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ABSTRACT According to the Air Quality Directive 2008/50/EC, air quality zoning divides a territory
into air quality zones where pollution and citizen exposure are similar and can be monitored using similar
strategies. However, there is no standardized computational methodology to solve this problem, and only
a few experiences in the Comunidad of Madrid based on chemistry transport models. In this study,
we propose a methodological improvement based on the application of deep learning. Our method uses
the CHIMERE-WRF air quality modelling system and adds a step that uses neural networks architectures
to calibrate the simulations. We have validated our method in the Region of Murcia. The results obtained
are promising given the values of the Pearson coefficient, obtaining r = 0.94 for NO2 and r = 0.95 for O3,
improving 86 % and 29 % the performances reported in the state of the art. In addition, the cluster score
improves after applying neural networks, demonstrating that neural networks improve the consistency of
clusters compared to the current air quality zoning. This opened new research opportunities based on the
use of neural networks for dimension reduction in spatial clustering problems, and we were able to provide
recommendations for a new measurement point in the Region of Murcia Air Quality Network.

INDEX TERMS Air quality, artificial neural networks, atmospheric modeling, clustering algorithms, deep
learning.

I. INTRODUCTION
Air pollution is the primary environmental health risk that
significantly affects morbidity and mortality [1]. It is a key
aspect of human health and environmental preservation, and
has deteriorated due to increased anthropogenic emissions
from different economic sectors [2]. Climate change mitiga-
tion is one of the most important challenges related to digital
transformation, as outdoor air pollution is a major problem,
attributed to 3.7 million deaths globally, and is related to
global climate change, acid rain, haze, ozone depletion and
crop damage [3]. For this reason, one of the key insights of
digital transformation is air quality monitoring, evaluation,
prediction and mitigation to create plans for cleaner air.
This problem is more serious in cities, which are highly
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populated and perceived by citizens as unhealthy places.
Thus, air quality management is among the most important
services in the new smart cities paradigm [4]. The European
legislation establishes that member countries should identify
different air quality zones by their air quality properties,
that is, through a process called air quality zoning [5].
This is a land classification problem where the spatial units
are aggregated according to spatial contiguity or adjacency
constraints. In this context, these restrictions are defined by
the pollutant concentration values of the different spatial
units - in this work, we will define the spatial unit as each
cell of a grid domain [6]. Defining an air quality dispersion
model that generates this information is necessary to assign a
value to each cell.

To improve the air that citizens breathe, Directive
2008/50/EC of European Parliament and Council on May
21, 2008, on ambient air quality and cleaner air for Europe
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indicates that each member state must classify its territory
into air quality zones that constitute an independent and
homogeneous geographical unit for air quality management
(monitoring, implementation, and evaluation of air quality
plans) [7]. In addition, population exposure to air pollution
within each zone is assumed to be similar [8]. Consequently,
exceeding AQ standards and objectives for a pollutant at
any AQ monitoring station (AQMS) implies non-compliance
with AQ standards and objectives. It is easy to note that
methodologies that help stakeholders identify measurement
points are essential before implementing an air quality
network. This problem is called air quality zoning and
consists of identifying areas with similar pollution patterns
that can be monitored with the same devices, because it is
possible to assume that pollutant concentration values can be
extrapolated to the entire zone [9].

In this context, the scientific development of air quality
models is essential for zoning based on the evidence provided
by data. The chemistry transport models based on an Eulerian
approach are the most important ones, and CHIMERE [10]
is one of the most relevant at the European level. This is an
open-source multi-scale chemistry-transport model designed
to produce i) accurate analysis of pollution episodes, ii) daily
forecasts of ozone, aerosols and other pollutants, and iii)
long-term simulations (entire seasons or years) for emission
control scenarios [11]. In this sense, several studies have
used chemistry transport models coupled with clustering
algorithms to automatise the problem of air quality zoning
at the regional level in Madrid [12]. However, that study
has several limitations: i) the air quality zoning can only
be performed at a regional level due to the computational
complexity of the high-resolution simulation, and ii) the
process of air quality zoning does not take into account the
historical measurement data.

For this reason, we propose a new methodology starting
from the automatic clustering proposed in [12]. Thus, this
paper aims to validate this new air quality zoning in the
Region of Murcia, dealing with the previous limitation by
exploiting deep learning technologies and ground measure-
ments. We hypothesised that using artificial neural networks
trained with hyperlocal air quality data could improve the
accuracy of the predictions, allowing automatic better high-
resolution zoning. This has been done by trying differ-
ent architectures, namely simple artificial neural networks
(ANN); long short term memory networks (LSTM-NN);
convolutional neural networks and residual neural networks
(ResNET). Thus, our proposal will contribute with the
following points to state of the art: i) it is the first approach for
automatic air quality zoning in the Region of Murcia, an area
with an important ecological value, agricultural and livestock
activities, and medium-scale industry, being representative of
the Mediterranean countries [13]; ii) it is the first application
of Deep Learning to adjust simulations with hyperlocal data
and iii) we can identify missing measurements points in
the implemented air quality networks. We have validated

our methods by comparing the proposed air quality zoning
with the one proposed by the Spanish Government through
the Ministerio para la Transición Ecológica y el Reto
Demográfico (MITECO).

The rest of the paper is structured as follows. First, the State
of the Art section sets the theoretical background and the
work performed in air quality modelling and zoning. Then,
theMaterials andMethods section describes themethodology
used for modelling, the neural networks architecture and
the strategy for the air quality zoning. These simulations
provide Results, drawing a final air quality zoning for Spain
and Ireland, compared with the current proposal. Then,
these results are analysed in the Discussion section and
compared with state of the art, obtaining recommendations
for future researchers. Finally, the main conclusions and
future challenges are presented in the Conclusions.

