill in missing or
removed regions in a frame, while discriminator networks
act as pseudo-critics, separating actual from generated
images. In order to ensure visual plausible and contextually
appropriate imagery is restored in the image voids following
object removal, the generator minimizes the feedback from
the discriminator [8].

Furthermore, GANs have demonstrated remarkable effi-
cacy in super-resolution, translation, and synthesis of pic-
tures [9]; yet their potential for integration with vSLAM
systems to attain increased accuracy has not been thoroughly
investigated. Traditionally, vSLAM systems rely on geo-
metric and photometric consistency approaches to estimate
occlusion, which is needed to fill in occlusion gaps for
real-time 3D reconstruction and robot navigation [10]. This
constraint prevents them from providing their consumers with
realistic and convincing outcomes because they are unable to
handle semantic information in the scene.

In this paper, we propose a novel comprehensive frame-
work for vSLAM. By seamlessly integrating advanced signal
enhancement techniques, denoising methods, and GANs
for image inpainting, this framework surpasses traditional
methodologies. Instead of merely identifying challenges
within vSLAM systems, our approach introduces a unified
and synergistic approach to addressing these challenges. The
framework is designed to significantly enhance the accu-
racy, robustness, and computational efficiency of vSLAM
algorithms in different real-world scenarios. The state-
of-the-art innovation is leveraging the power of GANs
for image inpainting after object detection and removal,
our proposed framework not only ensures more accurate
spatial awareness but also optimises the execution speed of
vSLAM during mapping. This paper outlines the theoretical
foundation, technical details, and results of our proposed
framework, providing a roadmap for the future development
and deployment of advanced vSLAM systems.

II. RELATED WORK
Conventional vSLAM methods estimate the camera posture
and rebuild the surroundings using precise feature extraction
and matching algorithms. However, because of their low-
texture, these approaches frequently perform poorly in
highly dynamic or low-textured situations [12]. One of the
main tactics employed in recent studies to overcome these
restrictions is the practise of adding noise to the data. Random
noise was applied to the image’s characteristics to boost
resilience in difficult situations. Additionally, a technique to
increase the accuracy and dependability of 3D reconstruction
has been proposed by adding Gaussian noise [13] to
depth measurements. The results of this work stimulate
additional investigation into the application of noise-based
augmentation techniques in order to increase the robustness
and accuracy of vSLAM systems. This study demonstrates
that signal enhancement can be effective in increasing the
performance of vSLAM systems.

vSLAM methods based on noise-based augmentation
could exhibit varying degrees of performance based on
the application or dataset they were intended for. Different
noise models or augmentation techniques can be required
depending on the environment or sensor configuration. The
accuracy and dependability of vSLAM algorithms may
be hampered by the introduction of extra uncertainties
and artefacts caused by noise in the data [14]. To get
the best outcome, it is imperative to carefully strike a
balance between eliminating noise andmaintaining important
information. Because noise based augmentation approaches
can increase the amount of processing power needed for
vSLAM systems, they may be necessary for real-time
applications [15].

One of the most promising methods in the field of
robotics and computer vision is the combination of vSLAM
and denoising techniques [16]. The noise and outliers
in the visual data make it challenging for conventional
vSLAM methods to estimate pose and reconstruct the
environment [17]. To address these issues, vSLAM pipelines
have been designed to incorporate a range of denoising
techniques [18]. It has been demonstrated that by lowering
the noise related to the visual data, denoising techniques
based on non-local means filtering can increase the accuracy
of camera pose estimation. To improve vSLAM’s resistance
to noise and outliers in the vSLAM data, a wavelet-based
denoising technique was also taken into consideration [19].
In their experiments, the quality of the environment mapping
and the pose estimation accuracy were both higher. Further
investigation is encouraged as the results obtained with
denoising techniques show that vSLAM systems are more
accurate and reliable.

Several denoising techniques can be applied to vSLAM,
with varying outcomes possible based on the type of noise
introduced to the visual data. Denoising algorithms should
be carefully chosen or modified depending on the type of
noise, as some noise types may respond better to certain
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denoising techniques than to others. When compared to
vSLAM algorithms that do not use denoising techniques,
denoising techniques may introduce artefacts that affect the
algorithms and potentially result in lower accuracy [20].
It’s critical to find a balance between noise reduction and
maintaining important visual elements. Denoising techniques
have the potential to cause significant computation overheads
during real-time vSLAM operations, which could restrict the
system’s applicability and efficiency in settings with limited
resources.

In this work, the problem of filling in empty spaces
after object detection and removal is tackled by combining
GANs with vSLAM. At the moment, a number of techniques
are available to deal with occlusions and incomplete scene
information: Patch-based Inpainting [21], Planar Inpaint-
ing [22], Structure from Motion (SfM) Refinement [23],
Texture Blending [24], Depth Completion [25], and Structure
from Motion (SfM) Refinement. In earlier research, the
question of how to fuse GANs with vSLAM to bridge
the gaps left by vSLAM and other methods has not been
thoroughly investigated. Since vSLAM systems have become
available, GANs present a special chance to synthesise
realistic content in obscured areas by training them to
understand the underlying structure and appearance of the
scene and utilising their generative powers to produce
realistic content. This indicates that a system can signifi-
cantly improve the precision and comprehensiveness of its
reconstruction of the environment by utilising vSLAM. This
innovative method for handling occlusions and imperfect
scene comprehension, when coupled with vSLAM, creates
new avenues for resolving the issues these situations
present.

GAN-based synthesis needs a large and diverse training
dataset in order to function well in vSLAM. It is important
to remember that biassed or incomplete training data can
affect the robustness and dependability of vSLAM systems
and lead to the generation of inaccurate or unrealistic
content. GAN-based synthesis may introduce new artefacts
or inconsistencies that affect reconstructed environments.
Getting the synthesised content to blend in with the rest of the
scene is still a challenge. Large computational resources may
be required for both training and synthesis when using GAN
models for vSLAM applications in order to quickly train
the network and complete the synthesis. This may restrict
how much memory and processing power can be allocated
to low-resource platforms or applications with strict latency
requirements.

