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ABSTRACT The two-stage defect detection model needs to pay attention to the results of the segmentation
network and the classification network, and the results of the segmentation network will have an impact on
the classification network. Previous models ignored shallow features in the segmentation network and used
relatively simple classification networks that could not make good use of the features of the segmentation
network. This paper proposes a surface defect detection algorithm based on multi-scale feature fusion and
pyramid attention(MFFPA). First, a multi-scale feature fusion module is added to the segmentation network
to fuse shallow features and extract more comprehensive feature information; then a pyramid attention
module is added to the classification network to increase the receptive field of the model and enhance the
discriminative ability of the model. The method proposed in this article was verified on four datasets, and
the experimental results show that the added module can effectively improve the accuracy of the model.

INDEX TERMS Channel attention, convolutional neural networks, defect detection, multi scale feature
fusion.

I. INTRODUCTION
Product defect detection is an indispensable process in
industrial production, during production monitoring, may
occur with the degraded images, some recent image
processing methods [1], [2], [3], [4], [5] are considered
as the pre-processing steps to handle them. In addition,
previous defect detection required manual screening, which
was costly and inefficient, making it difficult to cover
large-scale quality inspection needs. In recent years, with
the continuous development of computer vision technology,
algorithms based on machine learning and deep learning
have begun to be applied in the field of industrial defect
detection [6].
As shown in Fig.1, according to different data labels,

deep learning models in defect detection can be divided
into fully supervised learning models, unsupervised learning
models, hybrid supervised learning models, and weakly
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supervised learning models [7]. The defect samples used in
fully supervised learning model training all have pixel-level
annotations [8], [9]. Unsupervised learning models only use
defect-free samples for training, but the accuracy of themodel
is lower compared to fully supervised learning models [10],
[11]. Weakly supervised learning models use image-level
labeled data for classification or segmentation, which can
effectively utilize the data to improve the accuracy of the
model [12], [13]. Both unsupervised learning models and
weakly supervised learning models reduce the cost of data
labeling, but the model accuracy is obviously insufficient
compared with fully supervised learning models. Therefore,
in the field of defect detection, some researchers have begun
to use hybrid supervised learning methods, This method
adds a small amount of pixel level sample data on the
basis of weakly supervised learning, effectively improving
the accuracy of the model [14].Compared with weakly
supervised learning, hybrid supervised learning is more
flexible and can achieve better results by labeling a small
amount of data at the pixel level.
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FIGURE 1. As shown above, data labelling in defect detection has been
classified into four cases.

Previous hybrid supervised models composed an overall
model by building associated sub-models, which played a
guiding and strengthening role between different tasks. For
example, the MixSup model proposed by Jakob et al. [15],
the prediction map generated by the segmentation network
of this model is concatenated with the feature map of
the classification network through pooling layers, providing
guidance for the final classification result. However, this
model ignores the shallow features of the segmentation
network and uses a relatively simple classification network.
The state-of-the-art methods is MaMiNet proposed by
Luo et al. [16], This method achieved better results by adding
external attention, but also increased the inference time of the
model.

In response to the problems mentioned above, this paper
proposes a surface detection model based on multi-scale
feature fusion and pyramid attention based on the MixSup
model. This model can effectively enhance the feature
extraction capability of the model and greatly improve
the classification accuracy of the model. And by utilizing
shallow features and reducing the number of channels for
deep features, the computational complexity of the model is
reduced. The main contributions of this paper are as follows:

1) This paper proposes a multi-scale feature fusion module
with local sensing ability, this module can effectively fuse
the shallow features of the model and improve the feature
extraction capability of the model.

2) This article proposes an improved pyramid atten-
tion module, which allows the model to obtain multi-
scale information, focus on more important channel
features.

3) The model proposed in this article had a faster inference
time than the previous best method, and the performance of
the model is also competitive.

II. RELATED WORK
A. DEFECT DETECTION
As early as 2012, Masci et al. have used convolutional neural
network to classify defects in steel [17]. But Masci et al. used
a shallow network and later in 2017, Kim et al. used a deeper
convolutional neural network, VGG16, for defect detection
[18]. In 2018Wang et al. used a convolutional neural network
based on a classification approach to achieve high accuracy
in cloth defect detection [19]. In 2019, Liu et al. used a
lightweight MobileNet-SSD network for defect detection and
achieved faster detection speed [20]. In 2020, Huang et al.
[21] introduced multi-scale features using multiple parallel
null convolutional layers.

