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ABSTRACT The importance of the loss function in object detection algorithms based on deep learning
has grown significantly technological progress. The accuracy of object detection is significantly affected by
bounding box regression, which is a crucial factor. Since the introduction of the Intersection over Union
(IoU) loss in 2016, many improvements have been proposed based on this loss function. These studies
considered various geometric factors related to bounding boxes, and constructed penalty terms to address
this issue. This paper summarizes these functions and introduces a new Fused IoU (FIoU) loss function that
leads to superior performance. The FIoU loss function not only solves the problem of gradient vanishing
during the backpropagation process of the IoU loss function but also solves the problem of some IoU-based
loss functions degenerating into IoU loss functions under certain conditions. In addition, in the simulation
experiments, the FIoU loss function resulted in faster convergence speed. In our ablation experiments across
different datasets and algorithms, our aim was to compare the mAP metrics under different loss functions.
On the test set of the Pascal VOC dataset, employing the Faster R-CNN algorithm, FIoU demonstrated
improvements of 1.1% and 1.7% over GIoU and Smoothℓ1, respectively. With the YOLOX algorithm, FIoU
outperformed GIoU and IoU by 1.0% and 0.8%. Utilizing the YOLOv7 algorithm, we evaluated seven loss
functions, achieving optimal results with FIoU. On the validation set of the MS-COCO 2017 dataset, using
YOLOv7 and YOLOv8, FIoU exhibited gains of 0.4%, 0.2%, 0.2% over EIoU, DIoU, GIoU, and 0.3%,
0.5%, 0.3% over EIoU, DIoU, GIoU, respectively.

INDEX TERMS Loss function, IoU, object detection, bounding box regression.

I. INTRODUCTION
Object detection, which has received considerable research
attention, is a key issue in computer vision tasks. Cur-
rent state-of-the-art object detection methods involve two
basic tasks: object classification and object localization.
Owing to the deformable Part Model [1], bounding box
regression has been widely adopted for localization in
object detection. With the significant progress made in
deep learning, numerous deep models based on bounding
box regression have been developed, including the YOLO
series [2], [3], [4], [5], [6], [7],
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FIGURE 1. Ll2
,LIoU and LFIoU .

Faster R-CNN [8], Cascade R-CNN [9], and SSD [10].
Based on these models, a well-designed bounding box
regression loss function is essential. Thus far, the majority of
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FIGURE 2. The examples with the bounding boxes represented by two
corners(x1, y1, x2, y2).For all five cases in this set ℓ2-norm distance,||.||2,
between the representation of two rectangles are the same value, but
their IoU and FIoU values are very different.

bounding box regression loss functions can be divided into
two main categories: ℓn loss functions and IoU(Intersection
over Union)-based loss functions.

During the bounding box regression process, most of the
existing loss functions have the same value in different situa-
tions. e.g. ℓ2 loss, defined on the parametric representation of
two bounding boxes in 2D/3D as shown in Fig. 1. When there
is a different positional relationship between the predicted
box and ground truth box, the same ℓ2-norm distance is
displayed. However, in this case, the intersection over the
union is not the same. For example, consider the simple 2D
scenario in Fig.2, where the predicted bounding box (black
rectangle) and the ground truth box (green rectangle) are
represented by their top-left and bottom-right corners, that
is, (x1, y1, x2, y2). Any predicted bounding box where the
corresponding corner lies on a circle with a fixed radius
centered on the corner of the green rectangle (shown by a blue
dashed line circle) will have the same ℓ2-norm distance from
the ground truth box; however, their IoU values are entirely
different, as shown in Fig.2. In addition, we found that the IoU
had scale invariance. Under the same overlap, regardless of
how the two boxes were scaled, the IoU value is not affected.
By contrast, the ℓ2-norm is very sensitive to changes in scale.
In Fig.3, the difference in ℓ2-norm is significant for the same
IoU. In addition, we selected a 4 × 4 ground truth box and
an 8 × 8-sized ground truth box in the pixel dimension,
as shown in Fig.4. When there is a pixel deviation in the
width and height, although the value obtained by the ℓ2-norm
is the same, there are significant differences in the actual
IoU, resulting in better prediction results for large targets and
poorer prediction results for small targets.

Furthermore, some representations may suffer from a lack
of regularization between the different parameter types used.
For example, in Faster R-CNN [8], the width, height, and
center point coordinates are used to represent the bounding
box. The center point(x, y) coordinates are defined in the
location space, whereas width w and height h are defined in
the size space.

However, once proposed as a metric or loss function, the
IoU faces two problems. If there is no overlap between the
two objects or if there is an inclusion relationship between the
two objects, IoU serves as the loss function with a derivative
of zero. In this case, the IoU cannot further optimize the two

FIGURE 3. The examples with the bounding boxes represented by two
corners(x1, y1, x2, y2).For all six cases in this set, IoU between the
representation of two rectangles is the same value, but their FIoU values
are very different.

FIGURE 4. For ground truth boxes of different scales, the deviation
between the predicted box and the ground truth box is only one pixel in
the height and width directions. Although the l2 loss is the same, the
prediction effect is completely different.

objects and cannot reflect the positional relationship between
the two objects, as shown in Fig.4.

With the concept of anchor boxes being proposed, anchor
boxes obtained through clustering algorithms are pre-set
with multiple aspect ratios. These can be represented as
nonlinear using the truth box. An increasing number of
IoU-based bounding box regression loss functions have been
proposed; however, in the optimization process, there is still
a significant gap between the predicted results and the truth
box.