III. SIGNAL ENHANCEMENT TECHNIQUES
This study aims to present a thorough examination of the
techniques applied to introduce noise and enhance data qual-
ity. Various methods were explored to introduce controlled
perturbations to the data, such as Gaussian noise [26] and,
light noise [27]. Various noise augmentation techniques were
applied to enhance the resilience and generalisation of the
vSLAM system in challenging scenarios. Through increased

accuracy and reliability, does noise-based signal enhance-
ment enhance vSLAM performance? This was investigated
experimentally.

A. GAUSSIAN SIGNAL ENHANCEMENT
A Gaussian distribution is statistical noise with the normal
distribution’s probability density function. Gaussian noise,
which is typically defined by its mean and variance, is an
arbitrary variation in a digital image’s brightness or colour
information. When the diversity of the training set is
deliberately increased, Gaussian noise has been shown to
be a powerful regularisation technique. During this process,
a new variation of the original image with varying degrees
of random noise is added to the image dataset, making
the training dataset more extensive and representative. Even
though the machine learning model is forced to learn
strong, generalizable feature representations in order to
avoid overfitting, the noisy images may appear visually
distorted.

It is important to use caution when adding Gaussian noise
to a model since it can significantly affect the learning
process. Excessive noise can mask key features, which
complicates the process of learning the model. A low-noise
image might not benefit much from the addition of noise.
Therefore, adjusting the Gaussian noise level precisely is
essential.

Furthermore, depending on the task at hand and the type
of image used, Gaussian noise can have a variety of effects.
Excessive noise may cause the model to miss critical features
in image-intensive tasks, such as medical imaging [28].
In contrast, noise augmentation can be extremely effective for
tasks requiring high-level features.

B. LIGHT SIGNAL ENHANCEMENT
Variations in brightness [29], contrast [30], gamma correc-
tion [31], or the addition of random noise, such as Gaussian
or speckle noise [32], to simulate sensor noise or specific
lighting conditions are all examples of light noise. These
enhancements can be used individually or in tandem to create
more complex and diverse lighting conditions.

The addition of light noise to the training images forces the
model to learn from the primary features of the object rather
than relying on specific lighting conditions. This can lead to a
more generalized understanding of the objects in the images,
which can boost the performance on new, unseen data. The
primary challenge in implementing light noise augmentation
lies in finding the right balance [33], too little noise and the
model may overfit to the training data, failing to generalize
to new images [34], too much noise, on the other hand,
can risk confusing the model, leading to poor training and
validation performance. Therefore, determining the optimal
amount and type of light noise is critical and usually achieved
through empirical tuning and validation on a held-out
dataset.

It is also vital to make sure the noise matches the tasks and
images when using light noise augmentation. Because indoor
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lighting differs from outdoor lighting, light noise that works
well for outdoor photos might not work well for indoor ones.
Furthermore, distinct approaches might be needed for tasks
like semantic segmentation or object detection compared to
image classification or regression.

IV. DE-NOISING TECHNIQUES
A. TOTAL VARIATION (TV)
Total Variation (TV) [35] is a widely used image processing
method that reduces noise artifacts while preserving impor-
tant image details. A mathematical framework that promotes
sparsity in gradients is used to restore images corrupted by
Gaussian noise.

This method formulates an optimisation problem whose
objective is to minimize the variation of gradients in the
denoised image while maintaining consistency with the
observed noisy image. Iteratively updating the image pixels
reduces noise while preserving important image structures.

Rather than exhibiting relatively smooth gradients, edges
and boundaries exhibit higher gradient variations, due to
the inherent piecewise smoothness property of natural
images. By encouraging sparsity in gradient information,
this method preserves important image features and reduces
noise [36].

Images must be analysed and interpreted accurately
in many domains, including medical imaging, computer
vision, and remote sensing. This technique enhances image
quality without compromising detail, and enables subsequent
processing tasks that require clean image data.

B. GAUSSIAN FILTERING
The Gaussian filtering is commonly used in image denoising
to suppress noise while preserving image structure. Gaussian
filters are linear filters with Gaussian impulse responses for
smoothing and reducing noise [37].

Gaussian kernels are convolved with noisy images as
spatial low-pass filters. Gaussian filters preserve image
detail by attenuating high-frequency noise components.
A Gaussian kernel can be smoothed by adjusting its standard
deviation parameter, preserving image details while reducing
noise [38].

Denoising using Gaussian noise - Gaussian noise is an
additive white noise with a Gaussian distribution. Noise is
commonly encountered in imaging systems, causing the true
image intensity to fluctuate. The Gaussian filter smoothes out
this noise, resulting in a cleaner image.

Digital photography, video processing, and computer
graphics are all areas in which it can be applied. In particular,
when Gaussian noise dominates. Gaussian denoising is a
straightforward and computationally efficient method for
reducing noise, enhancing image quality, and facilitating
subsequent analysis or visual interpretation [39].

C. LIGHT TOTAL VARIATION (TV)
Light-denoising Total Variation (TV) reduces noise in digital
images while preserving details, especially in low-light

conditions. By promoting sparsity in gradients in images,
total variation regularization effectively restores images
corrupted by noise [40].

Denoising an image involves finding a denoised image
whose gradients are consistent with the observed noisy image
while minimizing its total variation. Regularization preserves
edges and structures while reducing noise.

Low-light photography, surveillance, and astronomy all
benefit from the technique, which captures clear images
under challenging lighting conditions. TV uses light denois-
ing to enhance low-light images, improving visibility and
facilitating subsequent analysis tasks. When capturing low-
light images, it reduces noise while preserving important
details.

V. INPAINTING TECHNIQUES TO FILL IN MISSING SPACE
AFTER OBJECT REMOVAL
After an object is removed, several techniques can be used
to fill in the missing objects in vSLAM. These methods use
information from the surrounding environment to reconstruct
missing regions.

A suitable technique is chosen based on factors such as
the nature of the scene, available sensor data, occlusion
level, and output quality. Filling in missing objects in
vSLAMapplications can be improved by combining different
techniques or adapting them to the specific situation.

Background inpainting assumes that the background
remains relatively static during object removal. Background
pixels are inpainted based on the surrounding context to
estimate the missing areas. A variety of algorithms, such as
patch-based methods [41], texture synthesis [42], or deep
learning-based approaches [43], can be used to accomplish
this.

