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ABSTRACT Automated segmentation of breast tumors in breast ultrasound images has been a challenging
frontier issue. The morphological diversity, boundary ambiguity, and heterogeneity of malignant tumors in
breast lesions constrain the improvement of segmentation accuracy. To address these challenges, we pro-
pose an innovative deep learning-based method, namely Dual-Channel Deep Residual Attention UPerNet
(DDRA-net), for efficient and accurate segmentation of breast tumor regions. The core of DDRA-net lies
in the Dual-Channel Deep Residual Attention module (DDRA), which integrates depth-wise separable
convolution and Convolutional Block AttentionModule (CBAM). This design aims to enhance the extraction
of crucial features within the receptive field to better capture subtle details of breast lesions. Through
extensive experimental evaluation, DDRA-net demonstrates remarkable performance on a publicly available
breast ultrasound datasets, exhibiting higher segmentation accuracy and stability compared to contemporary
mainstream deep learning methods. Importantly, it is worth emphasizing that the flexibility of this method
allows easy integration with other network structures to further improve the performance and applicability
of breast tumor segmentation. In the segmentation of the Breast Ultrasound Image dataset, our precision,
recall, IoU, F1 score, Dice, and Hausdorff Distance achieved the following values: 95.31%, 90.79%, 88.00%,
92.39%, 95.46%, and 3.02, respectively. Compared to the original UPerNet, DDRA-net demonstrated
improvements of 2.71%, 4.03%, 4.61%, 4.38%, 3.14%, and 24.5% in these six metrics on the Breast
Ultrasound Image dataset.

INDEX TERMS Breast tumors, ultrasound images, deep residual attention, deep learning.

I. INTRODUCTION
Breast cancer is one of the most common and serious types
of cancer among women, posing a global health concern.
According to the World Health Organization (WHO), breast
cancer is reported as the most prevalent disease worldwide,
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with approximately 626,700 women succumbing to breast
cancer-related ailments each year, and over 2 million new
cases diagnosed in 2018 [1]. Among the contributing factors
to breast cancer, some potential pathogenic factors include
age, genetics, obesity, smoking, medications, and contra-
ceptive measures. Due to an incomplete understanding of
the causes behind breast cancer, effective prevention of the
disease remains elusive. However, early detection of breast
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FIGURE 1. Various breast ultrasound images along with segmentation
outcomes obtained using both UPerNet and our proposed method. The
red curves denote the true boundaries of the lesion regions. The yellow
and green curves represent the segmentation results produced by the
method and UPerNet, respectively.

cancer at its initial stages can significantly reduce mortality
rates and treatment expenses [2]. This approach is more
suitable for patients as it eliminates the need for invasive
biopsies. Moreover, studies reveal that due to the expanding
population base, breast cancer cases are on the rise, generat-
ing a substantial volume of ultrasound images daily. Given
the diverse appearance of breast lesions and the ambiguity
of boundaries, radiologists may misdiagnose breast cancer,
and in certain instances, breast tumors may remain unde-
tected, as illustrated in Fig. 1. However, the availability of
radiologists for analyzing these medical images is limited,
necessitating the establishment of more specialized screening
centers and medical experts.

Breast cancer is commonly detected through breast X-ray
examinations, ultrasound imaging, and MRI scans. These
techniques greatly contribute to early breast cancer detection.
Among these methods, breast X-ray exams are frequently
employed and prove highly effective in early tumor detec-
tion [3]. The diagnosis of early-stage breast cancer increases
treatment opportunities and significantly reduces a related
mortality rate by 25% [4]. However, about one-third of
women who undergo breast X-ray exams receive negative
results. Nevertheless, this technique has inherent limitations.
Due to the similarity in attenuation coefficients between
surrounding tissues and breast tumors, high rates of mis-
diagnosis occur, raising the risk of radiation exposure for
patients. In past studies on breast cancer diagnosis, breast
ultrasound examinations have notably improved the detection
rate accuracy of breast cancer. As a safer alternative to breast
X-ray exams, ultrasound imaging serves as a preliminary
method for breast cancer detection. The effectiveness of diag-
nosing breast cancer through ultrasound images depends on
the experience and skills of radiologists, who must inter-
pret speckle noise [5], image complexity, and presence,
which can vary among observers. In prior relevant research,
high-performance Computer-Aided Diagnosis (CAD) sys-
tems for breast tumors have offered accurate and reliable
second-opinion diagnoses to differentiate between benign
and malignant breast conditions [6], reducing reliance on
radiologists [7].