In this study, we address the weaknesses of several existing
bounding box regression loss functions. Inspired by the
geometric features of the horizontal rectangle, we explore
a novel metric for bounding box regression called Fused
Intersection over Union loss function LFIoU based on ℓ2 loss
function and Intersection over Union loss function, which
normalizes the ℓ2-norm from each pair of predicted bounding
box and ground truth bounding box by dividing the obtained
ℓ2-norm to the square of the diagonal of the smallest
enclosing convex containing two boxes as shown in Fig. 1
and use the obtained result as the penalty term of the IoU loss
function. We used FIoU as a new measure to compare the
similarity between the predicted bounding box and ground
truth bounding box in the bounding box regression process.
During this process, we ensure that this metric maintains
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the scale-invariant characteristics of the IoU and a strong
correlation with the IoU in the case of overlapping objects.
We also attempted to incorporate FIoU loss into state-of-
the-art object detection algorithms such as Faster R-CNN
[8], YOLOX [6], YOLOv7 [7], and YOLOv8, and tested
it on mainstream object detection datasets Pascal Visual
Object Classes (VOC) 2007 & 2012 [11], [12] and Microsoft
Common Objects in Context (COCO) 2017 [13] to verify the
performance of our proposed FIoU.

The main contribution of the paper is summarized as
follows:

• We introduced FIoU as a metric that combines IoU
with the normalized ℓ2 norm to compare two arbitrary
bounding boxes.

• We propose a new loss function, FIoU loss, which can
solve the problem of gradient vanishing in traditional
IoU loss in backpropagation. Through simulation exper-
iments, We also verified that its convergence speed
is faster than that of most existing IoU-based loss
functions.

• We applied FIoU loss to popular object detection
algorithms such as Faster R-CNN, YOLOX, YOLOv7,
and YOLOv8, and demonstrated their performance
improvement on standard object detection benchmarks
Pascal VOC 2007 & 2012 and MS-COCO 2017.

II. RELATED WORK
A. OBJECT DETECTION
In recent years, deep learning-based object detection [14],
[15], [16], [17] algorithms have emerged one after another,
with the two most important issues being classification
and localization. In many well-known classical algorithms,
bounding box regression has become an essential component
for defining localization loss functions [18]. In deep models
for object detection, the R-CNN series [8], [9], [19] adopted
two or three bounding box regression modules to obtain
higher location accuracy, whereas the YOLO series [2], [3],
[4], and SSD series [10], [20], [21] adopt one for faster
inference speed. In RepPoints [22], a rectangular box is
formed by predicting several points. FCOS [23] locates an
object by predicting the distances from the sampling points
to the top, bottom, left, and right sides of the ground-truth
box.

B. LOSS FUNCTION FOR BOUNDING BOX REGRESSION
1) ℓN LOSS

• ℓ1 loss
ℓ1 loss refers to the value of the absolute difference
between the model predicted value x, and the ground
truth value x̃, and the formula is as follows:

ℓ1 loss =

∑
|xi − x̃i| (1)

In the process of calculating the ℓ1 loss, regardless
of whether the predicted value is close to the true
value, the resulting gradient is constant, which can

easily lead to solution divergence or missing extreme
points. Therefore, Smoothℓ1 loss is often used instead
of traditionalℓ1 loss.

• Smoothℓ1 loss

Smoothℓ1 loss =


0.5(xi − x̃i)

2

β
if |xi − x̃i| < β

|xi − x̃i| − 0.5β otherwise
(2)

β is usually set as 1. When the difference between the
ground truth value and the predicted value is small (the
absolute value difference is less than 1), the gradient will
also be relatively small (the loss function is smoother
than ordinaryℓ1 loss here), The most famous Faster R-
CNN network [8] uses this loss function in the process
of bounding box regression.

• ℓ2 loss

ℓ2 loss =

∑
(xi − x̃i)2 (3)

Comparedwith the ℓ1 loss, the ℓ2 loss function is smooth
and differentiable and can have a more stable solution
without oscillation. Typical YOLOv1 [2], YOLOv2 [3],
and YOLOv3 [4] algorithms use this loss function for
bounding box regression. Because the parameters are not
normalized, this regression method differs in sensitivity
to large and small targets, leading to unsatisfactory
results.

2) IOU LOSS
The intersection over union(IoU) [24], also known as the
Jaccard similarity coefficient, is an index used to measure
the degree of overlap between the predicted bounding box
and ground truth bounding box in target detection tasks.
It has two appealing features: IoU, as a type of distance, has
a loss function (5), which can be used as a metric system
and has attributes such as non-negativity, identity, symmetry,
and triangle inequality; IoU is invariant to the scale, which
means that regardless of the scale, two targets have in space,
as long as their overlapping positional relationship remains
unchanged, and their IoU is constant.

IoU =
Bgt ∩ Bpred

Bgt ∪ Bpred
(4)

LIoU = 1 − IoU (5)

where represented by green box Bgt denotes the ground truth
bounding box, represented by the black box Bpred denotes
the predicted bounding box in Fig. 5, and L represents loss
function.

However, when the ground truth bounding box and
predicted bounding box do not overlap, the value of IoU is
zero. In this case, we cannot determine the relative position
relationship between the predicted bounding box and the
ground truth bounding box: adjacent or far apart. In addition,
the IoU loss enters a plateau period, and there is no way
to optimize it. Since then, variants based on IoU loss have
emerged in an endless stream, such as DIoU, GIoU, and
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FIGURE 5. The relationship between ground truth bounding box and
predicted bounding box, and the relevant parameters required to
calculate the existing IoU-based metrics.

EIoU, which can be uniformly defined as penalty terms, and
R is used to represent them in the function as follows:

LIoU−based = 1 − IoU +R(xi − x̃i) (6)

• GIoU loss

LGIoU = 1 − IoU +
| C − Bgt ∪ Bpred |

| C |
(7)

IoU = 0 is a fundamental issue that motivated the
initial proposal of theGIoU [25]. (7), whereC represents
the smallest enclosing bounding box that includes both
the predicted bounding box and ground truth bounding
box, reflecting its penalty term. By calculating the ratio
between the area occupied by C excluding Bgt and
Bpred and dividing by the total area occupied by C , this
penalty term primarily focuses on the parts that do not
overlap between Bgt and Bpred . The goal was to reduce
the non-overlapping areas between the two boxes by
adjusting the predicted bounding box. However, GIoU
degenerates into IoU if an inclusion relationship exists
between the two boxes, such as C = Bgt or C = Bpred .