II. STATE OF THE ART
Research on air quality dispersion models has been
approached in the literature from two perspectives. The first
one aims to model the physical and chemical processes
in the atmosphere. These models are named deterministic
and typically solve the differential equations that represent
the processes controlling the environment and are used
for a range of tasks, including developing new scien-
tific understanding and environmental policies [14]. 3D
Chemistry Transport Models are the most important and
were developed to support decision-making. These models
are limited in terms of resolution, mainly because higher
model resolutions may provide more accurate and detailed
information but with higher computational costs due to the
Courant-Friedrichs-Lewy condition [15], being impossible
to achieve resolution higher than 1 km x 1 km. Also, the
presence of uncertainties in their initial conditions, input
variables and parameterisations [16] is the cause of various
biases which limit their usefulness for some tasks. In this
context, one of the most notable 3D Chemistry Transport
Models, CHIMERE, has implemented an online coupled
mode with Weather Research Forecast (WRF) in the version
available at the time of writing [11].
Other methods are based on statistical and artificial intel-

ligence techniques, including machine learning. Statistical
techniques focus on improving the data quality by missing
data imputations or signal reconstruction models based on a
graph learned from the data, exhibiting good results in O3,
NO2 and PM10 networks [17]. However, the state-of-the-art
statistical models are not enough to capture all the complexity
of atmospheric physics.

From the machine learning side, random forest regressors
have been used to train a machine learning replacement
for the gas-phase chemistry in the GEOS-Chem chem-
istry model on the timescales of days to weeks [18].
The architectures of the neural networks determine their
ability to extract complex nonlinear features across scales
from high-dimensional datasets, which is important for
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modelling non-linear pollutants such as O3 or PM2.5 [19].
Neural networks usually obtain better results than traditional
machine-learning strategies [20]. Other studies suggest that
the gated recurrent unit (GRU) model is slightly better
than the RNN and LSTM models for predicting PM10 and
PM2.5 concentration [21], [22]. GRU is an improvement of
traditional LSTM approaches, and it is based on integrating
and screening information in a chronological order, some of
which is retained, and the other one is discarded.

Several neural network architectures have been proposed
in the air quality dispersion problem context. For example,
some studies used recurrent neural networks (RNN) and long
short-term memory (LSTM) models to predict air pollution
from historical time series pollutant data and meteorological
data [23], [24]. For this reason, a new trend is to use the
power of deep learning to improve the performance of deter-
ministic models, which could be complemented by machine
learning [25]. Deep learning techniques can potentially
accelerate atmospheric chemistry computations of CTMs by
emulating the chemical mechanism [19]. On the other hand,
a simple recurrent 3-layer neural network predicts daily mean
concentrations of NO2, SO2 and C2H6 over Europe based
on the Community Multiscale Air Quality model (CMAQ),
showing that neural networks can approximate the continuity
equation [26]. Other strategies focus on calibrating the model
with a backward propagation neural network using ground
monitoring data [27]. Last, neural networks have been used to
perform high-resolution simulations with low computational
cost, using the simulations of the CHIMERE model as a
background [15].

According to the literature, there is very limited experience
in automated air quality zoning. The most automated
approach was performed in Madrid [12], coupling chemistry
transport models with clustering algorithms. A Functional
Principal Component Analysis (FPCA) was applied to
identify the most relevant clustering variables from these
statistics and subsequently apply a k-mean cluster analysis.
The definition of the number of air quality zones (clusters) is
based on threemethods: Elbow, Silhouette, andGap statistics.
However, this air quality zoning can only be performed at a
regional level, in other words, in a wide area and not on a
local/urban scale due to the computational complexity of the
high-resolution simulation [28].
The use of neural networks remains unexplored for air

quality zoning. It is true that the applications of neural
networks for dimensionality reduction have been explored
in other fields such as hydrology [29] or medical imaging
processing [30]. Other unsupervised strategies for dimension-
ality reduction includes multiview fuzzy c-means clustering
algorithms, a technique used in data analysis and machine
learning to group data points into clusters when multiple
perspectives or views of data are available [31]. The main
advantage of ANN in land classification problems is its
contribution to solving the local minima problem present in
traditional clustering algorithms, as well as being able to
separate complex populations. However, its main limitation

is the low explainability of deep learning models, making
them not applicable for some use cases. In addition, the
computational cost for training is higher [32].
This is the starting point for our work and our main

contribution beyond the state of the art is that we propose
the first automatic air quality zoning method based on
CHIMERE and neural networks.

III. MATERIALS AND METHODS
The overall methodology proposed for this study is based
on the work carried out in the Comunidad of Madrid [12],
with the addition of deep learning strategies as a scientific
contribution in this paper.

In general terms, the methodology is composed of the
following steps, as summarised in Figure 1: i) a mesoscale
air quality dispersion simulation (CHIMERE-WRF) over the
study domain to compute the air quality concentration in
each one of the grid points; ii) a calibration using ANN
using ground measurements as reference data; iii) a principal
component analysis preprocessing to reduce dimensionality;
iv) a municipality aggregation algorithm and; v) a clustering
approach to classifying each municipality in one air quality
zone.

The air quality zoning process involves several steps,
each one with specific goals. First, mesoscale air quality
dispersion provides continuous concentration values across
the domain and historical datasets. Second, neural network
calibration addresses bias in chemistry transport models
caused by uncertainties in emissions inventories, enhancing
the reliability of air quality data [33]. Then, municipality
aggregation aims to interpolate data into administrative units
for legislative compliance and better interpretation [12]. The
next step, first principal component analysis (FPCA), focuses
on dimensionality reduction. In the last step, clustering
algorithms classify geographical units into different zones
based on calculated features [34]. The combined use of
these techniques addresses challenges in air quality zoning
by automating and standardizing the process, reducing
human interaction steps, minimizing discrepancies between
regions, and enhancing data quality through neural network
calibration.

A. MESOSCALE SIMULATIONS
The mesoscale simulations have been performed with the
CHIMERE-WRF coupled model in concrete version v2020r3
[11]. A gridded domain of 15 × 15 km was filled by cells
of 10 km2 (Figure 2). The meteorology boundary conditions
have been downloaded from NCEP FNL Operational Model
Global Tropospheric Analyses, continuing from July 1999
(https://rda.ucar.edu/datasets/ds083.2/dataaccess/), and the
emission inventories from CAMS Copernicus Atmospheric
Monitoring Service (https://eccad3.sedoo.fr/). The emission
fluxes in the grid points are computed with the emisurf
preprocessor, and the chemical kinetics have been modelled
with the MELCHIOR 1 reaction mechanism [35]. The
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FIGURE 1. Overall methodology for air quality zoning computation, based on [12]. In yellow, the new step that we propose in this paper is based on
ANN.

simulation period covers the whole of 2020 with 1 hour
timestep.

