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ABSTRACT Extensive literature has been produced on the investigation of eddy current losses in
Surface-mounted Permanent Magnet (SPM) electric machines in presence of circumferential segmentation
by analytical solution of two-dimensional (2D) models. What is missing in the present literature and
constitutes the aim of this paper is a simple but accurate procedure enabling the designer to quickly and easily
estimate the impact of circumferential segmentation on permanent-magnet loss reduction. The problem is
hereinafter addressed in two stages: first the Helmholtz equation is solved in the permanent magnet region
neglecting segmentation; then suitable gauge fixing terms are added to the vector potential and eddy current
field solutions to account for segmentation. Unlike existing approaches, the method leads to manageable
formulas whose accuracy is extensively assessed against finite element simulations on an example SPM
machine equipped with a fractional-slot concentrated winding. Furthermore, simple practical rules are
derived and validated regarding the impact of magnet segmentation on permanent-magnet losses caused
by air-gap magnetic field space harmonics of different orders.

INDEX TERMS Eddy currents, electric machines, losses, permanent magnets, SPM machines.

NOMENCLATURE
p number of pole pairs;
θs angular coordinate in the stator reference

frame;
θ angular coordinate in the rotor reference

frame;
θrot rotor position in the stator reference frame;
θrot0 rotor position at t = 0 in the stator reference

frame;
Rs stator bore radius;
Rr rotor core outer radius;
Rm permanent magnet outer radius;
L core axial length;
M number of permanent magnet segments;

The associate editor coordinating the review of this manuscript and
approving it for publication was Sinisa Djurovic.

m magnet segment index (m = 1, 2 . . .M );
r radial coordinate;
z axial coordinate;
ω angular frequency of stator currents;
n space harmonic order;
κ harmonic sense of rotation coefficient

(κ = ±1);
λrealn,κ equivalent linear current density function;
f realn,κ air-gap magneto-motive force function;
3max
n,κ equivalent linear current density magnitude;

Fmax
n,κ air-gap magneto-motive force magnitude;
Fmax,FE
n air-gap magneto-motive force magnitude

from FE;
ωn,κ angular frequency of rotor eddy currents;
3n,κ equivalent linear current density phasor;
Fn,κ air-gap magneto-motive force phasor;
σ electrical conductivity of permanent magnets;
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µ0 magnetic permeability of the air;
Z number of stator slots or teeth;
N0 number of turns wound around each tooth;
W winding matrix;
Aairn,κ vector potential phasor in the air gap region;
Amag
n,κ vector potential phasor in the magnet region;
Bair,rn,κ radial component of the flux density phasor

in the air gap region;
Bair,θn,κ tangential component of the flux density

phasor in the air gap region;
Bmag,r
n,κ radial component of the flux density phasor

in the magnet region;
Bmag,θ
n,κ tangential component of the flux density

phasor in the magnet region;
jn,κ eddy current phasor in permanent magnets;
∇z z (axial) component of the gradient operator;
φn,κ scalar function for defining jn,κ ;
jnosegn,κ eddy current phasor in the permanent mag-

net region neglecting segmentation;
jseg,mn,κ eddy current phasor in the mth magnet

segment;
φmn,κ scalar function for defining jseg,mn,κ ;
Imn,κ phasor of the total current flowing through

the mth magnet segment;
Pnosegn,κ eddy current losses in the magnet region

neglecting segmentation;
Psegn,κ eddy current losses considering

segmentation;
Pseg,mn,κ eddy current losses in the mth magnet

segment;
Ptot total losses in the magnets due to all

magneto-motive force space harmonics;
fn(M ) non-dimensional function for permanent

magnet loss computation.

I. INTRODUCTION
One of the main issues in the design and operation of
SPM machines is the occurrence of eddy-current losses in
the permanent magnets [1], [2]. Such losses are potentially
dangerous because they cause heating and possible demagne-
tization risks [3], [4], [5]. A usual countermeasure to mitigate
the problem is to subdivide permanent magnets into axial and
circumferential segments [6]. Although beneficial for loss
reduction, magnet segmentation poses significant challenges
when it comes to predict themagnet losses in the design stage.
Of course, brute force Finite Element (FE) analysis can be
employed [1], [6], [7], [8] leading to very realistic results,
but with well-known shortcomings due to the significant
computational burden.

As an alternative to FE simulations, the technical litera-
ture offers a variety of both 2D and 3D analytical methods
to determine eddy-current losses accounting for magnet
segmentation.

The 3D analytical approaches are certainly desirable
because they can cover both axial and circumferential

segmentation. However, there is a price to be paid for tackling
the problem through 3Dmodels. For example, in many works
the magnet eddy-current reaction field is neglected [9], [10],
[11], [12], [13], which is known to possibly cause important
errors [14], [15]; in [16] the flux density is supposed to be
purely radial, while its tangential component may play a
noticeable role in the computation of low-frequency eddy-
current losses [15]; the approaches proposed in [15] and [17]
are hybrid in the sense that they combine analytical cal-
culations with lengthy 2D or even 3D FE simulations; the
method set forth in [18] enjoys the benefit of considering
magnetic saturation but requires the numerical solutions of
large reluctance network models.