• DIoU loss

LDIoU = 1 − IoU +
ρ2(Bgt ,Bpred )

ρC 2 (8)

According to DIoU [26], an important aspect in deter-
mining the overlap between two bounding boxes is the
distance between their center points. The equation for
the DIoU loss can be written as (8), where ρ(Bgt ,Bpred )
represent the Euclidean distance between the centers of
the predicted bounding box and ground truth bounding
box, and ρC is the diagonal length of the smallest
enclosing rectangle, which corresponds to the black and
blue dotted lines in Fig. 5, respectively.
We can see that the DIoU loss seeks to reduce the
distance between the center points of the two bounding

FIGURE 6. CIoU, DIoU, and GIoU will all degenerate into IoU When the
aspect ratio of the ground truth bounding box and the predicted
bounding box is the same, and their centres overlap.

boxes; however, when the two points coincide, the
penalty term is zero, and the loss function degenerates
into IoU loss. The CIoU has emerged to address this
issue.

• CIoU loss

LCIoU = 1 − IoU +
ρ2(Bgt ,Bpred ))

ρC 2 + αV (9)

V =
4
π2 (arctan

wgt
hgt

− arctan
wpred
hpred

)2 (10)

α =

{
0, if IoU < 0.5,

V
(1−IoU )+V , if IoU ≥ 0.5. (11)

CIoU [27] introduced the concept of aspect ratio based
on DIoU. However, we can analyze from formulas (9),
(10), and (11) that when IoU < 0.5, CIoU degenerates
into DIoU. The authors believe that it is reasonable that
when two bounding boxes are not well matched, the
consistency of the aspect ratio is less important, and
when IoU > 0.5, the consistency of the aspect ratio
becomes necessary. However, the definition of the aspect
ratio fromCIoU is a relative value rather than an absolute
value. For example, as Fig. 6 shows, when the aspect
ratio of the ground truth bounding box and the predicted
bounding box are the same, and their centers overlap,
we find that CIoU, DIoU, and GIoU degenerate into
IoU. To address this issue, EIoU was proposed based on
DIoU.

• EIoU loss
Although EIoU [28] used the ratio of the difference
between the width and height of the predicted bounding
box and the ground truth bounding box to the actual
width and height of the smallest enclosing bounding
box as the post-term of DIoU, which solve the problem
of loss function degradation when CIoU utilizes the
relative value of the aspect ratio in practical situations,
as shown in Fig. 7, when the height difference and width
difference meet a specific proportional relationship with
the width and height of the minimum bounding box,
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FIGURE 7. CIoU, DIoU, GIoU, and EIoU enjoy the same loss value in
different situations, which leads to limited convergence speed and
accuracy.

it will loss effectiveness.

LEIoU = 1 − IoU +
ρ2(Bgt ,Bpred )

ρC 2

+
ρ2(wgt ,wpred )

wC 2 +
ρ2(hgt , hpred )

hC 2 (12)

• SIoU loss
The previous IoU-based loss function only consid-
ered factors such as the center distance and aspect
ratio between the predicted bounding box and ground
truth bounding box. Ignoring the matching of the
direction between the two boxes leads to a slow
convergence speed and low efficiency, because the
predicted bounding box may ‘‘wandering’’ during the
training process, ultimately generating a worse model.
Therefore, Gevorgyan constructed SIoU [29] using the
angle cost as (13), distance cost as (14) and (15), and
shape cost as (16) and (17). These are combined in (18).
The angle cost, which describes the minimum α shown
in Fig. 5 between the ρ(Bgt ,Bpred ) and the (X or Y) axis,
can quickly drift the prediction box to the nearest axis;
then, only one coordinate (X or Y) needs to be regressed,
effectively reducing the total number of degrees of
freedom.

3 = 1 − 2 × sin2(arcsin
min(ρh, ρw)
ρ(Bgt ,Bpred )

−
π

4
) (13)

1 =

∑
t=w,h

(1 − e−γ kt ) (14)

where 

γ = 2 − 3

kw =

(
ρw

wC

)2

kh =

(
ρh

hC

)2
(15)

� =
1
2

∑
t=w,h

(1 − eωt )θ (16)

where 
θ = 4

ωw =
|wpred − wgt |

max(wpred ,wgt )

ωh =
|hpred − hgt |

max(hpred , hgt )

(17)

LSIoU = 1 − IoU +
1 + �

2
(18)

The distance cost indicates that the penalty of
ρ(Bgt ,Bpred ) is positively correlated with angle cost.
That is, the contribution of the distance cost is greatly
reduced when α approaches 0 and increases when α

approaches π
4 . The shape cost describes the difference

between the two bounding boxes, and is used to achieve
the overall shape convergence effect by converging
the length and width. Because the penalty of SIoU on
the distance metric increases with an increase in the
shape cost, the models trained by SIoU have a faster
convergence speed and lower regression error.

• WIoU loss
Owing to the inevitable inclusion of low-quality exam-
ples in the training data, geometric factors such as
distance and aspect ratio exacerbate the punishment for
low-quality examples, thereby reducing the generaliza-
tion performance of the model. When the predicted
bounding box overlaps well with the ground truth
bounding box, a good loss function should weaken the
penalty of the geometric factors, whereas less training
intervention will enable the model to achieve better
generalization ability. TheWIoU [30] is defined as (19).

LWIoUv1 = RWIoULIoU

RWIoU = exp(
ρw

2
+ ρh

2

(ρC 2)∗
) (19)

III. FUSED INTERSECTION OVER UNION
A. FIOU AS A METRIC
Thus, we have gained an understanding of the advantages
of ℓn loss, existing IoU-based loss functions, and problems
exposed in different situations. We consider how to solve
bounding box regression problems more robustly, accurately,
and efficiently. Considering the advantages of existing
algorithms, we were inspired by the geometric properties of
ground truth bounding boxes, predicted bounding boxes, the
smallest enclosing bounding boxes, and proposed FIoU. The
calculation of the FIoU is summarized in Algorithm 1.