B. DEEP LEARNING APPROACH
Our main contribution is the use of several neural network
architectures for calibration before air quality zoning. The
general workflow of the calibration process is presented in
Figure 3, in which a model for each pollutant is trained
using as feature NO2, NO, O3, CO, SO2, PM10, PM2.5 and
temperature computed by CHIMERE-WRF, and the target
pollutant as labeled variable. Thus, for each pollutant we
resolve a regression problem. Once the model is trained, it is
integrated into the architecture presented in Figure 3. Each
model takes as input 8 features and returns one, the corrected
gas. Then, all these corrections are merged into a single table
and used as input for the next step, the FPCA.

Regarding the hyperparameter tuning process, a k-fold
cross validation strategy (Figure 4) has been followed,
in which the dataset undergoes a random division into k
stratified folds. Each fold serves as a test set once, with
the remaining folds temporarily amalgamated to construct a
training set for model development [36]. Performancemetrics
are computed and saved for the test set, and this process is
iterated for the total number of generated folds. In general,
the number of epochs set for each iteration is 1000, but this
number is lower if the training convergence is reached before
epoch 1000, understood as the step in which the loss function
stops decreasing. The concrete parameters to be tuned
depends on the specific architecture, and this section present
five different architectures tested: i) simple artificial neural
networks with dropout modules (ANN); ii) recurrent neural
networks with long short-termmemory layers (RNN-LSTM);
iii) convolutional neural networks (CNN); and iv) residual
neural networks (ResNET). The framework used to define all
architectures was tensorflow (https://www.tensorflow.org).

1) ARTIFICIAL NEURAL NETWORK (ANN)
This model consists of a series of layers, starting with a
dense layer with n units and ReLU activation, which is
crucial for capturing complex patterns in the input data.
A key step is the introduction of dropout module after each
dense layer, by preventing overfitting and missing values
handling, thereby enhancing generalization. The subsequent
LeakyReLU layers introduce non-linearity with a small
negative slope for negative inputs, potentially mitigating
the vanishing gradient issue and avoiding collapse in the
training process. The architecture proposed concatenates five
Dense-Dropout-LeakyRELU blocks. By stacking all these
layers, the proposed model can learn hierarchical features
and intricate relationships within the data with a general and
easy replicable architecture. The final Dense layer with a
single unit serves as the output layer, producing the regression
prediction after passing a sigmoid activation function. The
main advantage of the model is its low complexity, crucial
for robust performance in regression tasks. However, the
simplicity of the model can lead to the inability to learn
key process and dependencies of the original dataset. The
proposed architecture is schematized in Figure 5.
The hyperparameter tunning process for this architecture

is based on exploiting different configuration and probability
distributions of the main parameters of the network, the
number of neurons (n), the slope of the LeakyRELU layer
(α), the learning rate and the dropout rate od the dropout
module. The LeakyReLU α is sampled from a discrete set of
values, including [0.1, 0.2, 0.4, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]. The
number of neurons in each dense layer spans from 1 to 100,
enabling the investigation of various model complexities.
The learning rate is sampled from a reciprocal distribution
between 3e-4 and 3e-2, allowing for exploration across
multiple orders of magnitude. The dropout rate (drop) after
each Dense layer is selected from the set [0.01, 0.02, 0.03,

VOLUME 12, 2024 38703



E. I. Fernández et al.: Improving Air Quality Zoning

FIGURE 2. Parameters used for the CHIMERE simulations. On the top are the domain dimensions and
representation in geographical information systems. On the bottom, the municipalities in the Region of Murcia
and the emissions inventories used in this study.

FIGURE 3. Deep learning calibration overview. A model for each pollutant
is trained and all the calibrated features as used as input for FPCA.

0.04, 0.05, 0.06, 0.07, 0.08, 0.09]. Adjusting hyperparameters
provides flexibility to fine-tune the model’s behavior based
on the specific characteristics of the data.

2) LONG SHORT TERM MEMORY NEURAL NETWORKS
(RNN-LSTM)
The architecture of this neural network is similar to the
one proposed by the simple ANN, and it is designed for
sequential data processing, focusing on Long Short-Term
Memory (LSTM) layers instead of dense layers. The model
begins with an LSTM layer with n units, utilizing a
ReLU activation function and an input shape of (1, 8).
The choice of LSTM layers, each followed by dropout

regularization and LeakyReLU activation, is intended to
capture spatiotemporal dependencies and patterns in the
input data. As shown in Figure 3, we concatenated seven
consecutive blocks LSTM-Dropout-LeakyRELU. Each LSTM
layer should output sequences rather than a single value,
promoting the extraction of sequential information through-
out the network. The LeakyReLU activation with a specified
alpha parameter introduces non-linearity and can mitigate
the gradient problem in the training. Stacking multiple
LSTM, Dropout, and LeakyReLU blocks facilitates the
extraction of hierarchical temporal features. The final layer is
a Dense layer with a single unit corresponding to a sigmoid
activation function, producing the output for the regression
task. The rationale behind this architecture lies in its ability
to effectively model complex sequential dependencies and
patterns, making it suitable for tasks where understanding
temporal and spatial relationships is crucial in air quality
zoning problems.

The hyperparameter tunning process is done over the same
configurations and parameters proposed by the simple ANN
architecture. This implies that the α is sampled from the set
[0.1, 0.2, 0.4, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]; the number of
neurons in each LSTM layer spans from 1 to 100; The learning
rate is sampled from a reciprocal distribution between 3e-4
and 3e-2; and the dropout rate is selected from the set [0.01,
0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09].

3) CONVOLUTIONAL NEURAL NETWORKS (CNN)
The third architecture proposed involves the use of three
instances of a convolutional neural network (CNN) followed
by concatenation to capture diverse and hierarchical features
from the input data, as shown in Figure 7. The input layer is
defined with a shape of (8, 1), indicating a one-dimensional
convolutional operation over sequences of length 8. Each
instance of the model consists of multiple convolutional
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FIGURE 4. The dataset is randomly split into k folds. Each one is used as a test set once, while the other
folds are temporarily combined to form a training dataset. Performance metrics on the test set are
calculated and stored, and the best metrics are selected at the end of the process.