II. RELATED WORK
In the past few decades, traditional computer vision and Con-
volutional Neural Networks (CNN) have been extensively
applied in medical segmentation, and various ultrasound

image analysis methods have been used for diagnosing
breast cancer, ranging from initial filtering to later, more
complex deep learning-based methods. Drukker et al. [8]
proposed the use of radial gradient index filtering for auto-
mated detection of breast ultrasound lesions. Fateh et al. [9]
introduced a model designed for the recognition of multi-
script images, comprising components for both language
and digit recognition. Within this system, the authors uti-
lized a transfer learning approach to elevate image quality,
thereby enhancing the overall performance of recognition.
Yap et al. [10] introduced a novel approach for detecting
breast cancer lesions using a combination of filtering, multi-
fractal processing, and threshold segmentation. Liu et al. [11]
proposed a new active contour model based on level sets
for breast ultrasound image segmentation. Morais et al.
[12] presented a semi-automatic segmentation technique for
three-dimensional transesophageal ultrasound echocardio-
grams. Huang et al. [13] tested a new approach for breast
cancer segmentation through semantic classification and
patch merging. While ‘their method performed well in seg-
mentation results, its performance was lower when dealing
with larger tumors due to the limitations of the simple lin-
ear iterative clustering approach. Shan et al. [14] introduced
a lesion detection method that simultaneously considers
texture and spatial features, detecting and locating breast
lesions through ultrasound imaging. Felzenszwalb et al. [15]
proposed an effective object detection system based on a
multiscale deformable part modelmixture, which is one of the
efficient methods in object detection. Pons et al. [16] evalu-
ated this method and demonstrated its feasibility. Despite the
widespread application and success of deep learning methods
in many medical imaging and other domains, limitations still
exist in achieving accurate segmentation of breast cancer in
ultrasound images. For example, traditional deep learning
architectures are composed of simple convolutional filters
and can only leverage local information. However, given that
most shape priors requiremanual acquisition, further research
is still needed to achieve automated segmentation of breast
lesions in ultrasound images.

In recent years, a plethora of studies have adopted deep
learning methods for segmenting breast ultrasound images
to identify and locate breast lesions. Deep learning methods
such as Fully Convolutional Networks (FCN), U-Net, and
Unified Perceptual Parsing Networks(UPerNet) [17], [18],
[19] have made significant strides in the field of medical
image segmentation, attributed to their exceptional nonlinear
learning capabilities. Shi et al. [20] propose a lightweight
multiscale feature fusion network (LMFFNet), consist-
ing of Segmentation-Extraction-Merge Bottleneck (SEM-B)
blocks, Feature FusionModule (FFM), andMultiscale Atten-
tion Decoder (MAD). This innovative design efficiently
extracts features with limited parameters, intricately fuses
multiscale semantic features, and successfully restores rich
details through a unique attention mechanism, significantly
improving image segmentation performance. Lin et al.))
[21] introduced a deep dual attention network (D2ANet)
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FIGURE 2. Explanation of network architecture.

for COVID-19 diagnosis using chest CT images, skillfully
integrating dual attention modules(DAM) and multi-scale
feature extractors to automatically detect lesion areas and
extract discriminative radiological features, achieving high
diagnostic accuracy. Woo et al. improved the performance of
the U-Net model for breast cancer segmentation by applying
contrast enhancement and speckle reduction preprocessing
techniques to breast ultrasound images [22]. Howard et al.
introduced a Channel Attention Module with Multi- Scale
Grid Average Pooling (MSGRAP) [23], which enhances
semantic segmentation for breast cancer diagnosis in ultra-
sound imaging. Unlike channel attention mechanisms, spatial
attention mechanisms prioritize processing in regions of
interest, extracting image information with more target-
specific features. Xie et al. extended the receptive field of
breast cancer segmentationmodels using dilated convolutions
in deeper network layers [24]. However, Jiang et al.’s study
pointed out that convolutional operations in Convolutional
Neural Networks (CNNs) often focus only on local areas, lim-
iting their ability to capture long-range dependencies in input
breast ultrasound images. This limitation hampers the accu-
racy of CNNs in breast lesion segmentation tasks, resulting in
decreased segmentation precision [25]. Dong et al. designed
a set of mixed dilated convolutions applied to D2U-Net to
address challenges posed by low signal-to-noise ratio, sig-
nificant artifacts, and variations in breast tumor shape and
size [26]. Al-Dhabyani et al. proposed an improved Attention
U-Net model by combining image pyramids and attention
mechanisms to capture context features at different levels
for breast cancer segmentation [27]. Zhao et al. introduced
a Convolutional Neural Network called Selective Kernel
(SKNet), which was applied to the U-Net model. SKNet
aims to adjust the network’s receptive field through the intro-
duction of attention mechanisms, combining feature maps
extracted through dilated and traditional convolutions [28].
Jiang et al. introduced a Global Guided Network integrat-
ing Channel Attention Modules, Spatial Attention Modules,