FIoU, as a new metric, has the following properties:

1) Similar to IoU, FIoU is a distance, for example, FIoU
loss = 1-FIoU, holding all the properties of a metric,
such as non-negativity, identity of indiscernibles,
symmetry, and triangle inequality.

2) Similar to IoU, FIoU also exhibits scale invariance
when two rectangular boxes have the same overlapping
positional relationship.
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Algorithm 1 Fused Intersection over Union
input:Two arbitrary convex shapes:A,B ⊆ S ∈ Rn

output:FIoU
1. For A and B, (xa1 , ya1), (x

a
2 , ya2)denote the top-left and bottom-right

point coordinates of A, (xb1 , yb1), (x
b
2 , yb2)denote the top-left and

bottom-
right point coordinates of B.
2. Find the smallest enclosing convex object C , which can be
denoted
by the top-left point coordinates(xc1, y

c
1), and bottom-right point

coordinates(xc2, y
c
2):

xc1 = min(xa1 , xa2 ), yc1 = min(ya1, y
a
2),

xc2 = max(xb1 , xb2 ), yc2 = max(yb1, y
b
2).

3. Calculating the width and height of C :
w = xc2 − xc1 , h = yc2 − yc1.
4. Calculating the square of the diagonal of C :
ρ2

= w2
+ h2.

5. l2 = (xb1 − xa1 )
2

+ (yb1 − ya1)
2

+ (xb2 − xa2 )
2

+ (yb2 − ya2)
2.

6. IoU =
|A∩B|

|A∪B|
.

7. FIoU = IoU −
l2
ρ2 .

3) FIoU is always a lower bound for IoU, i.e.,
∀A,B ⊆ S GIoU (A,B) ≤ IoU (A,B), and this
lower bound becomes tighter when A and B have a
more substantial shape similarity and proximity, i.e.,
limA→B FIoU (A,B) = IoU (A,B).

4) ∀A,B ⊆ S, 0 ≤ IoU (A,B) ≤ 1, however, FIoU has a
different range, i.e., ∀A,B ⊆ S, −2 < FIoU (A,B) ≤

1:

• Similar to IoU, the value of 1 occurs only when
two objects overlay perfectly, that is, if |A ∪ B| =

|A ∩ B|, then FIoU = IoU = 1.
• When C is much greater than A and B, i.e., in
this extreme case, the predicted bounding box
and ground truth bounding box are located at the
opposite corners of the image, and the height and
width of both boxes are much smaller than the
height and width of the image, we assume that
the value of the ℓ2-norm is approximate twice the
square of the diagonal of image, with IoU=0, then
FIoU=−2.

The proposed method retained the original IoU properties
when combined with the ℓ2-norm. Compared with many
recently proposed IoU-based methods, our proposed method
is more concise and efficient. Therefore, the FIoU can serve
as a substitute for bounding box regression loss in the
localization loss function in many 2D/3D object detection
algorithms. In this study, we focused on 2D object detection.
The extension to non-axis-aligned 3D cases is left for future
work.

B. FIOU AS LOSS FOR BOUNDING BOX REGRESSION
In the early YOLO series [2], [3], [4], Faster R-CNN [8],
etc., each bounding box Bpred = [xpred , ypred , wpred , hpred ]T

predicted by these algorithms was forced to approach its
ground truth bounding box Bgt = [xgt , ygt ,wgt , hgt ]T by

minimizing the loss function as follows:

L = min
2

∑
Bgt∈Bgt

L(Bgt ,Bpred |2) (20)

where Bgt is the set of ground truth bounding boxes and 2 is
the parameter of the deep model for regression. Based on the
definition of FIoU in the previous section, we define the loss
function based on FIoU as follows:

LFIoU = 1 − IoU +
l2

ρC 2 (21)

Here, we used the following two sets of coordinates
to represent the four regression parameters defined in the
previous algorithm:

w = max(xg2 , x
p
2 ) − min(xg1 , x

p
1 ),

h = max(yg2, y
p
2) − min(yg1, y

p
1),

xgt =
xg1 + xg2

2
, ygt =

yg1 + yg2
2

,

wgt = xg2 − xg1 , h
gt

= yg2 − yg1,

xpred =
xp1 + xp2

2
, ypred =

yp1 + yp2
2

,

wpred = xp2 − xp1 , h
pred

= yp2 − yp1. (22)

where w and h represent the weight and height of the smallest
enclosing bounding box covering Bgt and Bpred , (xgt , ygt ) and
(xpred , ypred ) represent the coordinates of the central points
of the ground truth bounding box and the predicted bounding
box, respectively. wgt and hgt represent the width and height
of the ground truth bounding box, respectively. wpred and
hpred represent the width and height of the predicted bounding
box, respectively.

From (22), we can see that all of the factors considered
in the existing loss functions can be determined by the
coordinates of the top-left points and the bottom-right points,
such as the non-overlapping area, central point distance, and
deviation of width and height, which means that our proposed
FIoU not only considers but also simplifies the calculation
process. Then the ℓ2 loss, IoU loss, and FIoU loss can be
obtained through Algorithm 2.

1) NORMALIZED MATHEMATICAL EXPRESSION
Compared to ℓ2 loss, FIoU loss features a normalized mathe-
matical expression. Initially, traditionalℓ2 loss optimizes four
mutually independent variables (xpred , ypred ,wpred , hpred ),
distributed in both location and size spaces. This assumption
contradicts the fact that the bounding box of an object is
highly correlated, which leads to many failure cases where
one or two boundaries of the predicted bounding box are
very close to the ground truth bounding box, but the entire
bounding box is unacceptable.

The situation depicted in Fig. 2 arises upon transforming
these variables into diagonal coordinates representing rectan-
gles. Specifically, when one corner of the predicted bounding
box is fixed, the diagonal position can be any point on a
circle with a fixed radius, resulting in identical ℓ2 loss values.
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Algorithm 2 l2, IoU and FIoU as Bounding Box Losses

input: Predicted Bpred and ground truth Bgt bounding box
coordinates:
Bpred = (xp1 , y

p
1, x

p
2 , y

p
2), Bgt = (xg1 , y

g
1, x

g
2 , y

g
2)

output: Ll2 ,LIoU ,LFIoU .
1. For the predicted box Bpred , ensuring xp2 > xp1 and y

p
2 > yp1:

x̂p1 = min(xp1 , x
p
2 ), x̂p2 = max(xp1 , x

p
2 ),

ŷp1 = min(yp1, y
p
2), ŷp2 = max(yp1, y

p
2).