FIGURE 5. Simple artificial neural network architecture (ANN).

FIGURE 6. Long short term memory recurrent neural networks
architecture (LSTM-RNN).

layers with ReLU activation and LeakyReLU activation,
fostering non-linearitywhile preventing the gradient collapse.
The use of three separate instances allows the model to learn
distinct patterns from different perspectives. The Flatten layer
is employed to transform the output of the convolutional
layers into a flat vector, facilitating subsequent processing.
Following the flattened representation, dense layers with
ReLU activation, dropout for regularization, and LeakyReLU
activation are incorporated to extract high-level features.
The final layer of each instance uses a dense layer with a
sigmoid activation function. The concatenation of the three
model instances enables the neural network to combine the
diverse representations learned by each instance, promoting
a more comprehensive understanding of the input data. This
architecture is especially beneficial for capturing complex
patterns and relationships in spatial data, making it suitable
for tasks such as preparing the clustering classification
algorithms.

FIGURE 7. Convolutional neural network architecture (CNN).

For this architecture, the hyperparameter Tunning con-
figuration differs a bit of the proposed for the first two
architecture, to be suitable for the CNN architecture. First,
the LeakyReLU α uses the same configuration, based on the
set [0.1, 0.2, 0.4, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]. The same occurs
for the learning rate, sampled from a reciprocal distribution
between 3e-4 and 3e-2m, and the dropout rate is also selected
from the set [0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08,
0.09]. However, we have added two new hyperparameters.
The first one is the number of filters in each convolutional
layer, spaning from 1 to 20, providing flexibility in extracting
diverse features. Then, filter size is chosen from the set [1, 2,
3], enabling the model to capture features at different scales
and avoiding collapese byh removing more dimension that
are available in the dataset.

4) RESIDUAL NEURAL NETWORKS (RESNET)
The most complex architecture applied in this work is
ResNET, which is described in Figure 8. This ResNET archi-
tecture is designed for one-dimensional data, specifically for
regression tasks. The core component is the residual block,
a fundamental building block of residual neural networks.
Each residual block consists of two CNN layers with batch
normalization and ReLU activation, followed by a residual
connection that bypasses one of the CNN layers. The purpose
of this residual connection is to mitigate the vanishing
gradient problem and facilitate the training of deep networks,
as well as improve robustness of the models. The parameter
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FIGURE 8. Residual neural network architecture (ResNET).

number of blocks control the number of residual blocks that
can integrated into the architecture. The overall architecture
begins with an initial CNN layer with batch normalization
and ReLU activation. Subsequently, a dropout module is
applied, providing the model with the capability to learn
hierarchical features efficiently. Then, a pooling layer utilizes
global average pooling to aggregate spatial information,
and a dense layer with a sigmoid activation function is
employed for regression tasks. This architecture’s strength
lies in its ability to effectively train deep networks, leveraging
residual connections to capture intricate patterns and features
in sequential data while mitigating optimization challenges
associated with depth to suit the characteristics of the specific
regression task.

Regarding the hyperparameter tunning, the configuration
for the ResNet architecture involves exploring various key
parameters. The kernel size and stride parameters are sampled
from discrete sets [1, 2, 3, 4, 5, 6, 7, 8, 9], allowing for
flexible adjustment of filter sizes and downsampling rates.
The number of residual blocks is selected from [1, 2, 3,
4, 5, 6, 7, 8, 9], offering control over the network depth.
The filters parameter, determining the number of filters
in the initial convolutional layer, ranges from 1 to 100,
enabling exploration of model complexity. Learning rates are
sampled from a reciprocal distribution between 3e-4 and 3e-
2, and the dropout rate is again selected from the set [0.01,
0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09], facilitating
the identification of an optimal configuration to enhance
the ResNet model’s performance in terms of convergence,
accuracy, and generalization for specific regression tasks.

C. FUNCTIONAL PRINCIPAL COMPONENT ANALYSIS
Functional Principal Component Analysis (FPCA) is an
adaptation of the classical PCA based on the principles
of functional data science [37]. The reason for using this
strategy is that FPCAhas been used for spatial meteorological
problems [38]. In this case, the preprocessing is done in two
sequential steps: i) first we perform a basis transformation
of the original data before applying FPCA and ii) we apply
the FPCA itself. Basis representations are periodic functions,
and a useful representation for functions that belong (or can
be reasonably projected) to the space spanned by a finite
set of basis functions. At the end, we obtain a new dataset
with a reduced number of features - principal components -
that are a linear transformation of the original features. The

FIGURE 9. Reference air quality zoning at the beginning of 2023
(January). Adapted from SINQLAIR.

framework used to perform FPCA analysis was scikit-fda
(https://fda.readthedocs.io/en/latest/index.html)

D. AGREGATION METHODOLOGY
In this study, the individuals to be classified are the
45 municipalities of the Region of Murcia, and not the
grid point of the simulation domain, to produce more
interpretable results that are comparable with the current air
quality zoning. For this reason, it is necessary to interpolate
the grid values to the municipalities. This is done by
computing the surface weighted mean of all the grids inside
a municipality. This is done after applying FPCA to reduce
the computational cost of this process. The framework used
to perform the geometric and surface calculation is shapely
(https://shapely.readthedocs.io/en/stable/manual.html).

E. CLUSTERING AND HOMOGEINITY
The zoning assessment is done by a clustering analysis
using the k-means algorithm suggested by Borge et al. [12].
Cluster analysis is an unsupervised classification technique
that gathers individuals or observations with homogeneous
characteristics - in this case, municipalities and air quality.
This analysis maximises the similarity of the individuals
within a group and the difference between groups and has
been widely used for clustering classification with various
applications in the environmental field [39]. The Elbow
rule has chosen the optimal number of clusters using the
Silhouette score as a metric, with the restriction that the
number of zones should be greater than the current zoning.
The framework used to perform k-means and compute
metrics was sklearn.

To validate zone consistency, the homogeneity score
was computed using Murcia’s current air quality zon-
ing as a reference [40]. At the beginning of 2023, the
air quality zoning proposed by Murcia public author-
ities was made available at the SINQLAIR platform
(https://sinqlair.carm.es/calidadaire/) (see Figure 9).