and Boundary Detection Modules for breast cancer lesion
segmentation [25]. While dilated convolutions and atention
mechanisms can enhance the performance of segmentation
networks, they still have some limitations. One limitation
is the fixed receptive field size, preventing the network
from fully capturing the global contextual information of
breast cancer lesions. Another one is the single attention
operation, which cannot adapt to the diversity of different
lesion regions. To overcome the complexities of ultrasound
images, Badrinarayanan et al. [29] introduce an Adaptive
Attention U-net (AAU-net) for automated and stable breast
lesion segmentation. The approach incorporates a Hybrid
Adaptive AttentionModule (HAAM) to replace conventional
convolution operations, encompassing both channel-wise and
spatial self-attention blocks for effective feature capture
across diverse receptive fields.

To address the aforementioned challenges, we have
devised a novel Dual-Channel Deep Residual Attention
(D-DRA) module, which extracts features through dis-
tinct branches and employs depth-wise separable convolu-
tions to reduce the model’s parameter count, followed by
dimension concatenation of the two branches. Furthermore,
we also introduce the Convolutional Block Attention Module
(CBAM), injecting attention maps independently into fea-
ture maps’ channel and spatial dimensions. The attention
maps are then multiplied with the feature maps, enabling
adaptive feature refinement on input breast cancer feature
maps and enhancing CNN performance in ultrasound image
segmentation [22]. Leveraging the DDRA module, we pro-
pose an improved segmentation network based on UPerNet,
achieving precise segmentation of breast tumors. The signif-
icance of this research lies in the crucial role of achieving
accurate breast cancer segmentation in ultrasound images for
treatment planning and determining lymph node metastasis.
The method introduced here exhibits innovation in its algo-
rithmic approach, adapting well to the complexity of breast
cancer feature maps and providing accurate and efficient
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FIGURE 3. Illustration of the structure of the DDR block.

FIGURE 4. Convolution block attention module.

segmentation outcomes. It effectively annotates and localizes
lesion regions in breast cancer images, offering vital informa-
tion to physicians thereby supportingmore accurate diagnosis
and treatment decisions.

This research holds practical significance in enhancing
treatment outcomes and survival rates for breast cancer
patients. Extensive experiments demonstrate the outstanding
performance and robustness of the method in breast cancer
segmentation tasks. Through thorough experimental valida-
tion, the DDRA-net showcases substantial and consistent
improvements in breast lesion segmentation tasks. The key
contributions of our research include:

(1)We propose a novel DDRA module that enables
dynamic allocation of attention based on the features of breast
lesions. This module accurately focuses on crucial regions,
enhancing segmentation precision.

(2)We integrate the Dual-Channel DeepResidual Attention
module into the UPerNet network, harnessing its powerful
feature extraction and contextual understanding capabilities.
This combination allows our model to better comprehend and
segment breast lesion areas.

(3)We conduct extensive experimental evaluations, utiliz-
ing breast lesion datasets and various evaluation metrics.
Consistently, experimental results demonstrate that the
D-DRA-net significantly enhances accuracy and stability in
breast lesion segmentation tasks, outperforming state-of-the-
art medical image segmentation methods.

In the remaining sections of this paper, we will provide a
comprehensive overview of our segmentation network and its
individual components in Section III. Section IV will delve
into the details of the publicly available ultrasound dataset,
experimental setup, and evaluation metrics employed. The
experimental results are presented in Section V. Finally,
we offer a detailed discussion in Section VI and draw con-
clusions in Section VII.

III. METHODS
Based on the comprehensive findings presented in Table 3,
UPerNet showcased exceptional performance in breast tumor
segmentation. This compelling superiority led us to designate
UPerNet as the fundamental network for our subsequent
detailed analyses. Fig. 2 illustrates the network architecture of
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FIGURE 5. CBAM embeded position design.

our developed Dual-Channel Deep Residual Attention UPer-
Net (DDRA-net) for breast cancer segmentation. The core
architecture of DDRA-net bears resemblance to UPerNet
[23], including four down-sampling, four up-sampling, and
four skip-connection stages. However, a novel Dual-Channel
Depthwise Separable Residual module (DDR) is introduced
in the feature fusion stage to better adapt to breast lesion
segmentation tasks. Additionally, the architecture incurpo-
rates the Channel and Spatial Attention Module (CBAM) to
automatically extract essential features from the images.