Since fully supervised learning requires a large amount
of labeled data, some researchers began to use Few-shot
learning for defect detection. In 2023, Bao et al. proposed
Triplet-Graph Reasoning Network (TGRNet) [22], achieved
universal defect detection of metals with few samples.
Feng et al. [23] used space-squeeze attention (SSA)module to
aggregate multiscale context information of defect features.
Xie et al. proposed a new Few-Shot Anomaly Detection
method called GraphCore [24], which uses a small amount
of normal samples to achieve fast training of new products
and competitive accuracy performance.

Unsupervised learning does not require defective samples
for training, and is also favored by many researchers.
In 2021 Marco et al. used a normalised streaming approach
on the MVTEC dataset to achieve the best results for unsu-
pervised anomaly detection [25]. In 2024, Batzner et al. con-
structed a lightweight teacher-student model [26],achieved
detection speed of 2ms. Hyun et al. employs contrastive
representation learning to collect and distribute features in
a way that produces a target-oriented and easily separable
representation.This article uses a hybrid supervised learning
method to reduce the data annotation cost caused by full
supervision. Using only a small amount of pixel-level
annotation data can greatly improve the AP of the model.

B. ATTENTION MECHANISM
In 2015, Xu et al. [27] proposed a visual attention theory,
which introduced the attention mechanism into the field of
computer vision for the first time. Later, Hu et al. [28]
proposed a Squeeze-and-excitation networks(SE) to calculate
the weight of each channel, and Hu et al. [29] used spatial
attention to assign weights to the pixel points of each feature
map. Inspired by these studies, a series of studies such as
CBAM [30], SCSE [31], and CoordAttention [32] fused
channel attention with spatial attention to achieve better
results. The above models have been simplified in some stud-
ies, Gcnet [33] proposed a simpler spatial attention module,
and ECA-Net [34]introduced one-dimensional convolution to
reduce the number of parameters of the model.In order to
effectively obtain and utilize the spatial information of feature
maps at different scales, Zhang et al. proposed an efficient
pyramid squeeze attention net(EPSA) [35].
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FIGURE 2. Network structure diagram.

FIGURE 3. Segmentation network structure diagram.

C. MULTI-SCALE FEATURE FUSION
Multi-scale feature fusion is a common target detection
technology. Its main function is to integrate features of
different depths and different levels in order to better utilize
multi-scale features to reduce the semantic gaps between
different layers.In 2017, Lin et al. proposed the classic feature
pyramid network(FPN) [36],which fusion feature from deep
layer to shallow layer.In 2020, Tan et al. proposed BiFPN
[37],which fusion feature bidirectionally.Then in 2023, Quan
et al. proposed a Centralized Feature Pyramid module [38]to
optimize global information,make full use of the same
scale of information.Wang et al. proposed a gather-and-
distribute module [39], which use different fusion methods
for low-stage features and high-stage features.

III. METHOD
As shown in Fig.2, the defect detection model proposed in
this paper consists of segmentation network and classification

network. After global average pooling and global maximum
pooling, the features of the final output of the segmentation
network are spliced with the final output of the classification
network, which plays a guiding role in the final results of the
model.

A. SEGMENTATION NETWORK
The structure diagram of the segmentation network is shown
in Fig 3. The input image passed through three stages, and
each stage is composed of a 2 × 2 maximum pool layer
and several 5 × 5 convolution layers. Select the feature map
of the last layer of each stage to obtain the feature map
of 64 channels, 64 channels and 128 channels respectively,
and then use the average pool to sample the feature map
down. By concatenating the downsampled feature maps,
256 channel feature maps are obtained and further fed
into the outlookattention module [40],obtain the relationship
between feature points and surrounding feature points, and
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further extract local features. The 128 channel feature map
output from the last stage is convoluted by 15 × 15 to
obtain 256 feature maps. The large convolution kernel can
effectively increase the receptive field of the model and bring
better segmentation effect. At the end of dividing the network,
the feature map output by the fusion module is Concatenated
with the feature map output by 15 × 15 convolution, and a
single channel feature map is obtained by convolution. The
feature map is used to calculate the segmentation loss and the
final classification loss.