38706 VOLUME 12, 2024



E. I. Fernández et al.: Improving Air Quality Zoning

In a complementary way, the evaluomeR package [41]
has been used to compute the optimal number of clusters,
allowing to evaluate of the reliability of features by analysing
the stability and goodness of the classifications of such
metrics. The strength of this method is that we can obtain a
detailed metric for each feature and how it contributes to the
classification [42]. The clustering computes two metrics:

• Stability: this analysis permits the estimate of whether
the clustering is meaningfully affected by small vari-
ations in the sample [43]. First, a clustering using the
k-means algorithm is carried out. The user can provide
the value of k. Then, the stability index is the mean
of several bootstrap replicates’ Jaccard coefficient [44]
values. The values are in the range [0,1] (Unstable:
[0, 0.60], Doubtful: [0.60, 0.75], Stable: [0.75, 0.85],
Highly Stable: [0.85, 1]).

• Quality: the goodness of the classifications is assessed
by validating the clusters generated. For this purpose,
we use the Silhouette width as the validity index.
This index computes and compares the quality of
the clustering outputs found by the different metrics,
thus enabling the measurement of the goodness of
the classification for both instances and metrics. More
precisely, this goodness measurement assesses how
similar an instance is to other instances from the same
cluster and how dissimilar it is to the rest of the
clusters. The average on all the instances quantifies
how the instances are appropriately clustered. Kaufman
and Rousseeuw [45] suggested the interpretation of the
global Silhouette width score as the effectiveness of
the clustering structure. The values are in the range
[0,1] (There is no substantial clustering structure: [-1,
0.25]; The clustering structure is weak and could be
artificial: [0.25, 0.50], There is a reasonable clustering
structure: [0.50, 0.70]; A strong clustering structure has
been found: [0.70, 1]).

Last, the clustering validation has been performed with
the Kruskal-Wallis test, and we defined a clustering score as
the −log10 of the P-value (P) obtained - it should be taken
into account that a P-value under 0.05 indicates a significant
difference between the median of the clusters. This clustering
score is computed for each pollutant.

ClusteringScore = −log10(P)

F. COMPUTATIONAL RESOURCES
The CHIMERE-WRF systemwas run on an OVH server with
an Intel(R) Xeon(R) CPU E3-1245 V2 @ 3.40GHz - 8 Cores
operating system with 31 GB of RAM and 1 TB of storage.
The operating system isUbuntu 18.04× 86_64. Thismachine
was used also for the training of the neural network models.

IV. RESULTS
This section provides an overview of the results and analyses
performed, organised into several key subsections. In the first
subsection, Hyperlocal Measurement Data, we present the

FIGURE 10. Percentage of missing values in the data collected by the
Region of murcia air quality network.

empirical data collected from various monitoring stations.
This offers insights into real-time air quality conditions
in the Region of Murcia Air Quality Network. Next,
in the CHIMERE Simulations subsection, we delve into the
outcomes of numerical simulations using the CHIMERE-
WRF model, shedding light on the spatiotemporal dynamics
of air pollutants. Then, Deep Learning Calibration presents
the neural network models employed and their performance.
Last, the Air Quality Zoning subsection discusses the
clustering results and the effect of neural networks on these
outcomes.

A. HYPERLOCAL MEASUREMENT DATA
Figure 10 shows the results of an exploratory analysis
of the 2020 historical data collected from the Region of
Murcia Air Quality Network. A computation of missing
values was done to understand the reliability of the trained
models. These results showed a high difference between
pollutants. It should be noted that CO and PM2.5 showed
a high percentage of missing values - 64 % and 79 %,
respectively - while O3 and NOx presented a high degree of
completeness - 2 % and 10 % of missing values, respectively.
Last, PM10 and SO2 presented 31 % and 26 % of not
imputed measurements, respectively. For this reason, the
inclusion of dropout modules in the architectures presented
in section III-B was a wise decision because they helped to
improve the robustness of the training process in relation to
the high percentage of missing values in some datasets.

B. MESOSCALE SIMULATION PERFORMANCE
Table 1 presents the results of a validation study. It consists
of several columns, including the name of the gas under
evaluation, the Pearson Coefficient, the Determination Coef-
ficient, and the Mean Absolute Error. Each row corresponds
to a different gas computed by CHIMERE. The Pearson
Coefficient quantifies the linear correlation between the
CHIMERE-WRF model and the reference station data, while
the Determination Coefficient assesses the goodness of fit.
The Mean Absolute Error represents the difference between
the model and the reference station values. The data in the
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TABLE 1. Validation CHIMERE-WRF against reference station (hourly
mean values).

TABLE 2. Validation CHIMERE-WRF against reference station (daliy mean
values).

table suggests varying levels of agreement between the model
and the reference station data, with different gases showing
different degrees of correlation and accuracy. For instance,
the best performance corresponds to O3, with r = 0.61,
R2 = 0.37 andMAE = 20.8µg/m3. The rest of the pollutants
show low performance, with correlations under 0.30 and R2

close to 0.
Table 2 presents the same results computed for daily

means, the standard used in the literature to validate these
models. In general terms, the correlations with observations
are higher for daily values. In contrast, the MAE levels
are similar to those obtained in hourly validation. In detail,
a better performance for O3, NO2 and NOx is observed, with
r = 0.71, r = 0.68 and r = 0.67, respectively. Regarding
determination coefficients, the values are R2 = 0.52, R2 =

0.47 and R2 = 0.46 for O3, NO2 and NOx , respectively, with
errors of 18.7, 10.6 and 4.78 µg/m3. In addition, a slight
increase in CO performance is appreciated, with r = 0.25,
R2 = 0.06 and MAE = 0.19 mg/m3.

C. ARCHITECTURE SELECTION
This section compares the performance of the different
architectures tested to select the one that fits better for each
pollutant. First, Table 3 presents the determination coefficient
(R2) for each one of the architectures and pollutants. It is
observed that ResNET presents the best performance for
all pollutants except for PM10. In concrete, the computed
R2 values were equal to 0.62, 0.57, 0.20, 0.73, 0.54 and
0.35 for NO2, NO, SO2, O3, CO and PM2.5, respectively.
The best model for PM10 was simple neural networks
(ANN) with R2 = 0.42. In contrast, the other architectures
exhibited similar performance, obtaining the lowest values
for LSTM-RNN for SO2,CO and PM10. For CNN the poorest
performance was for NO2, NO, O3 and PM2.5.