A. ARCHITECTURE OF THE PROPOSED NETWORK
As shown in Fig. 2, the UPerNet architecture consists of two
main components: the encoder and the decoder. The encoder
in our network is based on the MobileNetV3 architecture
[31]. Within the decoder, a symmetrical encoder architecture
is established, allowing our network to improve segmentation
results by introducing global contextual information through
up-sampling and skip connections. This involves multi-
scale feature map fusion, effectively utilizing mechanisms
such as shared parameters and weights. This design enables
the network to maintain high segmentation accuracy while
also possessing notable computational and parameter effi-
ciency. In contrast to current popular transformer networks,
the UPerNet demonstrates higher computational efficiency
and delivers enhanced performance, making it highly prac-
tical, particularly in scenarios with limited computational
resources. Moreover, the UPerNet’s overall structure is based
on the segmentation network utilizing convolutional neural
networks (such as ResNet), integrating numerous advanced
network design techniques to further enhance overall

performance. We apply the proposed DDR block and CBAM
block to this architecture and conduct ablation experi-
ments using the Breast Ultrasound Image dataset. Table 1
presents the experimental results, demonstrating that the
architecture outperforms the UPerNet architecture in seman-
tic segmentation.

B. DDR BLOCK
In the quest for improved accuracy, the strategy of aug-
menting cardinality surpasses the effectiveness of expanding
network depth or width. This conceptual innovation was orig-
inaly introduced in the influential ResNeXt framework [24],
[25]. Drawing inspiration from this insight, the current study
introduces a dual-channel structure in the UPerNet block.
In one channel, it adheres to the originalmodular designwhile
the other channel embraces the design of two consecutive
convolutions from the Wide Residual Network. In these dual
channels, each with dimensions set to half of the main chan-
nel, the study adopts depth-wise separable convolution as a
substitute for conventional convolution, effectively reducing
the model’s parameter count. Ultimately, the model tactically
averts overfitting and enhances overall performance by seam-
lessly integrating the output dimensions of two channels. This
is achieved by selectively discarding information directed to
the main branch via operations such as Batch Normalization.
Through the strategic integration of the initial output with the
final layer’s output, the model’s depth is notably enhanced,
elevating both its expressiveness and overall performance.
The incorporation of residual connections not only augments
depth but also streamlines themodel’s adeptness in efficiently
capturing crucial features. This is achieved by facilitating
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direct connections across layers, culminating in a further
refinement of the model’s comprehensive performance.

Specifically, the input featuremap to theDDRblock under-
goes processing through depthwise separable convolution
and BatchNorm. The feature map captured by depthwise
separable convolution and BatchNorm can be represented as
follows:

F7
= B(W7×7×Finput ) (1)

Finput ∈ Rc×h×w represents the input feature map, W7×7
denotes the 7× 7 convolutional matrix, B(·) represents batch
normalization. Subsequently, the feature map is integrated
into each branch. To extract valuable target features from the
feature map, we initially design two convolutional modules to
extract features, guiding the network to learn more robust fea-
ture representations. The obtained features can be represented
as:

FL = Wfc(σr (Wfc × F7)) (2)

Firstly, we take the processed combined feature map F7
∈

R
c
2×h×w and input it into the left branch, where it is com-

pressed into a new feature map FL ∈ R
c
2×h×w. Wfc and σr (·)

representing the fully connected layer matrix and the ReLU
activation operation, respectively. Moreover, in this study,
we employ a depthwise separable convolution in place of con-
ventional convolution to reduce the model’s parameter count.
Additionally, ReLU activation operations and BatchNorm are
utilized for further processing,

FR = W3×3(σr (B(W3×3 × σr (F7)))) (3)

It’s worth noting that these two channel maps aid us in
extracting more representative feature maps from different
scales of receptive fields. Finally, the feature maps F1 and
F2 are concatenated, and subsequently added to our input
feature map. Ultimately, the resulting output feature map can
be represented as:

FD = σr (B(FL ∥ FR)) ⊕ Finput (4)

where ∥ and ⊕ represent channel-wise concatenation and
element-wise addition, respectively. Subsequently, FD ∈

Rc×h×w serves as the input for the next stage and also serves
as the output of the entire DDR block. The architecture of the
DDR block is depicted in Fig. 3.

C. THE CHANNEL AND SPATIAL ATTENTION
MODULE (CBAM)
In order to capture useful target features from various recep-
tive fields, we introduce the CBAM block to replace the
original feature fusion layer. This allows the network to
dynamically guide itself to learn more meaningful feature
representations. CBAM, proposed by Woo et al. in 2018,
is a feedforward Convolutional Block Attention Module that
infers attention maps sequentially along both channel and
spatial dimensions. Subsequently, the attention maps are
multiplied with the input feature map for adaptive feature

refinement. Additionally, CBAM can be seamlessly inte-
grated into any CNN architecture for end-to-end training.
Fig. 4 illustrates the structure of CBAM, which primarily
comprises channel attention and spatial attention modules.