Moving to 2D methods, their obvious limit is that they
disregard end effects, i.e. the finite length of magnet segments
in the axial direction, and therefore appear little suitable for
taking axial segmentation into account. This shortcoming is
attenuated by the possibility, which several authors recognize
and exploit, to solve the 2Dmachine model and then consider
finite length effects by applying suitable correction coeffi-
cients to the results [19], [20]. In some cases, the correction
coefficient is directly applied to the 2D model by fictitiously
increasing permanent magnet electrical resistivity to account
for the resistance of actual 3D eddy current paths [17],
[21], [22].

The majority of the 2D analytical methods available in
the literature to compute permanent-magnet losses in SPM
machines employs the subdomain technique [23], [24], [25],
[26], [27], [28], which is mathematically rigorous and exact,
but complicated to apply in an application-oriented engi-
neering environment. The method set forth in [20] is more
straightforward, but presently applied and validated in the
case of a single magnet crossed by a pulsating magnetic field.
The procedure described in [21] appears simpler than the
subdomain technique but implies the decomposition of the
magnetic field wave travelling over a single magnet segment
into Fourier series, so that the method may not be straightfor-
ward to employ for the designer.

What seems missing in the extensive technical literature
available in the field is a practical computation tool which
enables the designer to quickly but accurately compute the
eddy current losses of an SPM machine with segmented per-
manent magnets through a well-defined easy-to-implement
algorithm. This paper is aimed at providing SPM machine
designers with such a tool, considering a 2D machine model
and then explicitly addressing only circumferential seg-
mentation. However, as suggested by several authors [17],
[19], [20], [21], [22], finite length effects can be, to a first
approximation, taken into proper account through correction
coefficients, which extends the potential use of the presented
procedure to the case of axial segmentation, too.

The methodology used in the paper to obtain easy formulas
for the permanentmagnet losses as a function of segmentation
is the following. Different from what is done in the vast
majority of papers dealing with 2D models [15], [21], [23],
[24], [25], [26], [27], [28], the magnetic and eddy-current
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field equations are not herein solved resorting to Fourier
series expansion of the general solution. The alternative idea
is, instead, to first solve the Laplace and Helmholtz equations
neglecting magnet segmentations, i.e. treating permanent
magnets as a continuous cylindrical annulus. The simple
solution thus obtained is then corrected considering that the
eddy current density expressions are determined up to an
additive constant function. Such a gauge is fixed so as to
satisfy the constraint that the total current axially flowing
through each magnet segment must be zero. In this way, the
simple field solution which disregards segmentation is easily
adjusted through suitable additive constants to fit the case of
an arbitrary number of magnet segments.

For the sake of clarity, the final formulas obtained for
permanent magnet eddy-current losses are represented in
the form of a flowchart which can be easily implemented
in any engineering calculation environment. From the final
equations, rules are also derived regarding the effect of seg-
mentation in reducing permanent magnet losses. In particular,
it is demonstrated that a condition for the segmentation to
be effective in reducing the losses caused by a given air-gap
magneto-motive force (MMF) space harmonic of order n is
that the number of circumferential segments must be larger
than the harmonic order n.

Finally, the proposed algorithm for permanent magnet loss
computation is extensively validated against FE simulations
on an example SPM machine.

Of course, the analytical approach being presented is
advantageous compared to FE simulations because it does
not require any model of the machine to be built and
solved: once implemented, analytical formulas can be flexi-
bly applied by simply changing input data. Furthermore, they
take a fraction of second to solve, while the computation of
permanent-magnet losses with FE method typically requires
transient (or time stepping) simulations [29] which may take
hours to converge to a steady-state condition. On the other
hand, FE method is capable of capturing the effects of the
machine design details as well as of magnetic saturation,
which need to be neglected to obtain manageable analytical
formulas [15], [21], [23], [24], [25], [26], [27], [28].

The article is structured as follows. In Section II the
model and the problem being tackled are presented along
with the assumptions made. In Section III the analytical
model solution with the proposed approach is presented.
Section IV includes remarks on the practical application of
the final formulas derived. Sections V and VI provide a
complete assessment of the proposed calculation method by
comparison against FE simulations, considering single space
harmonics in Section V and then a complete electric machine
in Section VI. Finally, Section VII summarizes the main
findings and draws the conclusions of the work.

II. PROBLEM AND MODEL DEFINITION
A. MACHINE MODEL DESCRIPTION
With no restriction to generality, we will consider a
three-phase SPM machine with p pole pairs, axial length L

and with the cross-sectional geometry sketched in Figure 1,
where: Rs is the stator bore radius; Rr is the rotor core outer
radius; Rm is permanent magnet outer radius; Os is the stator
bore point taken as a reference for polar angles in the stator
reference frame; θs and r are the polar angle and radius
identifying the position of a generic point P placed either in
the air gap or in the magnet region.