TABLE 3. Comparison between different architectures (R2).

TABLE 4. Comparison between different architectures (MAE). The units
are µg/m3, except for CO that are expresed in mg/m3.

In addition, similar results are obtained if we use the mean
absolute error (MAE) as metric. Table4 illustrates the error
values for each one of the architectures. Again, the best results
were obtained for NO2, NO, SO2, O3 and PM2.5 with MAE
scores equal to 6.51, 2.71, 2.92, 12.2, 9.81 and 5.69 µg/m3.
The ANN architecture fitted better for PM10, with MAE =

9.34µg/m3. For CO, all the architectures presented the same
values - 0.32 mg/m3 - probably because the precision in
the simulation was lower - CO is in the milligrams order of
magnitude. However, for MAE the poorest performance was
obtained by the ANN architectures for NO2, NO, SO2 and
O3 and PM2.5 for the CNN architecture.

D. ACCURACY OF NEURAL NETWORK MODELS
Table 5 shows the results of a hyperparameter tuning
process for the neural networks used to predict various
gas concentrations. The hyperparameters included are the
ones described by the ResNET architecture including the
number of blocks, filters, kernel size, learning rate and
stride for each model corresponding to the pollutants NO2,
NO, SO2, O3, CO and PM2.5. As highlighted in Table 3
and Table 4, the selected architecture for PM10 is ANN,
and not ResNET. For this reason, the hyperparameters used
are different, in concrete alpha, drop rate, neurons, and
learning rate. Different configurations for each model are
observed, highlighting that each pollutant should bemodelled
separately.

Table 6 assesses the performance of CHIMERE-WRF-NN
in modelling various air quality parameters when compared
to data from ground measurements in concrete hourly mean
values. The Pearson Coefficient represents the strength and
direction of the linear correlation with values ranging from
0.45 to 0.85, being observed as the best performance for
O3, NO and NO2. With similar trends, the Determination
Coefficient (R-squared), indicating the proportion of variance
explained, varying from 0.20 to 0.73, and the Mean Absolute
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TABLE 5. Hyperparameters selected for each model.

TABLE 6. Results of the comparison CHIMERE-WRF + neural networks
versus reference station (hourly mean values).

TABLE 7. Results of the comparison CHIMERE-WRF + neural networks
versus reference station (daily mean values).

Error (MAE), reflecting prediction accuracy, with values
between 2.71 µg/m3 and 12.2 µg/m3, as well as 0.32
mg/m3 for CO. These metrics collectively offer insights into
the neural network performance, revealing varying degrees
of correlation and accuracy for different gases but a general
improvement compared to results without neural networks.

Regarding daily mean values (Table 7), neural networks
also improves the results, and the highest scores are obtained.
In concrete, this improvement is quite significant in the case
of MAE. The performance for O3 is quite good, with r =

0.97, R2 = 0.94 and MAE = 4.87µg/m3. The same occurs
for NO2 -r = 0.94 and R2 = 0.89-, NO - r = 0.95 and
R2 = 0.90 -,PM10 - r = 0.87 and R2 = 0.76 - and CO
- r = 0.93 and R2 = 0.86. On the other hand, PM2.5 and
SO2 present moderate performance with R2 = 0.50 and R2 =

0.30, respectively.
One interesting result is that the effect of neural networks

provides valuable insights into the effect of correlations
between predictors. It is important to note that clustering
algorithms work better when fed by non-correlated pre-
dictors. This is why clustering is normally coupled with
PCA strategies as preprocessors. In this case, Figure 11
shows the correlation matrix between CHIMERE predictors

TABLE 8. Optimal k value according to evalueomer methodology. on the
top, values without neural networks and in the bottmo values with neural
networks.

before and after applying neural networks. It is observed
that before applying neural networks, there are strong
correlations between some predictors, especially particles -
r = 0.93 between PM10 and PM2.5 - and some gases -
r = 0.63 between NO2 and O3. In contrast, the correlations
between predictors decrease after applying neural networks
in concrete for particles with a r = 0.082 between PM10 and
PM2.5.

E. AIR QUALITY ZONING
The results regarding Air Quality Zoning were obtained
after classifying each of the municipalities in the function
of the simulated values with CHIMERE. The first step was
computing the optimal number of clusters according to the
Silhouette Score, a process shown in Figure 7, for data with
and without neural network calibration. Regarding the results
provided by the evaluomeR method, the main conclusions
provide an optimal number of clusters equal to 5-6 with and
without neural networks, and the clustering performance is
quite similar. The results are presented in detail in Table 7,
where k(OS) is the optimal number of clusters according to
the stability score, k(OQ) is the optimal number of clusters
according to the quality score, and k is the global optimal
number of clusters. We obtained an optimal number of
clusters of 5, 6, 6, 6 and 6 for PCA 1, PCA 2, PCA 3, PCA
4 and PCA 5, respectively (without neural networks), and 7,
5, 7, 6 and 5 for PCA 1, PCA 2, PCA 3, PCA 4 and PCA 5,
respectively (with neural networks).

In this context, the number of optimal clusters was selected
by performing a qualitative analysis of the stability and the
quality according to the ranges defined in the methodology
section. It is true that the stability and cluster quality slightly
improve after applying neural networks, except for PCA 2,
achieving a transition from a stable cluster to a highly stable
cluster, and for PCA 5 with a transition from stable cluster to
doubtful. On the other hand, the qualitative interpretation of
quality does not change as all the metrics fits in the stable
cluster category and there is a reasonable cluster structure
- it can be discussed that PCA 2 shows lower qualitative
values at its limit without neural networks. Thus, the optimal
k value for all metrics - despite PCA 5 - is k = 5, k = 6 or
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FIGURE 11. Correlation according to Pearson test between CHIMERE features before and after applying neural
networks.