2. Calculating area of Bpred and Bgt :
Ap = (x̂p2 − x̂p1 ) × (ŷp2 − ŷp1)
Ag = (xg2 − xg1 ) × (yg2 − yg1).
3. Calculating intersection I between Bpred and Bgt :
xI1 = max(x̂p1 , x

g
1 ), xI2 = min(x̂p2 , x

g
2 ),

yI1 = max(ŷp1, y
g
1), yI2 = min(ŷp2, y

g
2),

Iw = xI2 − xI1 , Ih = yI2 − yI1 ,

I =

{
Iw × Ih if xI2 > xI1 , yI2 > yI1
0 otherwise.

4. Finding the smallest enclosing box: BC (xc1, y
c
1, x

c
2, y

c
2), and

its weight,
w, height, h, and the square of the diagonal, ρ2, according to
the steps
2-4 in Algorithm 1.
5. l2 = (xg1 − x̂p1 )

2
+ (yg1 − ŷp1)

2
+ (xg2 − x̂p2 )

2
+ (yg2 − ŷp2)

2.
6. IoU =

I
U , where U = Ap + Ag − I.

7. FIoU = IoU −
l2
ρ2 .

8. Ll2 = l2, LIoU = 1 − IoU , LFIoU = 1 − FIoU .

However, this failed to adequately represent the prediction
scenario. Additionally, ℓ2loss exhibits a strong correlation
with scale variations, as illustrated in Fig. 4. We can see that
given two pixels, one is located within the larger bounding
box and the other within the smaller bounding box. The
former will have a greater impact on the penalty than the
latter, as the ℓ2 loss is not standardized. This imbalance
causes cellular neural networks to paymore attention to larger
objects and ignore smaller ones.

In the case of IoU loss [24], although it exhibits scale
invariance, inaccuracies arise when two predicted boxes
exhibit an inclusion relationship, as shown in Fig. 3. In these
situations, the IoU loss values may be identical; however,
the representation of the prediction results is not accurate.
Combining the strengths and weaknesses of both ℓ2 and IoU
losses, our proposed FIoU loss introduces normalization in
the penalty term. This approach allows for the normalization
of targets of different scales, effectively increasing the loss
value when predicting smaller targets and enhancing the
accuracy of small target detection.

2) THE SOLUTIONS OF GRADIENT VANISHING PROBLEM
To avoid losing generality during the derivation process, that
is, to reduce the occurrence of negative signs, for each pixel
(i, j) in an image, the bounding box of the ground truth can

be defined as a 4-dimensional vector:

x̃i,j = (̃xti,j , x̃bi,j , x̃li,j , x̃ri,j ) (23)

where x̃t , x̃b, x̃l, x̃r represent the distances between the
current pixel location (i, j) and the top, bottom, left and
right bounds of ground truth, respectively. Accordingly, the
predicted bounding box is defined as x = (xt , xb, xl, xr ),
Ih = min(xt , x̃t ) + min(xb, x̃b), Iw = min(xl, x̃l) +

min(xr , x̃r ), IH = max(xt , x̃t ) + max(xb, x̃b), IW =

max(xl, x̃l) + max(xr , x̃r ), as shown in Fig. 1. According to
Algorithm 2, we can deduce the backward algorithm of the
IoU loss. First, we need to compute the partial derivative of
Ap w.r .t. x, marked as ∇xAp (for simplicity, we denote x for
any of xt , xb, xl, xr if missing):

∂∇xAp

∂xt (or ∂xb)
= xl + xr ,

∂∇xAp

∂xl(or ∂xr )
= xt + xb. (24)

then we need to compute the partial derivative of I w.r .t. x,
marked as ∇xI

∂I
∂xt (or ∂xb)

=

{
Iw, if xt < x̃t (or xb < x̃b)
0, otherwise,

∂I
∂xl(or ∂xr )

=

{
Ih, if xl < x̃l (or xr < x̃r )
0, otherwise.

(25)

Finally we can compute the gradient of localization LIoU
w.r .t. x:

∂LIoU
∂x

=
∂(1 −

I
U )

∂x

=
1
U2 [U∇xApU − (U − I)(∇xAp − ∇xI)]

=
1
U2 [(U − I)∇xI + I∇xAp]. (26)

We found that when the union is zero, I and ∇xI are also
zero, that is, the gradient of the IoU loss is zero, which leads
to a gradient vanishing problem.

For the penalty term proposed in GIoU loss:

RGIoU =
| C − Bgt ∪ Bpred |

| C |
(27)

When the predicted bounding box and the ground truth box
exhibit an inclusive or being-inclusive relationship, meaning
C equals Bgt ∪ Bpred , the Generalized Intersection over
Union (GIoU) degenerates into IoU. In such cases, the
backpropagation of the loss still results in gradient vanishing.

For the penalty term proposed in DIoU:

RDIoU =
ρ2(Bgt ,Bpred )

wC 2 + hC 2 (28)
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we then compute the partial derivative of the RDIoU with
respect to the edge of the smallest enclosing bounding box:

∂RDIoU

∂wC
= −2wC

ρ2(Bgt ,Bpred )

wC 2 + hC 2 < 0

∂RDIoU

∂hC
= −2hC

ρ2(Bgt ,Bpred )

wC 2 + hC 2 < 0 (29)

We found thatRDIoU provides a negative gradient for the size
of the smallest enclosing box, which increaseswC and hC and
hinders the overlap between the predicted bounding box and
the ground truth bounding box.