Techniques for completing structures [44] can be used
when the removed object had a significant impact on the
structure of the scene after it was removed. The geometric
and semantic cues that have persisted in the environment can
be used to reconstruct the structure of a scene using these
techniques.

If the removed object contains important semantic infor-
mation, such as a person or a vehicle, semantic inpainting
techniques can be used. This method uses semantic segmen-
tation or object detection algorithms to fill in a missing object
with plausible semantic content [45].

Visual tracking algorithms and a visual tracking and
reconstructing technique can be used in certain scenarios
to partially reconstruct some missing items, allowing for
partial reconstruction without the need for replacements.
Based on tracking and analysis of the remaining fragments,
the system estimates the trajectory of the object and partially
reconstructs its appearance.

Optical flow refers to the pattern of apparent motion of
objects in an image or a sequence of images, representing
the displacement of pixels between consecutive frames.
In VSLAM-based image inpainting, optical flow information
is utilized to estimate the motion of objects and camera
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viewpoints within a scene. This information is then leveraged
to fill in missing or corrupted regions in images during the
inpainting process. By understanding how pixels move over
time, the algorithm can intelligently interpolate or extrapolate
information to reconstruct a coherent and visually consistent
representation of the scene [46].

Deep learning, a data-driven approach, has yielded
promising results for filling in gaps. GANs and Variational
Autoencoders (VAEs) are two generative models that can be
trained on large datasets to produce visually consistent and
realistic content for missing regions [45].

GANs are deep learning models that consist of a generator
and a discriminator. The discriminator attempts to distinguish
between real and generated content, whereas the generator
attempts to generate as realistic content as possible. Training
a GAN on images with and without the object of interest
can be used to fill in the empty space after object removal.
The generator network learns from the surrounding context to
generate plausible content for the missing region, whereas the
discriminator network learns from the surrounding context to
differentiate between generated and actual images [47].
During the filling-in process, the generator generates con-

tent for the missing region based on the context information
available. Iteratively, the generated content is refined based
on discriminator feedback. The goal is to train the GAN to
produce visually consistent and realistic content that blends
seamlessly into its surroundings.

The use of GAN-based techniques has shown promising
results in the generation of high-quality and visually convinc-
ing inpainted regions. GANs can capture complex patterns
and textures using deep learning and adversarial training,
resulting in more realistic and visually appealing results.

As a result of incorporating GAN-based inpainting into
Visual SLAM pipelines, missing objects can be filled-in
automatically in real-time or after processing in real-time
scenarios that require automatic filling in. By incorporating
diverse scene contexts into the reconstruction process and
by generating plausible content for the removed objects,
data-driven approaches enhance the visual quality and
completeness of the reconstructed scene.

VI. EXPERIMENTS AND RESULTS
The purpose of this section is to investigate the robustness
and breaking point of our framework (vSLAM based)
under Gaussian and Light augmentations. Also, denoising
techniques were also explored to enhance the performance
of vSLAM under different types of noise. To fill in missing
space after object detection and removal, GANs were
explored and integrated into vSLAM and YOLOR.

A. TRAINING PHASE AND DATASET
The dataset [46] that was used was a custom dataset that
contains RGB-D images of various train stations, videos
of the train stations (Outdoors and Indoors), x,y,z data,
ground truth data and sequence data. The dataset contains
total 16,139 images without data augmentation and 12 video

recordings with original image size - 920× 1080 then resized
to – 416 x 416 for object detection and to 64 x 64 for the
training of GAN.

Google Collab, a cloud based Jupyter notebook environ-
ment that Google provides, was the main platform used to
train the GAN. NVIDIA Tesla P100 and NVIDIA Tesla K80
were the GPUmodels utilised.When it came to programming
languages and frameworks, Python was primarily used for
creating the GAN architecture and training pipeline, whereas
ROS was primarily used for vSLAM. PyTorch, a deep
learning framework, was used to construct and train the
GAN model. The GAN model was implemented using
PyTorch in the Google Colab environment as part of the
training environment setup. To make model building and
training easier, necessary libraries and dependencies were
installed, such as PyTorch and related programmes. The
training data, comprising input images with missing regions
and corresponding ground truth images, were accessed from
cloud storage (Google Drive).

B. EVALUATION METRICS
A vSLAM system’s mean error, an important validation
metric, measures how close the system’s estimated camera
poses or mapped points are to their actual positions as
determined from ground truth data. A key indicator of the
accuracy and precision of the system is this metric.

The Mean Error is typically computed using two common
formulas: Root Mean Square Error (RMSE) and Mean
Absolute Error (MAE).

1) RMSE is calculated by taking the square root of
the squared difference between the estimated and
ground truth values. By emphasizing larger errors,
the formula provides insight into vSLAM’s overall
precision. The smaller the RMSE, the higher the
accuracy and reliability.

RMSE =

√√√√1
n

n∑
i=1

(xi − x̂i)2 (1)

2) MAE is computed by averaging the absolute differ-
ences between the estimated and ground truth values.
Unlike RMSE, MAE does not square the errors,
providing an understanding of the average absolute
error.

MAE =
1
n

n∑
i=1

|xi − x̂i| (2)

The median error quantifies how far the estimated camera
poses or mapped points deviate from the true values. The
median error represents the middle value of the errors when
sorted ascendingly, as opposed to the mean error, which
calculates the average error.

The Median Error can be calculated as follows:

Median Error

= Median
(
|x1 − x̂1|, |x2 − x̂2|, . . . , |xn − x̂n|

)
(3)
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where:
• n is the number of data points.
• xi represents the true value (ground truth) for data point
i.

• x̂i represents the estimated (predicted) value for data
point i.

In practice, the median error is less sensitive to outliers
compared to mean error metrics like RMSE or MAE. This
makes it particularly useful when dealing with datasets
that may contain sporadic large errors, which can skew
the mean error. A smaller median error suggests that the
vSLAM system’s estimates are generally close to the ground
truth values, making it a valuable indicator of the system’s
robustness and overall performance.