B. OUTLOOKATTENTION
In order to enhance the local perception ability of the model,
outlookattention module is added to the multi-scale feature
fusion module.As shown in Fig 5.outlookattention module is
divided into two branches. The branch at the top of the picture
is the weight production module. The feature map generates
weights as shown in equation 1. X denoted the input feature
map. At the down of the pictureis,the local window features
of the input feature map are obtained by linear layer and
unfold operations as shown in equation 2. Finally, as shown
in equation 3 the weight is multiplied and accumulated with
the feature after Softmax operation to get the final output.

A = Reshape(fc(x)) (1)

V = fc(x)

V1i,j =

{
Vi+m−

K
2
,Vj+n−K

2

}
, 0 ≤ m, n < K (2)

Y =

∑
0≤m,n<K

matmul
(
Softmax(A),V1i,ji+m−

K
2 ,j+n−K

2

)
(3)

C. CLASSIFICATION NETWORK
The structure diagram of the classification network is shown
in Fig 5. The classification network first sends the feature
map of 513 channels from the segmentation network to
max pooling layer and convolutional layer, reduced the size
of the feature maps and the number of channels. Then,
the multiscale information of the feature map is obtained
by convolution of different kernel sizes. After, the feature
maps are concatenated together to calculate the attention
weight, and the features of different scales are weighted after
softmax operation. Finally, the feature map is reduced to
32 channels through convolution operation. The feature map
of 32 channels is used to calculate the final classification
loss through global average pooling and global maximum
pooling.

D. COORDINATE ATTENTION
Different from the SE Weight module used in EPSA,
this paper used Coordinate Attention to calculate attention
weights. AS shown in Fig 4, the input features are pooled in
two directions, which can encode the spatial information into
the attention map. Then, similar to SE Weight module, the
attention weight matrix is obtained by convolution. Finally,

the weights of the two directions are obtained by splitting
operation.

E. LOSS FUNCTIONS AND EVALUATION INDICATORS
The loss function used in this paper is shown in equation 4:

L = λ ∗ γ ∗ Lseg + (1 − λ) ∗ θ ∗ Lcls (4)

where Lseg denotes the loss of segmentation network and
Lcls denotes the loss of classification network. λ is the
weight of the balancing factor responsible for balancing the
losses of the two networks, γ is an indicator of the presence
or absence of pixel-level labeling, and θ is an additional
classification loss weight.

In industrial production quality control, products are
categorized into defective and non-defective, and the classi-
fication result of the image determines whether the product
is discarded or not. Therefore, in all experiments, this paper
focuses on the classification result of each image. Based on
the above considerations, this paper uses AP and AUC as
evaluation metrics.The AP evaluation metric is averaged over
the Precision corresponding to each threshold, calculated as
shown in equation 5:

AP =

∫ 1

0
p (r) dr (5)

where p (r)Indicates the accuracy of the model, which is
calculated as shown in equation 6.TP denotes the number
of samples that are correctly classified as positive examples,
and FP denotes the number of samples that are incorrectly
classified as positive examples.

Precision =
TP

TP+ FP
(6)

The AUC value is the area under the ROC curve, when
different thresholds are taken, multiple sets of coordinates
are obtained,the coordinates are calculated as shown in
equation 7, TN indicates the number of samples that are
correctly classified as negative cases, and FN indicates the
number of samples that are incorrectly classified as negative
cases. This evaluation index can effectively see the ability of
the model to recognize positive samples.

x : FP/ (FP+ TN )

y : TP/ (TP+ FN ) (7)

Also for further comparison, this paper adds the model’s
inference time (FPS) as an evaluation index to assess the
detection speed by the time of inference of one picture, which
is calculated as shown in equation 8, Where T is the time for
the model to inference a picture.

FPS =
100∑1
100 T

(8)
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FIGURE 4. Classification network structure diagram.

FIGURE 5. OutLookAttention structure diagram.

FIGURE 6. Coordinate Attention structure diagram.

IV. EXPERIMENTS
A. DATASET
The experiments in this paper use four datasets that are
currently dominant in defect detection: the KolektorSDD
(KSDD) dataset [41], the DAGM dataset [42], the Kolek-
torSDD2 dataset (KSDD2) [15] and the Severstal Steel defect
dataset (STEEL) [43].
The KSDD dataset was provided by the Kolektor Group

doo defect production program. It contains a total of
399 images, 52 of which have visible defects and the
remaining 347 images are normal images, each of which has
a size of approximately 500*1240 pixels.