For the penalty term proposed in CIoU:

RCIoU =
ρ2(Bgt ,Bpred ))

ρC 2 + αV (30)

where the values of α and V are given by (10) and (11),
repectively. This penalty term considers the influence of the
aspect ratio based on the RDIoU , and then takes the partial
derivative of V :

∂V
∂wpred

=
8
π2

(
arctan

wgt
hgt

− arctan
wpred
hpred

) h

h2pred + wpred 2

∂V
∂hpred

= −
8
π2

(
arctan

wgt
hgt

− arctan
wpred
hpred

) w

h2pred + w2
pred
(31)

The drawback of CIoU is that ∂V
∂wpred

= −
wpred
hpred

∂V
∂hpred

,
meaning that V cannot provide gradients of the same sign for
the width wpred and height hpred of the predicted bounding
box. In the previous analysis of RDIoU , it was observed
that RDIoU could produce a negative gradient (29). When
this negative gradient precisely counterbalances the gradient
generated by the IoU loss on the predicted bounding box, the
predicted bounding box is not optimized.

For the penalty term proposed in FIoU:

RFIoU =

∑
i∈{t,b,l,r}(xi − x̃i)2

I2W + I2H

=
(xt − x̃t )2 + (xb − x̃b)2 + (xl − x̃l)2 + (xr − x̃r )2

I2W + I2H
(32)

Taking xt as an example, we compute the partial derivative of
RFIoU with respect to xt .

RFIoU

∂xt
=


2(xt − x̃t ) · (I2W + I2H ) + [(xt − x̃t )2 + E] · 2IW ,

if xt > x̃t
0, if xt = x̃t
2(xt − x̃t ) · (I2W + I2H ), if xt < x̃t

(33)

where E denotes (xb − x̃b)2 + (xl − x̃l)2 + (xr − x̃r )2.
We found that when xt > x̃t , ∂RFIoU > 0, which provides
a positive gradient for the xt , that is, xt becomes smaller
and approaches x̃t , besides, xt < x̃t , ∂RFIoU < 0, which
provides a negative gradient for the xt , that is, xt will become

FIGURE 8. Anchor points (blue) and target boxes (purple) in simulation
experiments.

FIGURE 9. IoU loss curves of bounding box regression losses in
simulation experiments.

larger and approach x̃t . Only when xt , x̃t are equal does the
gradient equal to zero, which means that the value of the
prediction box reaches its optimal state and no longer requires
optimization. This can be extended to xb, xl, xr .

In summary, this penalty term can provide a gradient
regardless of x takes. If and only if the predicted value is
equal to the ground truth value, the gradient is zero, which
solves the problem of vanishing the gradient generated in the
original IoU loss function.

3) SIMULATION EXPERIMENT
To compare the loss functions of several known bounding
box regressions, we used the simulation experiment proposed
by Zheng et al. [26] for evaluation. The initial conditions
of the experiment were set as follows. First, seven different
aspect ratios(i.e.,1:4, 1:3, 1:2, 1:1, 2:1, 3:1, and 4:1) were
used to generate a ground truth bounding box centered at
coordinate (0.5,0.5), with an area of 1/32. Then 5000 anchor
points were generated at a radius of 0.5, and a center of (0.5,
0.5), each of which generated 49 anchor boxes, including
seven different scales ((i.e., 1/32, 1/24, 3/64, 1/16, 1/12,
3/32, 1/8) and seven different aspect ratios (i.e.,1:4, 1:3, 1:2,
1:1, 2:1, 3:1 and 4:1). Each anchor box must be matched
with the ground truth bounding box, resulting in a total of
7×7x7×5000=1,715,000 cases.We optimized the loss value
by using a gradient descent algorithm with a learning rate
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FIGURE 10. Regression results with different bounding box regression
losses guiding.

of 0.01. The corresponding relationship between the anchor
point and ground truth bounding box is shown in Fig. 8, and
the comparison results are shown in Fig. 9.
From the above results, we can obtain the following

observation: Because the LIoU cannot converge under the
condition that two bounding boxes do not intersect, other
loss functions will cause the anchor box to converge towards
the target box. In these IoU-based methods, the convergence
speed of the LFIoU we proposed is very fast, second only
to that of LWIoU . Considering Fig. 10 as an example, after
120 epochs, the anchor box almost converges to the target
box. This proves that our proposed loss function converges
quickly and is also very accurate under simulation conditions.

IV. EXPERIMENTAL STUDIES
We evaluate our new bounding box regression loss LFIoU by
incorporating it into the most popular 2D object detectors
such as Faster R-CNN [8], YOLOX [6], YOLOv7 [7] and
YOLOv8. To this end, we replace their default regression
losses with LFIoU , that is, we replace Smoothℓ1 loss in
Faster R-CNN, LGIoU in YOLOX, LGIoU ,LDIoU ,LCIoU in
YOLOv7, and LGIoU ,LDIoU in YOLOv8. The experimental
environment can be summarized as follows: the memory
was 32GB, the operating system was Ubuntu20.04, the CPU
was Intel i9-13900k, and the graphics card was an NVIDIA
GeForce RTX 4090 with 24GB memory. All experiments
were conducted using PyTorch for a fair comparison.

We trained all detection baselines and reported all the
results on standard object detection benchmarks, that is, the
PASCAL VOC 2007 & 2012 and MS-COCO 2017 datasets.
The Pascal VOC benchmark is one of the most widely used
datasets for classification, object detection, and semantic
segmentation and consists of 20 classes. The train/val data
contained 11,530 images containing 27,450 ROI annotated
objects and 6,929 segmentations that were annotated with

bounding boxes. The MS-COCO benchmark [13] is a
large-scale dataset widely used in computer vision research,
particularly for tasks such as object detection, segmentation,
and image captioning. Created by Microsoft Research, the
MS-COCO dataset was designed to address the limitations of
existing datasets by providing a diverse range of object cat-
egories, capturing objects in complex scenes, and including
high-quality annotations.

We report our experimental results by utilizing the
performance measurements provided by theMS-COCO 2018
Challenge, which includes the calculation of mean Average
Precision (mAP) over different class labels for a specific
value of the IoU threshold to determine true positives and
false positives. The main performance measure used in this
benchmark is shown by AP, which is averaging mAP across
different values of IoU thresholds, i.e., 0.5 ≤ IoU ≤ 0.95.