Relative Pose Error (RPE) is a critical metric for evaluating
the accuracy and reliability of vSLAM systems. It is critical
in validating the performance of these systems because
it quantifies the errors in relative poses (transformations)
estimated by the vSLAM algorithm versus ground truth
poses, which are typically obtained from external sensors or
reference data.

The RPE can be calculated as follows:

Relative Pose Error (RPE) =
1
n

n∑
i=1

error(Ti, T̂i) (4)

where:
• n is the number of pose pairs in the sequence.
• Ti represents the ground truth transformation for pose i.
• T̂i represents the estimated transformation for pose i.
• error(Ti, T̂i) calculates the error between the ground truth
and estimated transformations.

In RRPE, each error term is squared, and then the square
root is taken over the mean of these squared errors. RRPE
provides a measure of the overall accuracy and precision
of the relative pose estimates, giving more weight to larger
errors.

The SSIM metric is widely used in vSLAM systems to
assess the quality of denoised images. It is important for
validating denoising algorithms because it quantifies the
similarity between the denoised image and the original, noise-
free image. Because SSIM evaluates both structural and
luminance information, it is especially effective at capturing
the perceptual quality of denoised images.

The SSIM can be calculated as follows:

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ 2
x + σ 2

y + c2)
(5)

where:
• x represents the original noise-free image.
• y represents the denoised image.
• µx and µy are the means of x and y, respectively.
• σx and σy are the standard deviations of x and y,
respectively.

• σxy is the covariance of x and y.
• c1 and c2 are constants introduced to prevent division by
zero.

The SSIM formula compares the structural similarity,
luminance, and contrast of the denoised image to the original
image. A higher SSIM value (ranging from -1 to 1) indicates
a better match between the denoised image and the original
image, signifying superior denoising performance.

The PSNR is a commonly used metric in vSLAM systems
for assessing the quality of denoised images. PSNR is a
quantitative measure of how well a denoising algorithm
preserves image fidelity by comparing the peak signal level
(maximum possible pixel value) to the noise introduced
during denoising.

The PSNR can be calculated as follows:

PSNR(x, y) = 10 · log10

(
MAX2

MSE

)
(6)

where:
• x represents the original, noise-free image.
• y represents the denoised image.
• MAX is the maximum possible pixel value (e.g., 255 for
an 8-bit image).

• MSE is the Mean Squared Error, which measures
the average squared difference between corresponding
pixels in x and y.

A higher PSNR value indicates lower noise levels and,
consequently, better image quality. It is often measured in
decibels (dB). A higher PSNR suggests that the denoising
algorithm has effectively reduced noise while preserving the
essential features of the image.

C. SIGNAL ENHANCEMENT
1) GAUSSIAN NOISE
The original dataset was first subjected toGaussian noisewith
standard deviations of 30, 50, and 70. When we subjected
our system to these levels of noise, we discovered that it
demonstrated increased robustness in accordance with our
hypotheses. Even after noise was added to the data, key
performance metrics like Mean, Median, RMSE, and RPE
improved, indicating that the generalisation to noisy data was
successful. Figure 1 shows a selection of images from the
custom dataset, as well as different Guassian noise standard
deviations.

In order to determine the breaking point of the system,
high levels of standard deviations were applied on the dataset
at 100, 150, 200, and 250. Increasing noise levels led
to significant performance degradation after 150 standard
deviations, which indicated the system was struggling to
handle such high-level noise. The system broke as soon as the
performance declined beyond 200 standard deviations. These
thresholds inform the limitations of a system by determining
what levels of noise are acceptable. Figure 2 below shows
a sample of images from the custom dataset with added
different Guassian noise standard deviations as mentioned
above in order to determine when the system will fail.

In Table 1, two vSLAM configurations are compared:
ORB-SLAM3 paired with YOLOR and ORB-SLAM3 paired
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FIGURE 1. Comparison of classification performance under varying gaussian noise levels of 30, 50, and 70 STD deviation.

TABLE 1. Gaussian noise with standard deviations of 30, 50, and 70 error comparison.

FIGURE 2. Comparison of classification performance under varying gaussian noise levels of 100, 150 and 250 STD deviation.

with YOLORv2. In the latter configuration, additional
Gaussian noise with standard deviations of 30, 50, and
70 is explicitly introduced. This comparative study incor-
porates Mean, Median, Root Mean Square Error (RMSE),
and Relative Pose Error (RPE%) metrics across multiple
sequences such as ‘Fr2/xyz_walking’, ‘Fr2/rpy_walking’,
‘Fr2/train_station_walking’, ‘Fr2/signs_walking’, ’Fr2/xyz_
static’, ‘Fr2/rpy_static’, ‘Fr2/train_station_static’, and ‘Fr2/
signs_static’. The first four are high dynamic and the other
4 are low dynamic sequences.

Each sequence represents a unique simulation setting,
where ‘walking’ indicates active motion while ‘static’ rep-
resents a stationary camera position. There are two prefixes,
‘xyz’ and ‘rpy’, which are likely to symbolize translation (x,
y, z) and rotation (roll, pitch, yaw) of the camera, respectively.

The ORB-SLAM3 and YOLORv2 setup, however, seem
to exhibit enhanced accuracy and precision in camera pose
estimation despite the addition of Gaussian noise. Although
YOLORv2 with added noise may yield less error on average,
its performance in maintaining the correct trajectory (RPE) is
not uniformly superior.

Due to the absence of motion-induced errors, both setups
perform well in ‘static’ scenarios.

Despite increased noise, the results demonstrate the poten-
tial benefits of using updated object detection techniques,
like YOLORv2, in vSLAM systems. These systems are
resilient to noise, highlighting their robustness. It is, however,
necessary to conduct more exhaustive testing to understand
their effect on trajectory estimation under different noise
levels.
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TABLE 2. Gaussian noise with standard deviations of 100, 150, 200 and 250 error comparison.

Table 2 compares the two previous configurations of
vSLAMwith Gaussian noise with standard deviations of 100,
150, 200, and 250.