As depicted in Fig. 4, the feature map first undergoes
the channel attention module, which generates correspond-
ing channel attention maps by considering relationships
among different feature channels. Subsequently, the input
feature map is element-wise multiplied with the channel
attention maps, achieving adaptive weighting of different
channel features. The output feature map is then fed into
the spatial attention module. The spatial attention module
generates spatial attention maps by considering relationships
between different spatial positions in the feature map. Fol-
lowing this, the output from the channel attention module
is element-wise multiplied with the spatial attention maps,
resulting in the final output feature map of the CBAM mod-
ule. The mathematical expressions for these operations are
represented by (1) and (2), where F(C × H × W ) denotes
the input feature map, and McF(C × 1 × 1) represents the
one-dimensional channel attention map,MS (F ′)(1×H ×W )
for the two-dimensional spatial attention map. Here, ⊗ signi-
fies element-wisemultiplication, whileF ′(C × H × W) is the
output after the channel attention module, and represents the
final output of the CBAM block.

The paper delves into the embedding strategy of CBAM
in the Efficient Last Stage of the backbone network
MobileNetV3 and explores three different structures [25],
[26], as illustrated in Fig. 5: (a) applying CBAM before
the convolutional layers in the efficient last stage; (b) intro-
ducing CBAM after the convolutional layers in the effi-
cient last stage; (c) applying CBAM to the entire network
after adaptive average pooling. Through experimental val-
idation in Section IV-A, we observed that the effect of
(b) was significantly more pronounced. Consequently, our
model adopts CBAM embedded at the position designed
by (b).

F ′
= MC (F) ⊗ F (5)

F ′′
= MS (F ′) ⊗ F ′ (6)

IV. EXPERIMENTS
A. DATA SET
To assess the performance of the proposed network,
we employed a widely used breast cancer ultrasound dataset
from previous studies. The Breast Ultrasound Image dataset
(BUSI) [27] was curated by Dhabyani et al, comprising a total
of 780 images acquired using the LOGIQ E9 and LOGIQ
E9 Agile ultrasound systems at Baya Hospital. These images
were obtained from 600 distinct female subjects, with an
average size of 500 × 500 pixels per image. The dataset is
categorized into three classes: normal, benign, andmalignant.
Specifically, there are 487 benign images, 210 malignant
images, and 133 normal images. The dataset is divided into
training, testing, and validation sets with a distribution ratio
of 7:2:1. Sample data instances are depicted in Fig. 6.
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FIGURE 6. Representative images from the breast ultrasound image
dataset.

B. EXPERIMENTAL SETTINGS
To evaluate the performance of the proposed network,
we trained and compared several commonly used semantic
segmentation models, including UPernet [23], FCN [17],
PSPNet [28], SegNet [29], U-Net [18], U-Net++ [30],
UNet3+ [31], and BASNet [32]. Training was accomplished
by using the same parameters and configuration. The size
of training images was fixed at 512 × 512, and the batch
size was set to 4. We utilized the cross-entropy loss function
and the AdamW optimizer for model training. In the initial
training phase, a warm-up of 5 epochs was performed, grad-
ually updating the learning rate for each iteration step using
linear interpolation. After the warm-up, a polynomial decay
learning rate schedule was adopted, with an initial learning
rate of 0.001 [33]. To ensure a fair comparison of different
models’ performance, we refrained from using transfer learn-
ing and trained them from scratch. Eachmodel was trained for
300 epochs.

Specifically, in addition to the network model, the choice
of loss function plays a crucial role in achieving the
desired model performance. The following loss functions are
minimized:

L =
1
N

N∑
i=1

(yi · log(σ (pic)) + (1 − yic) · log(1 − σ (pi)))

(7)

where σ (·) represents the Sigmoid function, pic is the proba-
bility of sample i belonging to class c, and yic is the indicator
variable that is 1 if the class of sample i is the same as class
c, and 0 otherwise.

All experiments were conducted on a high-performance
deep learning server with the following specifications: an
Intel Xeon Silver 4210 CPU with a clock frequency of
2.20GHz, an NVIDIA GeForce RTX 2080 Ti graphics pro-
cessing unit with 11GB of memory, and 128GB of RAM. The
deep learning framework used was Python 3.8.10, Cuda 10.2,
torch 1.8.1, and torchvision 0.9.1. The operating system was
Windows 10.