FIGURE 12. Determination of the optimal number of clusters for data without neural networks and with neural networks.

k = 7. However, the selected value was k=6 to obtain the
number of clusters of the current zoning, as the qualitative
interpretation of the cluster does not change. Without neural
networks, the Silhouette Score equals 0.53, and the Davies
Bouldin Score equals 0.60. On the other hand, with neural
networks, we obtained a Silhouette Score equal to 0.54 and a
Davies Bouldin Score equal to 0.60, as shown in Figure 12.

According to the results provided by both methods, the
clustering is computed for k = 6. This is done for the
simulations without and with neural networks, as shown
in Figure 13. In each case, six groups with a similar
geographical distribution are doneneural. In addition, the
homogeneity of the clusters increased after applying neural
networks, as is observed in the Tukey post hoc analysis
values.

Assessing the performance of a K-means clustering
algorithm using boxplots is a technique for understanding
clustering consistency. Boxplots allow analysis of the distri-
bution of distances between data points and their respective
cluster centroids, gaining insights into the dispersion and

separation of clusters. A well-defined clustering solution
will exhibit boxplots with tight, compact boxes and small
whiskers, indicating that most data points are close to their
centroids and the clusters are distinct. Figure 14 presents the
boxplots for each one of the principal components among
the six clusters. Differences between the medians in all
components were observed except for PCA 4, where there
was more similarity between the clusters. In addition, there
were outliers in PCA 1, PCA 3, PCA 4 and PCA 5 in different
clusters.

In contrast, Figure 15 presents the results with neural
networks, and it shows differences in the distribution in PCA
2 and a reduction in the number of outliers in PCA 3 and PCA
5. The rest of the trends are similar, with similarities between
clusters in PCA 4 and apparent differences between medians
in all the components.

A larger difference is highlighted when quantifying clus-
tering difference through Kruskal-Wallis tests. In all cases
(without and with neural networks), the P-value obtained is
lower than 0.05 for all components, indicating a significant
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FIGURE 13. Comparison of the Zoning final results without neural networks and with neural networks.

FIGURE 14. Distribution of boxplots of each principal component among different clusters without neural networks.

difference, at least between the two clusters. The neural
networks approach achieves better results regarding cluster
score, defined as the -log(p-value), in concrete in PCA 2 and
PCA 6, indicating that the clusters are more independent
than with the classical approach (without neural networks),
as observed in Table 9. Similar results were observed for
the H-Score, with a higher value for the neural networks
approach.

V. DISCUSSION
Regarding air quality zoning, recent literature studies have
proposed automatic approaches based on mathematical and
statistical methods [12]. In this context, this paper has
taken this methodology and has extended it by proposing
neural networks as an additional step to calibrate air quality

TABLE 9. Validation CHIMERE-WRF + neural networks against reference
station (daily mean values).

simulations. The results are promising and open new research
lines in this recent topic.

First, we have stated that the main hypothesis of this
work is that neural networks would improve the performance
of air quality zoning strategies. Considering the results
presented, we consider that the hypothesis is demonstrated,
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FIGURE 15. Distribution of boxplots of each principal component among different clusters with neural networks.

as the clustering proposed in Figure 7 is more coherent
with official air quality zoning and presents a better score
in terms of homogeneity - a better cluster score for all the
components. This draws new scenarios for neural networks
in deep learning applied for air quality. Currently, the most
important approach for neural networks is for models and
ground measurements calibration forecasting [46], [47], but
understanding the role of neural networks in dimensional
reduction is needed. Thus, we consider that the role of
Convolutional Neural Networks (CNN) in air quality zoning
should be studied in future steps [48].
In addition, it is also important to compare our approach

based on deep learning with state of the art solutions. The
most similar approach is the one proposed in [12], which
applies an air quality zoning in Madrid. The main strength
of our solution in comparison to this one is that we apply
deep learning techniques to improve data quality of chemistry
transport models before applying clustering. The air quality
zoning applied inMadrid is based on traditional classification
techniques, which does not correct the uncertainty associated
with air quality dispersion models [12], [16]. However, there
are approaches in the state of the art that use ANN for land
classification problems, especially in the field of land cover
[49]. There, all the classification work relies on the ANN, and
no clustering techniques are applied. This has the limitation
of understanding, because clustering is an explainable model.
This is critical in air quality zoning, in which an interpretation
of the clustering results is needed. In contrast, the problems
related to traditional clustering algorithms are still present in
our approach, because of the local minima problem in the
clustering step. The local minima problem is the convergence
to a minimum number of clusters producing counterintuitive

results. As our solution combines ANN for calibration with k-
means, the solution could converge to a non-optimal solution.
This idea strengthens the need for human interpretation of the
clustering results [50].

Furthermore, the results proposed in this study provide
valuable insights that can be used to review the current
air quality network in the Region of Murcia. For this
reason, we propose a new air quality zoning based on the
clusters obtained after applying neural networks, following
the recommendation of functional air quality zoning and
the European regulation [13]. This proposal is reflected in
Figure 16, in which we can compare the current zoning -
proposed by MITECO - and new zoning - obtained after
applying clustering to the neural networks results. The main
difference is the creation of a new zone in the north of the
region, with a new monitoring point. This is quite important
because, at this moment, the ES1401 (yellow) covers more
than 50 % of the territory with a unique monitoring point,
so it is impossible to define all the exposure in this zone [51].
Thus, the new zoning is based on splitting this huge area into
two different ones and proposing a new monitoring point in
Cieza or Jumilla. However, this zoning assessment should be
done with environmental experts, urban planners and public
authorities to consider all the important factors.

In contrast, this study presents some limitations that should
be addressed in future iterations. The first one is the accuracy
of the base simulations, which is moderate for O3 and NOx
and poor for the rest of the pollutants, as observed in Table 10.
If we compare these values with the validation performed
by CHIMERE developers [11], the performance is similar
in literature for O3 - 0.71 in our validation versus 0.75 in
Paris - and NO2 - 0.68 in our validation versus 0.51 in Paris.
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FIGURE 16. New proposed zoning and air quality station for the Region of Murcia Air Quality Network. On the left is
the proposed zoning by MITECO with the official codes, and on the right, the zoning is proposed using the automatic
methodology with new assigned codes. In blue is the proposed monitoring point.

TABLE 10. CHIMERE performance versus state of the art [11].