Based on the analysis, it was evident that certain sequences
exhibit a slight increase in error rates despite having amplified
Gaussian noise applied. For instance, the mean error for
‘Fr2/rpy_walking’ increased significantly from 0.0143 to
0.1104, and the RMSE for ‘Fr2/train_station_static’ grew
from 0.0247 to 0.1006. In these scenarios, the algorithm was
pushed to its breaking point by the noise levels, resulting in
an increase in error.

For sequences like ‘Fr2/xyz_walking’, the ORB-SLAM3 /
YOLORv2 configuration maintained similar error rates
(mean error remaining at 0.0071) despite the increased
noise, indicating that the system is resilient and capable
of sustaining its performance under more challenging noise
conditions.

An interesting observation is that the Relative Pose
Error (RPE%) for all the sequences in the ORB-SLAM3 /
YOLORv2 configuration showed an increase compared to
ORB-SLAM3 / YOLOR, for example in ‘Fr2/xyz_walking’
from 86.12% to 88.43%. As a result, the trajectory estimation
system’s robustness appears to be declining under these
conditions due tomore trajectory drift caused by the Gaussian
noise.

As noise levels rise, the performance of YOLORv2
algorithm starts to degrade, potentially indicating the
algorithm’s breaking point. Overall, the results suggest that
YOLORv2 algorithm can withstand a certain amount of
noise. In addition to providing insights for future improve-
ments and enhancements of the system, such findings also
contribute to its robustness under high noise conditions.

Table 3 represents the execution speed in terms of median
time in milliseconds per frame (ms/frame) for different
sequences of theORB-SLAM3 /YOLOR andORB-SLAM3 /
YOLORv2 algorithms. The comparison is done after training
with Gaussian data with noise of standard deviations of 30,
50, and 70.

In terms of execution speed, the ORB-SLAM3 /
YOLORv2 performs better than the original ORB-
SLAM3 / YOLOR, showing higher efficiency. For instance,
in the ‘‘Fr2/xyz_walking’’ sequence, the original ORB-
SLAM3 / YOLOR algorithm has a median time of

66.45 ms/frame, whereas the improved ORB-SLAM3 /
YOLORv2 algorithm performs faster with a median time
of 64.03 ms/frame. Similarly, for the ‘‘Fr2/rpy_walking’’
sequence, the ORB-SLAM3 / YOLORv2 shows a median
time of 61.36 ms/frame, compared to 64.83 ms/frame in
ORB-SLAM3 / YOLOR.

Both dynamic (walking) and static sequences show
improvement in performance. Static sequences seem to have
a smaller gap between the two algorithms. For example, the
‘‘Fr2/signs_static’’ sequence shows a relatively close median
time, with ORB-SLAM3 / YOLOR at 69.43 ms/frame and
ORB-SLAM3 / YOLORv2 at 68.82 ms/frame.

As a result, ORB-SLAM3 / YOLORv2 performs better in
terms of execution speed than the original ORB-SLAM3 /
YOLOR algorithm, even with the addition of Gaussian noise
with high standard deviations.

TABLE 3. Execution speed of ORB-SLAM3v2 after training with gaussian
data with noise of 30, 50, and 70 standard deviations.

Based on Gaussian data with noise of 100, 150, 200, and
250 standard deviations, Table 4 presents the execution speed
measured in milliseconds per frame (ms/frame) for a variety
of sequences.

Based on analysis, it is evident that ORB-SLAM3 /
YOLORv2 consistently outperforms the original ORB-
SLAM3 / YOLOR in terms of execution speed across all
sequences, indicating its superiority. In the ‘‘Fr2/xyz_walking’’
sequence, the original ORB-SLAM3 / YOLOR algorithm has
a median execution speed of 68.12 milliseconds per frame,
while the improved ORB-SLAM3 / YOLORv2 algorithm
has a median execution time of 66.89 milliseconds/frame.
Similarly, ORB-SLAM3 / YOLORv2 demonstrates a signif-
icant improvement with a median time of 65.34 ms/frame,
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compared with 67.95 ms/frame for the original ORB-
SLAM3 / YOLOR.

The efficiency of the algorithm is improved in both
dynamic (walking) and static sequences. As for static
sequences, however, the difference between these two
algorithms is smaller when compared to dynamic sequences.
For instance, in the ‘‘Fr2/signs_static’’ sequence, the orig-
inal ORB-SLAM3 / YOLOR shows a median time of
73.52 ms/frame, while the ORB-SLAM3 / YOLORv2
slightly outperforms it with 72.11 ms/frame.

Even when Gaussian noise with high standard deviations
is introduced, the ORB-SLAM3 / YOLORv2 algorithm
performs better in terms of execution speed. Aspects such as
accuracy, resilience, and speed should be considered as part
of a comprehensive comparison.

TABLE 4. Execution speed of ORB-SLAM3v2 after training with gaussian
data with noise of 100, 150, 200 and 250 standard deviations.

2) LIGHT NOISE
Light noise with standard deviations and mean intensities of
50, 100, and 150 was incorporated into the dataset to test
robustness. In response to these variations in light intensity,
our system showed enhanced resilience. In spite of such
light noise, essential performance metrics such as Mean
Median RMSE RPE were consistently improved, suggest-
ing an effective adaptability to changes in illumination.
An example of the dataset after adding light noise is shown in
Figure 3.

To determine the system’s breaking point, we escalated
the mean intensities and standard deviations of the light
noise to 200, 300, 350, and 400 Figure 4. The system
struggled to handle such high variations in light intensity
from amean intensity and standard deviation of 300 onwards,
as evidenced by the performance metrics. There was a
dramatic decline in performance after a mean intensity
and standard deviation of 400, which indicates the system
basically broke. To understand the system’s boundaries, this
threshold reveals the upper limit of light noise intensity that
can be tolerated for signal enhancement.

Table 5 shows the results of the framework under different
levels of light noise and standard deviations of 50, 100, and
150 to determine the algorithm’s breaking point under these
conditions.

Compared to the ORB-SLAM3 / YOLOR configuration,
the ORB-SLAM3 / YOLORv2 configuration shows an

increase in mean, median, and RMSE values when light
noise is applied. For instance, in the ‘Fr2/xyz_walking’
sequence, the mean error increased from 0.0071 to 0.0193,
and the RMSE from 0.0088 to 0.0337. Under the influence
of light noise, error rates are increasing, suggesting that
ORB-SLAM3 / YOLORv2 might be approaching breaking
point.