The DAGM dataset was provided by the International
Pattern Recognition Association. A total of 3450 images are
included, and the size of each image is 1600*256 pixels.

The KSDD2 dataset is provided by the Kolektor Group
doo defective production program. A total of 3335 images
are included, of which 356 images have visible defects and
the remaining 2979 images are normal images, each of which

has a size of approximately 230*640 pixels. The training set
consists of 246 images with defects and 2085 images without
defects and the test set consists of 110 images with defects
and 894 images without defects;

The STEEL dataset is a steel surface defects dataset
provided by Severstal, there are a total of 18074 grayscale
images with 4 classifications, and the image size is 1600*256
pixels. There are a total of 12568 images in the training set,
containing 7095 defective images and 5473 normal images.
Only a subset of this dataset is used in this paper.

B. EXPERIMENTAL SETUP
The experimental setup of this paper is as follows:

(1) Regarding the number of pixel-level annotations N in
the KSDD dataset, the settings in this paper are [0, 5, 10, 15,
20, 33]. the Batchsize size is 1, the learning rate is initialized
to 0.01, and the number of iterations is 50 epochs;

(2) Regarding the number of pixel-level annotations N in
the DAGM dataset, the setting in this paper is [0, 5, 15, 45,
1000]. the Batchsize size is 1, the learning rate is initialized
to 0.05, and the number of iterations is 70 epochs;

(3) Regarding the number of pixel-level annotations N in
the KSDD2 dataset, the setting in this paper is [0, 16, 53, 126,
246]. the Batchsize size is 1, the learning rate is initialized to
0.01, and the number of iterations is 50 epochs;

(4) Positive samples N of STEEL dataset is set as
[0,10,50,150,300,750], Batchsize size is 10, Learning rate is
initialized as 0.1, and the number of iterations is 90 epochs.

This paper focuses on three sets of experiments:
(1) Test the AP of the model on the KSDD dataset, DAGM

dataset, KSDD2 dataset, and STEEL dataset
(2) Using the KSDD2 dataset to verify the effectiveness of

the multi-scale feature fusion module and pyramid attention
module;

(3) The effects of different weight modules in the pyramid
attentionmodule on theAP andAUCof themodel were tested
on the KSDD2 dataset.

The experiments in this paper are based on the
Ubuntu16.04 system, and the code running environment
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TABLE 1. Experimental results of the KSDD dataset.

TABLE 2. Experimental results of the DAGM dataset.

is Python 3.8, Pytorh 1.8.0, and torchvision 0.9.0. The
GPU used in the experiment is RTX2080Ti (video memory:
11GB). The code running environment for FPS calculation
is Python 3.8, Pytorh 2.1.2, and torchvision 0.10.0. The
GPU used in the experiment is GTX1080Ti (video memory:
11GB).

C. COMPARISON EXPERIMENT
In order to verify the effectiveness of the proposed improve-
ments in this paper, this paper compares with the detection
algorithms with excellent results in recent years on the
KSDD2 dataset and the STEEL dataset, and the unsupervised
methods compared to this article are F-AnoGAN proposed
in 2019 [44],Uninf student proposed in 2020 [45], SGSF
proposed in 2022 [46]. The fully-supervised method are
SDA proposed in 2020 [41],PSIC-Net proposed in 2021 [47].
The mixed-supervised method are TNN proposed in2020
[14],Mix sup proposed in 2021 [15],DSR proposed in 2022
[48], MaMi proposed in 2023 [16].

As shown in Table1, Comparison experiments on the
KSDD dataset show that in the weakly supervised case, the
AP of this paper is 94.72%, which is 3.78% lower than the
current best method;in the fully supervised case, the AP of
this paper is 100%, which is the same as the previous best
method.

As shown in Table 2, Comparative experiments on the
DAGM dataset show that in the weakly supervised case, the
AP of this paper is 82.9%, which is a 2% improvement over
the previous best method, and in the fully supervised case, the
AP of this paper is 100%,which is the same as the previous
best method.

As shown in Table3, experiments on the STEEL dataset
show that in the weakly supervised case, the AP of this paper
is 95.51%, which is a 3.91% improvement over the previous
best method.

As shown in Table6, comparing experiments on the
KSDD2 dataset, the AP of this paper is 88.01% in the weakly-
supervised case, which is a 0.81% improvement over the

TABLE 3. Experimental results of the STEEL dataset.