A. EXPERIMENTAL RESULTS OF FASTER R-CNN
1) TRANING PROTOCOL
We used the latest PyTorch implementations of Faster
R-CNN (https://github.com/bubbliiiing/faster-rcnn-pytorch).
For baseline results(trained using Smooth ℓ1 loss), we used
ResNet-50, the backbone network architecture for Faster
R-CNN in all experiments, and followed their training
protocol using the reported default parameters. We froze
the backbone network and trained it for 50 epochs. After
unfreezing, we continued to train for 150 epochs and
selected the optimal weight to compare the results on
the test set. Considering that Faster R-CNN is a two-
stage object detection algorithm, it first performs RPN
in the algorithm, which distinguishes the foreground and
background. Subsequently, we fine-tuned and classified the
detected results into the CNN network. In this experiment,
we replaced the bounding box regression loss function of
the RPN. To train this part using GIoU and FIoU losses,
we replaced their Smooth ℓ1 loss with LGIoU and LFIoU
losses explained in (7) and Algorithm 2

2) RESULTS
Inspired by the concept of transfer learning, the features
extracted from the main feature extraction part of the neural
networks are universal. We used freeze training to accelerate
the training efficiency and prevent weight damage. When the
backbone network was frozen, the feature extraction network
remained unchanged. The occupied graphics memory was
small, but its impact on the network was minimal. However,
after unfreezing, all the feature extraction networks changed.
The occupied graphics memory was relatively large, and
the training time was relatively long. From the results of
the training, it can be seen that during the training process
shown in Fig. 11, the map gradually stabilized with the
increase in iteration times, while for the three loss functions
we compared, the FIoU loss function we proposed, clearly
performed better.
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TABLE 1. Comparison between the performance of Faster R-CNN trained using its own loss (LSmoothl ℓ1
loss) as well as using LGIoU and LFIoU losses.

The results are reported on the test set of PASCAL VOC 2007 & 2012.

TABLE 2. Comparison between the performance of YOLOX trained using its own loss (LIoU loss) as well as using LGIoU and LFIoU losses. The results are
reported on the test set of PASCAL VOC 2007 & 2012.

TABLE 3. Comparison between the proformance of YOLOv7 trained using its own loss (LCIoU loss) as well as using LDIoU , LEIoU , LWIoU , LGIoU , LSIoU
and LFIoU losses. The result are reported on the test set of PASCAL VOC 2007 & 2012.

TABLE 4. Comparison between the performance of YOLOv7 trained using LFIoU loss as well as using LDIoU , LEIoU and LGIoU losses. The results are
reported on the val set of COCO 2017.

FIGURE 11. The map against training iterations when Faster R-CNN was
trained using its standard loss (LSmoothl ℓ1

loss) as well as using LGIoU
and LFIoU losses.

Their performance using the best network model for each
loss was evaluated using the test set of PASCAL VOC 2007
& 2012, and the results are presented in Tab. 1. In the
Fast R-CNN algorithm, the results trained using the FIoU

FIGURE 12. The AP0.5 against training iterations when YOLOv7 was
trained on PASCAL VOC 2007 & 2012 using LCIoU , LDIoU , LEIoU , LWIoU ,
LGIoU , LSIoU and LFIoU losses.

loss function improved the map metrics by 1.1% and 1.7%,
respectively, compared to the GIoU loss and the Smooth
ℓ1 loss used in the algorithm itself. In addition to the mAP
indicator, the FIoU loss significantly improved the detection
results in predicting multi-scale targets.
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TABLE 5. Comparison between the performance of YOLOv8 trained using LFIoU loss as well as using LDIoU , LEIoU and LGIoU losses. The results are
reported on the val set of COCO 2017.

FIGURE 13. The AP0.5 against training iterations when YOLOv7 was
trained on COCO2017 using LFIoU , LDIoU , LEIoU and LGIoU losses.

B. EXPERIMENTAL RESULTS OF YOLOX
1) TRAINING PROTOCOL
We used the latest PyTorch implementations of YOLOX
(https://github.com/bubbliiiing/yolox-pytorch). For the base-
line results(trained using IoU loss), we used DarkNet-
53, the backbone network architecture for YOLOX in all
experiments, and followed their training protocol using the
reported default parameters. We also froze the backbone
network and trained this model for 50 epochs. After
unfreezing, we continued to train for 150 epochs and selected
the optimal weight to compare the results on the test set.
To train YOLOX using GIoU and FIoU losses, we replaced
IoU loss with LGIoU and LFIoU .

2) RESULTS
Following the original training protocol, the network we
trained using each loss in the training and validation sets of
the dataset. Their performance using the best network model
for each loss was evaluated using the PASCAL VOC 2007 &
2012 test, and the results are reported in Tab. 2, and it shows
that in the YOLOX algorithm, the results trained using the
FIoU loss function improved the mAP metrics by 1.0% and
0.8%, respectively, compared to the IoU loss and GIoU loss.
FIoU performed better.

C. EXPERIMENTAL RESULTS OF YOLOV7
1) TRANING PROTOCOL
We used the latest PyTorch implementations of YOLOv7
(https://github.com/WongKinYiu/yolov7). For the baseline
results(trained using LCIoU loss), we used CSPDarkNet,
the backbone network architecture for YOLOv7 in all

FIGURE 14. The AP0.5 against training iterations when YOLOv8 was
trained on COCO2017 using LFIoU , LDIoU , LEIoU and LGIoU losses.

experiments, and followed their training protocol using the
reported default parameters.

We trained YOLOv7 using CIoU, DIoU, EIoU, WIoU,
GIoU, SIoU, and FIoU losses and used each loss on the
training set of the PASCAL VOC 2007 & 2012 dataset for
up to 300 epochs. Their performance using the best weights
for each loss was evaluated using the PASCAL VOC 2007 &
2012 test set. The results are presented in Tab. 3.