A significant difference exists between ORB-SLAM3 /
YOLORv2 andORB-SLAM3 /YOLOR, in that all sequences
in the YOLORv2 configuration have a lower RPE than
those in the YOLORv3 configuration. Although the vSLAM
system’s average error rate increases under these conditions,
the trajectory is more stable over time, although the overall
error percentage is lower.

Despite starting to deteriorate under severe light noise,
ORB-SLAM3 / YOLORv2 still maintains a relatively
consistent trajectory despite an approach towards its break-
ing point. It is crucial to perform such stress tests for
vSLAM algorithms in order to identify their breaking
points and improve their robustness under high noise
conditions.

The purpose of Table 6 is to investigate the breaking
point of ORB-SLAM3 / YOLORv2 under a wide range of
light noise levels, with standard deviations of 200, 300, 350,
and 400.

Compared to the ORB-SLAM3 / YOLOR configuration,
the application of such high levels of light noise signifi-
cantly increases mean, median, and RMSE values for the
ORB-SLAM3 / YOLORv2 configuration. For example,
in the ‘Fr2/xyz_walking’ scenario, the mean error jumped
from 0.0071 to a substantial 0.2268, and the RMSE
increased from 0.0088 to 0.2472. During these extreme
conditions, the ORB-SLAM3 / YOLORv2 algorithm is
approaching or may have even crossed the breaking
point.

Comparing ORB-SLAM3 / YOLORv2 with ORB-
SLAM3 / YOLOR, RPE for all sequences exhibits a
considerable decrease. It appears that despite the light noise
dramatically increasing average error rates, the system’s
trajectory remains relatively consistent over time, but at a
significantly lower overall percentage. Under the applied
conditions, this is an indication that the system is nearing or
crossing its breaking point.

Finally, the performance of the ORB-SLAM3 / YOLORv2
algorithm degrades when subjected to severe light noise.
These results highlight the algorithm’s limitations in high
noise conditions, which can be used to refine the algorithm
and improve its robustness and resilience.

It is observed that the ORB-SLAM3 / YOLOR algorithm
exhibits a median time of 68.23 ms/frame in the
‘‘Fr2/xyz_walking’’ sequence, while the improved ORB-
SLAM3 / YOLORv2 algorithm executes the sequence with a
median time of 63.51 ms/frame.

In addition, the ORB-SLAM3 / YOLORv2 algorithm
displayed improved performance in the ‘‘Fr2/rpy_walking’’
sequence, demonstrating a median time of 61.04 ms/frame
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FIGURE 3. Comparison of classification performance under varying light noise levels of 50, 100 and 150 STD deviation.

TABLE 5. Light noise with standard deviations of 50, 100, and 150 error comparison.

FIGURE 4. Comparison of classification performance under varying light noise levels of 200, 300, 350 and 400 STD deviation.

TABLE 6. Light noise with standard deviations of 200, 300, 350 and 400 error comparison.

as opposed to 67.90 ms/frame in the original ORB-SLAM3 /
YOLOR algorithm.

Performance has improved across static and dynamic
sequences (walking). Differences between the two algorithms

are smaller, however, in static low dynamic sequences.
As an example, ORB-SLAM3 / YOLORv2 outperforms the
original algorithm with a median time of 69.77 ms/frame
in the ‘‘Fr2/signs_static’’ sequence. In summary, the
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ORB-SLAM3 / YOLORv2 algorithm performs better than
the original ORB-SLAM3 / YOLOR algorithm despite
varying levels of light noise.

TABLE 7. Execution speed of ORB-SLAM3v3 after training with 50, 100,
and 150 light noise.

D. DE-NOISING TECHNIQUES
In the exploration phase of our research, we scrutinized
various noise denoising techniques tailored to the specific
types of noise augmentation - Gaussian, and light noise.
For Gaussian noise, we evaluated techniques including
Gaussian filtering, median filtering, wavelet denoising, non-
local means filtering, and total variation denoising. After
a thorough assessment, only Gaussian filtering and total
variation denoising were selected for our experiments due to
their efficacy in maintaining data continuity while effectively
reducing the noise component and preserving the edges and
structural integrity of data, respectively.

Lastly, for light noise, we assessed various techniques,
including Poisson noise reduction, non-local means filtering,
total variation denoising, wavelet denoising, and maxi-
mum likelihood estimation. Here, total variation denoising
emerged as the sole choice due to its superior proficiency in
handling variations in light intensity noise while preserving
the edges and details of images.

In sum, our choice of denoising techniques - Gaussian
filtering and total variation denoising for Gaussian noise,
Wiener deconvolution and total variation denoising for light
noise - highlights a mindful, evidence-driven approach,
tailored to align with the specific characteristics and require-
ments of our dataset.

1) GAUSSIAN DENOISING – TOTAL VARIATION (TV)
Gaussian Denoising – TV was applied on the image dataset
represented by Figure 5, an innovative approach aimed at
mitigating the effect of noise within these images. The main
objective of implementing this noise reduction technique is
to enhance the visual quality and accuracy of the images
that are fundamental to the performance of vSLAM. vSLAM
was then train and tested with these denoised images, aiming
to examine the impact of Gaussian Denoising – TV on the
overall performance of the system.

Eight different scenarios are compared in Table 8. The
main evaluation metrics for this evaluation was the total
variation error, represented through measures such as the

FIGURE 5. Gaussian denoising – Total Variation (TV), noisy and denoised
image.

Structural Similarity Index Measure (SSIM), Peak Signal
to Noise Ratio (PSNR), and Relative Pose Error (RPE).
It appears that our denoising techniques have an impact on
the vSLAM framework’s performance.

The SSIM results show structural similarities between
pre- and post-denoising images. Fr2/rpy_walking shows
the highest SSIM value at 0.9472, indicating excellent
structural detail preservation. A denoised SSIM of 0.3225 for
‘Fr2/signs_static’ indicates some structural changes.