FIGURE 7. Visualisation of results diagram.

previous bestmethod, and in the fully-supervised case, theAP
of this paper is 95.6%, which is 0.6% lower than the current
best method.

D. VISUALIZATION RESULTS
As shown in Fig.7, at the top of the image are the scores
for defect detection, When defects are detected and classified
correctly, the use of multi-scale feature fusion module and
pyramid attention module can make the scope of attention
of the model wider, and the model has better discrimination
ability in the defective parts. Moreover, when no defects
are detected, the model before improvement will have
classification errors. After improvement, the model can
accurately judge and has higher identification ability. From
the visualization results, it can be seen that the proposed
multi-scale feature fusion module and pyramid attention
module can effectively enhance the feature extraction ability
and discrimination ability of the model.

E. ABLATION STUDIES
In order to investigate the effect of the multi scale fusion
module(MFF) and pyramid attention module(PA) on the
model, several groups of comparative experiments were
carried out in this paper. Table 5 and Table 6 shows the results
of the ablation experiments on the KSDD2 dataset in this
paper.

When the number of pixel level annotations n=0, adding
MFF module can improve AP by 6.94%; In all cases,
AP increased by 3.44%; When the number of labels is n=0,
the AP increases by 11.15% by adding PA module. In all
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TABLE 4. Experimental results of the KSDD2 dataset.

TABLE 5. Ablation experimental results of the KSDD2 dataset(evaluation
metrics:AP).

TABLE 6. Ablation experimental results of the KSDD2 dataset(evaluation
metrics:AUC)).

cases, AP increased by 4.71%. When adding MFF module
and PA module at the same time, AP was 88.01% in the case
of only image level annotation, which was 13.5% higher than
baseline. In all cases, the AP of this experiment increased by
5.94%. The experimental structure proves that adding MFF
module and PA module at the same time can effectively
improve the AP of the model.

When the evaluation metric is AUC and pixel level
annotations N=0, adding MFF module can improve AUC
by 1.23%; Adding PA module, AUC increased by 5.58%;
When used at the same time, AUC increased by 4.38%. In all
cases, using MFF module and PA module, this method also
has 2.13% improvement. Experimental results show that the
proposed model can effectively detect defects, and also show
that the introduction of shallow features will affect the AUC
of the model.

As shown in Table7 and Table8, the results of the
ablation experiments on the use of Attention weight module.
When using AP as an evaluation metric, using CA has
approximately 1% improvement compared to SE.When using
AUC as an evaluation metric, as seen from the Table8, Using
SE or CA as attention weights, there is not much difference
in AUC between the two. The experimental results show

TABLE 7. Ablation experimental results of the Attention weight
module(evaluation metrics:AP).

TABLE 8. Ablation experimental results of the Attention weight
module(evaluation metrics:AUC).

TABLE 9. Model parametric quantities and computational analysis.

that using channel attention in classification networks can
effectively improve the model’s AUC.

F. ANALYSIS OF MODEL PARAMETERS AND FLOPS
As shown in Table9, compared with the baseline, it can be
seen that by introducing shallow features and reducing the
number of channels in the last layer of the segmentation
network, the parameter count of the model is reduced by
27.8%, and the FLOPs is reduced by 30.57%. Compared with
MaMiNet, the parameter count of the model is only 67.1% of
MaMiNet, and the FLOPs is only 65.69% of MaMiNet, The
model is also higher than the previous best model on FPS,
fully demonstrating the efficiency of the model.

V. CONCLUSION
The existing two-stage surface defect detectionmodel ignores
the shallow characteristics of the segmented network, and
the classification network cannot effectively utilize the
characteristics of the segmented network transmission. This
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paper proposes a two-stage detection model based on
multi-scale feature fusion and pyramid attention. Ablation
experiments show that the multi-scale feature fusion module
proposed in this paper can effectively use shallow features
and improve the accuracy of the model. In addition, the
pyramid attention module proposed in this paper can obtain
more comprehensive feature information and effectively
improve the discrimination ability of the model. The exper-
imental results on the KSDD2 dataset show that the model
proposed in this paper achieves excellent results with less
computational overhead.

In future work, we will further study how to effectively
integrate multi-scale features. The multi-scale feature fusion
module used in this paper is relatively rough, without
considering the relationship between features of adjacent
layers, and the outlookattention also affects the inference
speed of the model. In the next step, we will study how to
better integrate multi-scale features and seek better ways to
replace outlookattention.
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