C. EVALUATION METRICS
To quantitatively evaluate the segmentation performance of
breast lesions, we employed eight commonly used seg-
mentation metrics. These metrics include precision, recall,
intersection over union (IoU), Dice, F1 score and Hausdorff
distance (HD), model parameters and Frames Per Sec-
ond(FPS). Precision is a fundamental metric widely used in
image detection and segmentation tasks; the recall rate is
the percentage of the model correctly predicted as a positive
sample to the total number of positive samples; IoU is ametric
that evaluates the accuracy of segmentation by calculating
the ratio of the intersection to the union of the true breast
cancer lesion region and the predicted lesion region; Dice is
a metric function used to evaluate the similarity between two
samples, it operates within a range of 0 to 1, where larger
values indicate a greater degree of similarity; F1 score is the
harmonic mean of precision and recall; We use true positive
(TP), false positive (FP) and false negative (FN) to calculate
these metrics:

Precision =
TP

TP+ FP
(8)

Recall =
TP

TP+ FN
(9)

IoU =
TP

TP+ FP+ FN
(10)

Dice =
2 × TP

2×TP+ FP+ FN
(11)

F1 =
2 × Recall×Precision
Recall + Precision

(12)

HD = max(h (pred, gt) , h(gt, pred)) (13)

where h (A,B) = maxa∈A{minb∈B ∥ a − b ∥} and ∥ · ∥

denotes the Euclidean distance, measuring the spatial sep-
aration between two pixels. pred represents the predicted
segmentation results, while gt designates the ground-truth
masks.

V. RESULTS
In this section, we commenced by conducting module abla-
tion experiments to assess the segmentation performance of
the individual components of our network. Subsequently,
we compared the network with state-of-the-art deep learning
segmentation methods. Lastly, we conducted an analysis of
the network’s robustness.

A. ABLATION STUDY
To assess the performance of different network components,
we conducted ablation experiments on BUSI. In these exper-
iments, we utilized UPerNet as the baseline network and
evaluated its performance on BUSI. Table 1 presents the
performance of different components on BUSI. Method A,
repressenting Baseline UPerNet, reveals impressive perfor-
mance metrics with precision at 92.60%, recall at 86.76%,
IoU measuring 83.39%, F1 score achieving 88.01%, Dice
coefficient at 92.32%, and HD recorded at 4.00mm. The
introduction of the CBAM module enhanced UPerNet in
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FIGURE 7. P-R and ROC curves of different segmentation methods on BUSI.

FIGURE 8. ROC curves of different segmentation methods on benign and malignant breast lesions.

Method B, resulting in improvements across six evaluation
indices: 0.33%, 1.00%, 1.13%, 1.18%, 0.46%, and 2.75%,
respectively. It is noteworthy that these optimizations were
achieved without an increase in computational complexity.
On the other hand, method C introduces the DDR mod-
ule on the foundation of benchmark method A. Despite a
slight increase in the model’s parameter count by 0.01M,
there is a corresponding decrease of 13 FPS due to the
introduction of additional calculations. Method D incorpo-
rates the CBAM module into Method C, thereby introducing
the proposed DDRA-NET in this paper. In comparison
with Baseline UPerNet, despite a successful reduction of
0.02M in model parameters, DDRA-NET exhibits significant
enhancements across the first six indices: 2.71%, 4.03%,
4.61%, 4.38%, 3.14%, and 24.5%, respectively. Although
there is a decrease of 12 FPS, this performance adjust-
ment remains more than sufficient to fulfill the practical
requirements of breast tumor segmentation applications. The
results of the ablation experiments demonstrate the positive
impact of the designed network components in enhancing
network performance. Particularly, the DDRAmodule exhib-
ited the best segmentation results on BUSI. This indicates
that through the integration of the DDRA module and spatial
self-attention mechanism, the network is better able to learn

and process BUSI images, leading to improved segmentation
robustness.

B. CBAM EMBEDDING POSITION EXPERIMENT
Table 2 elucidates the nuanced experimental results per-
taining to the three CBAM embedding strategies delineated
in Section 2 of this manuscript. Upon careful examination,
UperNet, harnessing MobileNetV3 as its backbone network,
manifests robust proficiency in segmentation tasks. Of partic-
ular significance is the palpable performance enhancement
achieved through the embedding of CBAM in scheme (b).
Accordingly, we opt to deploy CBAM after the convolu-
tional layers in the Efficient Last Stage for optimal model
performance.

C. COMPARISON WITH STATE-OF-THE-ART METHODS
To validate the robustness and effectiveness of the proposed
method, we compared it with the state-of-the-art deep learn-
ing methods in medical image segmentation tasks. The com-
parative methods include UPerNet, FCN, PSPNet, SegNet,
U-Net, UNet++, UNet3+ and BASNet. The quantitative
evaluation results of different segmentation methods are
shown in Table 3. As seen from Table 3, the method achieved
its purpose in all six evaluation metrics. The values of the six
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TABLE 1. The segmentation results of different network components on BUSI. The best results are highlighted in bold text.

TABLE 2. The comparative results on the performance of different CBAM embedding positions. The best results are highlighted in bold text.

TABLE 3. The comparative results of different segmentation networks on BUSI. The best results are highlighted in bold text. ∗ indicates data from the
original paper.