We trained YOLOv7 using DIoU, EIoU, GIoU, and FIoU
losses and used each loss on the training set of theMS-COCO
dataset for up to 180 epochs. Their performance using the
best weights for each loss was evaluated using theMS-COCO
2017 val set. The results are presented in Tab. 4.

2) RESULTS
According to Fig. 12, the FIoU loss function performs
better than other existing IoU-based loss functions during the
training process. Although there are some shocks in the early
stages of training, as the number of iterations increases, the
advantages of the FIoU loss function become increasingly
evident. In Fig. 15, we list some images from the test set of
the PASCALVOC 2007& 2012 dataset. The optimal weights
obtained by comparing the training of various loss functions
were applied in the YOLOv7 algorithm to detect envoy
images. We found that the results obtained by using FIoU
loss can not only accurately identify the category of the target
and the number of targets during the target detection process,
but also accurately draw the prediction box. According to
Fig. 13, the FIoU loss function also performs better than other
existing IoU-based loss functions during the training process.
Because we use pre-trained weights, during the iteration
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FIGURE 15. The comparison between the detection results obtained on the PASCAL VOC 2007 & 2012 test set using YOLOv7 algorithm with loss
functions LCIoU , LDIoU , LEIoU , LGIoU , LSIoU , LWIoU , LFIoU , and the original images.
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FIGURE 16. The comparison between the detection results obtained on the COCO 2017 val set using YOLOv8 algorithm with loss functions
LDIoU , LEIoU , LFIoU , LGIoU , and the original images.

process, although there are small differences in the results
obtained by each loss function training, the results of using
the FIoU loss function are almost always better than those of
other loss functions.

D. EXPERIMENTAL RESULTS OF YOLOV8
1) TRANING PROTOCOL
We used the latest PyTorch implementations of YOLOv8
(https://github.com/ultralytics/ultralytics). We trained
YOLOv8 from scratch without using any other pre-trained
weights and followed their training protocol using the
reported default parameters.

We trained YOLOv8 using DIoU, EIoU, GIoU, and FIoU
losses and used each loss on the training set of theMS-COCO
dataset for up to 180 epochs. Their performance using the best

weights for each loss was evaluated using the MS-COCO val
set. The results are presented in Tab. 5.

2) RESULTS
According to Fig. 14, the FIoU loss function performs
better than other existing IoU-based loss functions during the
training process. In Fig. 16, we list some images from the
val set of the MS-COCO 2017 dataset. This set of images
includes images with very dense small targets of the same
type, images with targets of different categories at different
scales, and images with simple backgrounds. By comparing
the original images and the prediction results, we found that
our method can detect more targets more accurately, and its
detection performance on small targets is also better. In the
first set of images, the targets are mainly composed of boats
of the same type. The proposed method can be used to detect
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more boats. In the second set of images, there are many
targets of different types and scales. Our method not only
identifies nearby targets but also recognizes bicycles outside
the window in the distance. In the third set of images, our
proposed method can identify the targets more accurately.

E. DISCUSSION
To effectively evaluate the method proposed in this paper,
we compared several indicators and conducted comparative
experiments on popular object detection benchmarks, includ-
ing the PASCALVOC 2007& 2012 andMS-COCO datasets.
The experimental results showed that our proposed FIoU loss
function not only addresses the issue of gradient vanishing
in backpropagation by adding a normalized ℓ2 norm as a
penalty term but also exhibits a faster convergence speed
compared to similar loss functions. In addition, our method
has been verified to achieve more accurate detection accuracy
on metrics such as mAP.

In the Faster R-CNN algorithm,we compared our proposed
FIoU loss, Smooth ℓ1 loss, and the widely used GIoU
loss. The mAP indicators were increased by 1.7% and
1.1%, respectively. Particularly in the AP0.75 indicator,
improvements of 3.0% and 1.7%, respectively. For the
YOLOX algorithm, we compared the proposed FIoU loss
with IoU loss and GIoU loss. The results indicated that the
mAP indicators were increased by 1.0% and 0.8%, respec-
tively. For the YOLOv7 algorithm, we conducted ablation
experiments on two datasets, comparing the detection results
of various mainstream loss functions. Through comparative
experiments, our proposed loss function performed better
overall, particularly for small target detection.

Building upon this, in the newly proposed YOLOv8
algorithm, we compared FIoU loss with DIoU loss, GIoU
loss, and EIoU loss, achieving improvements of 0.2%, 0.5%,
and 0.3% in the mAP metrics, respectively. Despite these
improvements, the accuracy of small object detection remains
very low, and this issue needs to be addressed in future work.

V. CONCLUSION
In this paper, we first summarized the ℓn-norm-based and
IoU-based bounding box regression loss functions and
analyzed their advantages and disadvantages. On this basis,
we proposed our own method, that is, a new metric named
FIoU, to compare the similarity and overlap between the
predicted bounding box and ground truth bounding box,
which preserved all the attributes of IoU; thus, it could
be applied as an optional loss function to existing target
detection network frameworks to solve the problem of target
localization.

In addition, we propose an FIoU loss function. It fused
ℓ2 loss and IoU loss functions, transforming x, y defined
in the location space and w, h defined in the size space
into the coordinates of the diagonal points of the bounding
box and normalizing targets of different scales using the
square the smallest enclosing bounding box diagonal, which
solved the problem of significant differences in loss values

for targets of different scales using the ℓ2 loss function.
In addition, we calculated the gradient of the FIoU as a
loss function during the backpropagation process, which
solved the problem of vanishing the IoU loss function
gradient. Moreover, we compared the convergence speeds
of the existing loss functions under simulation conditions.
The experimental results indicate that the convergence
speed of the FIoU as a loss function exceeds that of
most IoU-based loss functions. Finally, we combined the
mainstream algorithms Faster R-CNN, YOLOX, YOLOv7,
and YOLOv8 on the general datasets PASCAL VOC 2007
& 2012 and MS-COCO 2017 for validation, and the results
showed that our algorithm performed the best.

In the future, we hope to expand experiments on
downstream tasks based on object detection to verify the
generalization ability of our proposed loss function.
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