The PSNRmeasures denoised image quality by comparing
the maximum power of the signal with the corrupting noise.
With a PSNR of 41.2317 dB, the sequence ‘Fr2/rp_walking’
achieves the best denoising quality, indicating the low-
est amount of noise. At 20.3251 dB, the PSNR of the
‘Fr2/signs_static’ sequence is the lowest, suggesting that the
image has more noise.

RPE is used to measure movement accuracy over time
in vSLAM. After applying Gaussian denoising to the
Fr2/rpy_walking sequence, we achieve RPE of 93.66% after
the initial RPE was 92.10%. As a result, the precision
of trajectory estimation in vSLAM has increased. Based
on the initial and improved RPE results of the sequence
‘Fr2/signs_static’, 20.33 and 22.12 are the lowest.

TABLE 8. Gaussian denoising – total variation error comparison.

2) GAUSSIAN DENOISING – GAUSSIAN FILTERING
Furthermore, Gaussian Filtering was applied on the dataset
to further test the effectiveness of the denoising technique,
and to compare TV with Gaussian Filtering. This process,
typically used to reduce detail and noise, is applied to improve
the effectiveness of vSLAM Figure 6. In order to evaluate
the influence of Gaussian Filtering on our vSLAM system’s
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overall performance, a vSLAM model was traine with these
filtered images.

FIGURE 6. Gaussian denoising – gaussian filtering, noisy and denoised
image.

Table 9 presents the error comparison results for Gaussian
denoising and Gaussian filtering on various ORB-SLAM3 /
YOLORv2 sequences.

SSIM value for ‘Fr2/rpy_walking’ sequence is 0.9295 after
Gaussian filtering, suggesting excellent structural integrity
retention. A SSIM of 0.2787 shows a loss of structural detail
in the ‘Fr2/signs_static’ sequence.

A noise reduction process of efficiency is demonstrated
by the sequence ‘Fr2/rpy/walking’, which has the highest
PSNR and demonstrates the best noise reduction process
at 40.3397 dB. The sequence ‘Fr2/signs_static’ records the
lowest PSNR at 19.0541 dB, showing more noise-affected
image post-processing.

After Gaussian filtering, the RPE for the ‘Fr2/rpy_walking’
sequence improved to 92.21% from92.10%. ‘Fr2/signs_static’
has the lowest original and improved RPE, which is 20.33 and
21.59.

TABLE 9. Gaussian denoising – gaussian filtering error comparison.

3) LIGHT DENOISING – TOTAL VARIATION
In addition, Light Denoising - TV was applied to the custom
image dataset to mitigate light-induced noise. Known for
its ability to preserve edges while smoothing out noise,
this method is essential for enhancing the performance of
vSLAM. By implementing and analysing Light Denoising
- TV, we explored its potential for strengthening vSLAM
performance under varying light conditions. The results of
this approach are demonstrated in Table 7.

Using this denoisingmethod, Table 10 compares error rates
for several ORB-SLAM3 / YOLORv2 sequences.

FIGURE 7. Light denoising – Total Variation (TV), noisy and denoised
image.

The highest SSIM value in the ‘Fr2/rpy_walking’ sequence
is 0.9122, indicating superior preservation of structural
information. After denoising, ‘Fr2/signs_static’ registers a
SSIM of 0.2510, showing an overall loss of structural details.

The highest PSNR value is recorded in the ‘Fr2/rpy_
walking’ sequence at 38.6434 dB, suggesting effective noise
reduction and high-quality denoising. PSNR is found to be
the lowest in the sequence ‘Fr2/signs_static’ at 17.7923 dB,
suggesting that the level of noise is higher

Based on the ‘Fr2/rpy_walking’ sequence, an initial RPE
of 89.34% is observed, which improves to 91.51% after
applying Light Denoising, suggesting improved trajectory
estimation accuracy. There is the lowest initial and improved
RPE in the ‘Fr2/signs_static’ sequence, which are 16.28%
and 18.87%, respectively.

Light Denoising with Total Variation improves trajectory
accuracy and image quality in vSLAM performance using
Light Denoising with Total Variation. Denoising demon-
strates effectiveness by observing improvements across
SSIM, PSNR, and RPE values across sequences, albeit to
varying degrees.

TABLE 10. Light denoising – total variation.

E. GANs COMPARED TO OPTICAL FLOW FOR IMAGE
INPAINTING
The GAN architecture Figure 8 is comprised of two main
modules: a generator and a discriminator. This model [48]
generates synthetic images of an indoor train station given
an input random latent vector using an input random latent
vector.

Generator is a CNN that generates a synthetic RGB image
from a noise vector (of dimensions LATENT_DIM × 1 × 1).
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FIGURE 8. Overall system architecture.

The generator model’s architecture can be summarised as
follows:

1) This layer maps the input noise vector into a
512-channel feature map of 4 × 4 dimensions using
transposed convolution.

2) ReLU activation function and Batch Normalization.
3) A series of Transposed Convolution, Batch Normalisa-

tion, and ReLU layers are used to increase the spatial
dimension of the feature maps. The number of channels
in each layer is reduced while the spatial dimension is
increased.

4) Using a Tanh activation function to bound the output
values between -1 and 1, the final Transposed Convo-
lution layer maps the feature maps to a RGB image
(3 channels) of size 64 × 64.

Using convolutional neural networks, the Discriminator
distinguishes between real and synthetic images. A scalar
output represents the network’s confidence that the input
image is real based on an RGB image (real or synthetic).
Following is the architecture:

1) AConvolution layer that is responsible to map the input
images to a 128-channel feature map.

2) LeakyReLU activation function.
3) Using Convolution, Batch Normalization, and

LeakyReLU layers, the spatial dimensions of the
feature maps are decreased while the number of
channels is increased.

4) To reduce the spatial dimension to 1 × 1, an Adaptive
Average Pooling layer is applied.

5) AnAdaptive Average Pooling layer is applied to reduce
the spatial dimension to 1 × 1.

6) To map the feature vector to a single scalar value,
a linear layer was used.

7) The output values are bound between 0 and 1 using a
sigmoid activation function.

To update the weights of the generator and discriminator,
the Adam optimization algorithm is used to train the GAN
model using binary cross-entropy loss (BCE). There are two
phases to the training process:

1) Discriminator training phase: To maximize the
likelihood of correctly classifying synthetic and real
images, the discriminator’s weights are updated. The
BCE losses for real and synthetic images areminimized
by minimizing their sum.