TABLE 4. The comparative results of different segmentation networks with DDRA module on BUSI. The best results are highlighted in bold text.

evaluation metrics for BUSI using our method are 95.31%,
90.79%, 88.00%, 92.39%, 95.46% and 3.02 respectively.
The results of our various metrics are higher than BASNet’s
results by 2.22%, 3.83%, 4.79%, 3.95%, 3.51%, 26.70%,
respectively. The results presented above vividly demonstrate
the commendable performance of our method in effectively
segmenting breast lesions. With a lean parameter count of
just 5.46M, our model excels beyond the majority of split
networks, promising an efficient footprint for both storage
and runtime in practical applications. Furthermore, our pro-
posed model operates at a speed of 50 FPS. While it may be
marginally slower than alternative segmentation algorithms,
excluding U-Net++, its prioritized segmentation accuracy
proves paramount in the context of breast tumor analysis. The
consistent 50FPS segmentation speed guarantees the fulfill-
ment of practical application requirements. Among various
segmentation algorithms, the FCN model stands out with
the highest parameter count, yet its compromised accuracy
leads to suboptimal performance. Both PSPNet and FCN

exhibit similar proficiency in evaluation metrics. However,
PSPNet gains a significant edge in speed, boasting a mere
38.20% of the parameters found in FCN. With a segmenta-
tion speed of 65FPS, PSPNet ranks second only to SegNet.
SegNet has delivered impressive results in segmentation per-
formance, coupled with an outstanding segmentation speed
boasting 88 FPS. In comparison, U-net closely parallels
SegNet in terms of evaluation metrics. Furthermore, U-net
distinguishes itself with a lightweight design attributed to
its straightforward structure and a minimal model parameter
count of merely 3.45M. U-net++ stands out as a prevalent
semantic segmentation network in the realm ofmedical image
segmentation, distinguished by its incorporation of a deeper
encoder-decoder structure and enhanced deep supervision.
While the network attains a notable balance between pre-
cision and recall, it does exhibit lower IoU performance,
coupled with only FPS of 28. UPerNet, U-Net3+, and
BASNet consistently demonstrate robust performance among
various segmentation methods, emphasizing their compelling
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FIGURE 9. Segmentation results of various methods applied to BUSI. The red curves represent the boundaries of breast lesions.

capabilities in the domain of breast lesion segmentation.
Moreover, as illustrated in Table 4, we have incorporated the
DDRA module into each network for comparative analysis,
underscoring the robust efficacy of our innovative D-DRA
module.

In Fig. 7, we present the Precision-Recall (P-R) curves and
Receiver Operating Characteristic (ROC) curves obtained by
using different segmentation methods on BUSI. The P-R
curve evaluates model performance by plotting the ratio of
true positives to false positives at different confidence levels.
The ROC curve measures the correct prediction rate of the
method at different confidence levels. We further quantify the
comprehensive performance of the ROC curve by calculating
the Area Under the Curve (AUC) score. Importantly, in com-
parison, our method achieved the highest AUC value on
BUSI, indicating its superior overall performance compared
to other methods. Through the comparison of P-R and ROC
curves, the method demonstrates the highest confidence and
accuracy in image segmentation tasks on BUSI.

In Fig. 9, we showcase the visual segmentation results
of different methods on BUSI. The method exhibits a
significant advantage over other approaches in image seg-
mentation tasks. It excels in eliminating interfering factors,
preserving tumor morphology integrity, and aligning closely
with the ground truth mask. Additionally, the proposed
method effectively mitigates the impact of heterogeneous
structures on the image segmentation outcome. Through a

comprehensive evaluation of experimental results and visual
effects, we observe that our method demonstrates outstanding
performance in breast lesion segmentation tasks, particularly
excelling in omission and error detection.

D. ROBUSTNESS ANALYSIS
To evaluate comprehensively the robustness of the pro-
posed method, we conducted analyses and comparisons in
the following two aspects. Firstly, we examined the seg-
mentation performance of different methods specifically
focusing on benign and malignant breast tumors. Further-
more, we assessed the impact of normal ultrasound images
on the performance of the method.

1) ROBUSTNESS ON BENIGN AND MALIGNANT LESIONS
In this experiment, we conducted a comparison of benign
and malignant images within BUSI to assess the robustness
of our network in segmenting different lesion types. Malig-
nant lesions typically exhibit characteristics like irregular
shapes, unclear boundaries, and uneven intensity distribu-
tions. In Table 5, we present the results of different methods
on the segmentation of malignant and benign breast lesions.
It is evident from the results that our method achieved higher
scores in segmenting benign lesions. Notably, it showed a
significant improvement in segmentation accuracy compared
to other methods. Fig. 9 displays the ROC curves of differ-
ent segmentation methods for benign and malignant lesions,
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TABLE 5. Segmentation results of benign and malignant lesions using different methods. The best results are highlighted in bold text.