This comparison has been performed for daily mean values,
as there are no references for hourly values in [11], and only
for the gases validated in this study - NO, SO2 and CO are
omitted in [11] as they argue the performance of CHIMERE
is not good enough. We obtained in our validation r = 0.67,
r = 0.25 and r = 0.02 for NO, CO and SO2, supporting the
CHIMERE developer’s assessment.

These results are interesting because we provided an
independent validation of the CHIMERE model, similar to
the one presented in the literature in the release of the v2020
model for O3 and NO2, but poorer for particles. There are
two reasons for this performance: i) the CHIMERE model
has been only validated and developed mainly in the Île
de France region, so the performance might be different
in other locations, and ii) the quality of the data collected
by the Region of Murcia Air Quality Network is lower in
comparisonwith the Paris network used in terms of number of
devices and missing values, as will be discussed later. As the
percentage of missing values were high for particles - 30 %
for PM10 and 79 % for PM2.5 -, the validation of these two
pollutants should not be considered significant.

The performance changes after applying neural networks
calibration, obtaining better performance for all pollutants,
increasing all the values of r and R2 and improving the
performance reported by CHIMERE [11], as indicated in
Table 6. For O3, a Pearson Coefficient of 0.97 is obtained,
improving our performance by 37 and official performance
by 29 %. The same occurs for NO2, improving our
performance by 40 % and official performance by 86 %
with an r = 0.95. In contrast, for PM10, the performance

is r = 0.87 and for PM2.5, r = 0.71, but the elevated
number of missing values indicates that it is necessary to be
careful in interpreting these results. NO and CO present good
correlations - r = 0.95 and r = 0.93, respectively - but the
number of missing values for CO is around 60%. At the same
time, for NO, it is possible to infer an improvement as the time
series for training is complete. For SO2, the performance is
improved after neural network calibration.

The improvement of the correlations against hyperlocal
data brings valuable practical insights into our proposal. The
first one is the reliability of the simulated data, because
a higher correlation means that the trends in concentration
values are closer to the real ones [11]. This is important in
the context of air quality zoning, because a high correlation
generates clusters closer to reality if the concentration values
are more accurate. This is an improvement of the solution for
the land classification problem, because the predicted zones
are more similar to the real distribution over the Region of
Murcia, meaning better zoning. In addition, accurate models
can provide simulations closer to the real measurements,
allowing to estimate air quality concentrations in locations
where it is not possible to install sensors or reference stations,
improving the resolution of the network [52]. Last, better data
increases citizens’ trustability in air quality measurements,
a key aspect in air quality regulations, allowing them to gain
insights into the air quality in individual countries, regions
and cities, and become more engaged regarding climate
change mitigation [53].

Regarding the comparison with other neural networks
architecture present in the state of the art, our solution
improves for NO2, where an R2 = 0.75 has been
obtained using LSTM-GRU compared to a R2 = 0.89 for
ResNET [23]. In contrast, there are better performances for
SO2 in the literature using RNN with R2 = 0.56 − 0 −

62 [26]. Regarding CNN, they have been used to forecast
air qulity index with a R2 = 0.71 [54]. One of the
key applications of CNN is particulate matter modelling,
with Pearson coefficients ranging between 0.67 − 0.93,
compared to the 0.87 obtained for PM10 in our approach [55].
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Last, convolutional networks (CNN) have been used for
O3 forecasting obtaining Pearson coefficient ranging from
0.74-0.80, while our ResNET model provide a correlation of
0.85 and 0.97 for hourly and daily means [56].

However, it is necessary to analyse this performance in
detail for the following reasons: i) the neural networks have
been trained with data from Murcia, so the replicability of
the models developed in other regions is not guaranteed;
ii) the number of measurement points is low and with a
non-homogeneous distribution among the domain; and iii)
the number of missing values presented in some pollutants
time series. These overfitting or unrealistic estimations are
deduced from the correlations shown in Figure 5 after
applying neural networks, with low correlations between
particles and other linked pollutants, suggesting artificial
values - good for clustering purposes but not for real
modelling goals. For this reason, the following steps should
be addressed in future research: i) expand the area of study
to a wider area with more monitoring points, ensuring
a homogeneous dataset with low missing values and a
significant number of ground hyperlocal stations over all the
territory to be studied and ii) design different architectures for
calibration and dimensions processing in the function of the
application and goals of the study.

Finally, a remark should be made regarding the quality
of the measurements. It is easy to note that hyperlocal data
plays a key role in this methodology, essential to guarantee
the completeness of the data. Some of the results proposed in
this paper are based on the data provided by public authorities
- with special emphasis on the training of neural networks.
Thus, the proposed methodology should be validated with
more complete data in other locations, especially concerning
particles where the number of missing values is around 80
% for PM2.5. To mitigate this, there are approaches based
on time series reconstruction using GAN models [57] or
LSTMN to improve resolution through data fusion [58].
However, the idea is to act on themeasurements. This can also
be highlighted as an insight of the paper, and future research
should dedicate part of the effort to providing high-quality
measurements [52].

VI. CONCLUSION
In this work, we have described and evaluated an automatic
air quality zoning methodology in the Region of Murcia,
demonstrating that the use of neural networks combined
with the CHIMERE-WRF model improves the homogeneity
and the consistency of the clusters computed and compared
with the current air quality zoning proposed by public
authorities. Moreover, the results provide important insights
and action points for the Region of Murcia Air Quality
Network, highlighting the need for a new air quality zone
and a new measurement point covering the region’s north.
Additionally, we have shown that neural networks improves
the correlations of simulations compared to hyperlocal
measurements.

However, the results obtained open new research pos-
sibilities and highlight different limitations that should be
addressed in different studies: i) expand the area of study
to collect more geographically representative data; ii) under-
stand the replication of the neural network models in other
locations as they have been trained with data from Murcia
and iii) improve the quality of the reference datasets provided
by public authorities, especially regarding the number of
missing values for some pollutants. On the other hand, more
research is needed in the field of automatic air quality zoning
to understand the role of neural networks in dimensionality
reduction and provide different architectures for calibration
and preprocessing. Last, this methodology should include
interaction and expert feedback to include human knowledge
in the interpretation and zoning assessment.
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