2) Generator training phase: As part of this phase,
the generator’s weights are updated to maximize the
log-likelihood that the discriminator will classify its
synthetic images as real. The synthetic images are
minimized by minimizing the BCE loss.

The synthetic images generated by the generator are saved
for later evaluation in every training epoch. A set number of
epochs or another stopping condition is reached at the end of
the training process.

Table 11 shows the evaluation metrics of the overall
framework of vSLAM and GAN for mage inpainting. The
high SSIM of 0.9147 denotes a remarkable preservation of
structural information between the inpainted and original
images, emphasizing the fidelity achieved by the inpainting
process. The PSNR of 31.6943 dB further corroborates the
exceptional quality of the reconstructed images, highlighting
minimal loss during the inpainting operation. The MSEE
value of 410 reinforces the accuracy of inpainting, indicating
the closeness of the generated images to the ground truth.
Frechet Inception Distance (FID) is a metric for quantifying
the realism and diversity of images generated by GANs.
Moving beyond image quality, the FID of 23 suggests a
reasonable disparity between the generated and real images,

VOLUME 12, 2024 38537



C. Theodorou et al.: From Augmentation to Inpainting

FIGURE 9. Image comparison after image inpainting.

FIGURE 10. Image comparison after image inpaintng.

indicating a balance between diversity and realism in the
inpainting results. In the realm of vSLAM, the reported pose
accuracy of 0.21 meters attests to the system’s capability to
accurately localize itself within the environment. The high
map consistency score of 0.89 signifies a robust and coherent
mapping of the surroundings, crucial for applications like
autonomous navigation. Furthermore, the vSLAM loop
closure detection rate of 88% underscores the system’s
proficiency in recognizing and closing loops, enhancing
long-term localisation reliability. The trajectory error of 4%
indicates the precision with which the system tracks its
movement through space, showcasing a low margin of error.
Notably, the impressive execution time of 0.3 seconds for
the inpainting process highlights the efficiency of the entire
framework, rendering it suitable for real-time applications.
Finally, Figure 9 and Figure 10 shows the original image, the
image after object removal and the picture after the use of
GAN for image inpainting.

VII. DISCUSSION
A thorough examination of various types of noise and their
effects on vSLAM system performance is provided, as is a
discussion of several denoising techniques and their effects
on image quality.

TABLE 11. Performance metrics.

AGaussian noise and light noise were initially investigated
for their impacts on system performance. The robustness
and vulnerability of the system are affected by each type
of noise. A clear and intricate balance exists between
the level of noise and system performance across these
variations. By enhancing data with Gaussian noise, for
instance, insights into the relationship between data noise and
performance can be gained. Light noise signal enhancement
helps us understand how light noise intensity impacts
system performance. Effective and efficient noise manage-
ment strategies are necessary to manage these complex
relationships.
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A variety of denoising techniques were evaluated to
address noise-induced performance variations, including
Gaussian filtering and MAP estimation denoising. SSIM,
PSNR, RPE, and RMSE have shown varying degrees of
improvement with each of these techniques.

According to the findings, effective denoising techniques
can significantly improve the performance of vSLAM
systems by managing noise. Given the variability in the
results across different sequences, these techniques should
be carefully chosen and tailored to the specific type and
degree of noise. More research is needed to ensure that these
denoising methods achieve optimal performance across all
metrics.

While GANs can require a significant amount of pro-
cessing power and memory during the training phase, the
inference process—which is where the trained GAN creates
new images—usually includes much less computational
overhead. When it comes to resource-constrained devices
like smartphones or tablets, GAN inference may often be
completed effectively, even in real-time or almost real-time,
thanks to developments in hardware acceleration techniques
and optimisations [49]. As a result, even if the initial
training of GANs would be difficult in these kinds of
settings, it might still be possible to use a trained GAN
for image inpainting in the vSLAM system as long as
the right optimisations are made to lessen computational
limitations. By leveraging the efficiency of GAN inference,
the integration of these advanced techniques into the vSLAM
framework may still offer substantial benefits without unduly
compromising the system’s performance or applicability in
resource-constrained settings.

The suggested system’s practical application is intended
to address issues that arise in indoor dynamic situations,
with a concentration on train stations because of their high
population density. The need to improve older people’s
safety and navigational efficiency in such busy surroundings
serves as the foundation for this approach. Nevertheless,
a variety of issues, such as the existence of several people
and obstructions, which complicate scene perception and
tracking, hinder the effectiveness of vSLAM in these situa-
tions. Moreover, the fluctuations in illumination additionally
impact the performance constraints of VSLAM algorithms.

VIII. CONCLUSION
vSLAM performance is significantly impacted by signal
enhancement techniques, including Gaussian noise and light
noise. In our study, GANs are integrated with vSLAM
and object detection models and used to address the
task of removing objects from spaces and filling in the
gaps.

With Gaussian and light noise, vSLAM has demonstrated
a significant ability to improve robustness, generalisation,
and performance. Their effectiveness is still dependent on
a careful balance of these technologies’ application and an
understanding of the characteristics of the specific tasks and
images.

Gaussian noise augmentation, for example, have demon-
strated great promise in improving model performance and
managing the complexity of indoor dynamic real-world
environments. A combination of light noise augmentation and
task-image consistency is also a powerful tool for enhancing
model generalisation, despite its simplicity.

Our study’s real breakthrough, however, is the unprece-
dented combination of GANs and vSLAM. We developed
a mechanism to fill in missing spaces caused by object
removal by leveraging the generative capabilities of GANs,
a challenge not adequately addressed in previous studies.
This method has opened up new possibilities for dealing
with complex real-world imagery and has the potential to
significantly improve the overall performance of vSLAM
systems.

In summary, promising results for achieving enhanced
performance in handling intricate real-world imagery is the
integration of conventional signal enhancement methods with
the innovative use of GANs. These approaches have the
potential to greatly increase the robustness and performance
of machine learning models, especially in the context
of vSLAM, but their careful application and continuous
improvement are necessary. This creates exciting new
opportunities for future research and development.
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