TABLE 6. Segmentation results of normal BUSI using different methods. The best results are highlighted in bold text.

further demonstrating the confidence level of our method.
Through the comparison of ROC curves, it clearly showed
that the method’s performance on benign lesions is con-
vincing and exhibits the most competitive performance in
segmenting malignant lesions.

2) COMPARISON ON BUSI WITH NORMAL IMAGES
Breast lesion segmentation in clinical applications gener-
ally serves the purpose of lesion assessment, tracking lesion
changes, and identifying the distribution and severity of
lesions. As a common practice, ultrasound samples are
assumed to contain one or more lesions, and then breast
lesions are segmented for clinical analysis. In this study, novel
comparative experiments were conducted by introducing nor-
mal ultrasound images from the BUSI dataset. We validated
the method on BUSI containing both normal and lesion
images. Table 6 presents the segmentation results of various
methods on normal ultrasound images from BUSI. A notice-
able impact on the segmentation network’s performance was
observed with the introduction of normal ultrasound images
in BUSI, as compared to Table 3. It can be observed from
Table 6 and Fig. 9 that our method achieved the best segmen-
tation performance on BUSI both with and without normal
ultrasound images. This indicates that the proposed method
mitigates the disturbance caused by surrounding tissues with
similar intensity distributions to some extent.

VI. DISCUSSION
In this study, we introduced a novel dual-channel deep
residual attention UPerNet (DDRA-net) to overcome the
challenges of breast lesion segmentation. To assess the effec-
tiveness of network components, we conducted ablation
studies. Through the comparative analysis in Experimental

Results Table 1, we distinctly observed that the specific
configuration of network components we employed yielded
the most superior performance for breast lesion segmentation
tasks. The selection of these network components played a
crucial role in the success of the method.

Based on our experimental results, we can draw conclu-
sions as follows. Variant networks based on the U-Net archi-
tecture (such as U-Net3+) outperform the original U-Net in
breast lesion segmentation tasks. This suggests that utilizing
skip connections to merge low-level features from the encod-
ing stage with high-level features from the decoding stage is
beneficial for accurate breast lesion segmentation. The seg-
mentation outcomes of SegNet indicate that leveraging posi-
tional information of features in the U shape network yields
superior results compared to the majority of other segmenta-
tion methods. From the visual segmentation results depicted
in Fig. 9, we can summarize the following three key points.
In the segmentation results from the first to fourth rows of
Fig. 9, various methods exhibit a certain degree of omission
for smaller breast tumors, and in some cases, they might even
fail to detect breast lesions. In the segmentation results from
the third to sixth rows of Fig. 9, the presence of surrounding
tissues with similar intensity distributions and the signifi-
cant heterogeneity of breast tumors contribute to substantial
false negatives and false positives in breast lesion detection.
Furthermore, as illustrated in the sixth and seventh rows of
Fig. 9, blurry or cascaded BUSI images fail to accurately cap-
ture tumor contours. Although our method still demonstrates
error detection and missing detection, it achieves significant
improvement compared to other methods.

In the robustness analysis experiments, our network
demonstrated remarkable generalization capabilities, further
highlighting the advantages of the DDRA module. In the
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robustness experiments specifically targeting benign and
malignant lesion segmentation, the segmentation perfor-
mance of various methods remained relatively stable. Despite
a slight reduction in our method’s superiority in these exper-
iments, it still achieved better segmentation performance
compared to other methods in the comparative context. This
demonstrates the adaptability of our approach to different
types of input data, ensuring its consistency in performance.

VII. CONCLUSION
The method proposed in this study has consistently delivered
outstanding segmentation results on BUSI. In comparison
to existing attention modules, our DDRA module demon-
strates superior performance in breast lesion segmentation
tasks. Through the incorporation of DDRA module, our
network is capable of learning more generalized representa-
tions of breast lesions from ultrasound images. This attribute
empowers the method to exhibit excellence in handling
diverse datasets and scenarios. In the comparative experi-
ments, our DDRAmodule notably surpasses the performance
of state-of-the-art models in breast lesion segmentation. This
substantiates the effectiveness and superiority ofDDRAmod-
ule in enhancing network performance.

While our method has demonstrated good performance in
breast lesion segmentation, as evident from Fig. 7, there are
still some limitations that need to be addressed. For more
complex BUSI segmentation, further optimization is required
to reduce false positive and false negative rates. Accurately
obtaining object contours remains a challenging task.We plan
to introduce self-attention mechanisms to further enhance the
feature extraction capabilities of the network and are consid-
ering the design of a suitable medical image enhancement
algorithm.
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