The rotor is supposed equipped with M magnet segments,
sequentially numbered from 1 to M . One side of the first
segment is assumed as the reference for identifying the rotor
angular position θrot in the stator reference frame as illustrated
in Figure 1. As a consequence, Figure 1 shows that the angular
position θ of the generic point P in the rotor reference frame
will be such that:

θs = θrot + θ (1)

FIGURE 1. Machine model and its polar coordinate system.

The problem being tackled is to determine the eddy cur-
rents arising in the permanent magnets when the machine
operates at steady state with stator angular frequency ωs =

2π f (being f the frequency of stator currents) as a conse-
quence of a space harmonic magnetic field of order n, i.e.
characterized by n pole pairs. It is worth mentioning that the
space harmonic order n is not constrained to be a multiple of
the number of pole pairs p (for example let us think of the
case of subharmonics in fractional-slot windings machines,
wherein n < p, [30]). It is well known from the literature that
the magnetic field space harmonic of order n can be thought
of as produced by a current sheet spread around the stator bore
circumference [31] (Figure 1) and characterized by a linear
current density:

λrealn,κ (θs, t) = 3max
n,κ cos (nθs − κωst) (2)

where 3max
n,κ is the peak value of the current density and

the coefficient κ is equal to either +1 or −1 depending on
whether the space harmonic field revolves in the same or
opposite direction compared to the rotor, respectively. Of
course, the expression (1) implies that the origin Os of the
stator-attached coordinate system is placed at the position
where the linear current density takes its peak value at t = 0.
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The linear current density (2) naturally relates to the air-gap
MMF f realn,κ (θs, t) so that [31]:

λrealn,κ (θs, t) =
1
Rs

∂

∂θs
f realn,κ (θs, t) (3)

In steady-state conditions, the rotor revolves at syn-
chronous speed, hence its angular position can be expressed
as:

θrot =
ωs

p
t + θrot0 (4)

where θrot0 is the rotor position at t = 0.
By using (1) and (4) in (2), this becomes:

λrealn,κ (θ, t) = 3max
n,κ cos

(
n (θ + θrot0) + ωst

(
n
p

− κ

))
(5)

which represents the stator linear current density expressed
in the rotor reference frame. The angular frequency of rotor
eddy currents will then be:

ωn,κ = ωs

(
n
p

− κ

)
(6)

so that (5) can be rewritten as:

λrealn,κ (θ, t) = 3max
n,κ cos

(
n (θ + θrot0) + ωn,κ t

)
(7)

In order to separate the dependency on time and space and
exploit complex algebra potentials, it is useful to express (7)
as:

λrealn,κ (θ, t) = Re
(
3n,κeinθeiωn,κ t

)
(8)

3n,κ = 3max
n,κ e

inθrot0 (9)

where i is the imaginary unit and 3n,κeinθ is the
space-dependent phasor representing the stator linear current
density in the rotor reference frame.

With identical procedure applied to the equivalent MMF
we have:

f realn,κ (θ, t) = Re
(
Fn,κeinθeiωn,κ t

)
(10)

Fn,κ = Fmax
n,κ e

inθrot0 (11)

and, based on (4) and (1), the following relationship holds:

3n,κeinθ =
1
Rs

∂

∂θ

(
Fn,κeinθ

)
=

in
Rs
Fn,κeinθ (12)

which implies:∣∣3n,κ
∣∣ = 3max

n,κ =

∣∣∣∣ inRsFn,κ
∣∣∣∣ =

n
Rs
Fmax
n,κ (13)

For the analytical model solution, the following simpli-
fying assumptions are made: magnetic saturation in stator
and rotor cores is neglected; the space between one mag-
net segment and the other is not considered; stator slotting
effects are disregarded; permanent magnets are supposed to
have uniform electrical conductivity σ and uniform magnetic
permeability µ0 (equal to the air permeability).

B. COMPUTATION OF MMF SPACE HARMONICS
To compute theMMF harmonics Fmax

n,κ , the three-phase wind-
ing design needs to be known. For this purpose, let us call
Z the number of slots (in case of distributed winding) or
wound teeth (in case of concentrated winding) and let us call
A, B and C the stator phases. The slots (for distributed wind-
ings) or the teeth (for concentrated windings) are sequentially
numbered from 1 to Z and identified by the integer index
u ∈ {1, 2, . . . , Z } . The phases, considering both goes and
returns, are numbered as shown in Table 1 and identified by
the integer index v ∈ {1, 2, . . . , 6} .
Based on these conventions, the winding structure is uni-

vocally described by a Z × 6 winding matrixW such that the
element [W]u,v is equal to the number of turns of the phase v
embedded in the uth slot (for distributed windings) or wound
around the uth tooth (for concentrated windings).
As an example, let us consider the 9-teeth 8-poles winding

arrangement shown in Figure 2.
The corresponding winding matrix is (14), where N0 is the

number of turns wound around each tooth.

W =



N0 0 0 0 0 0
0 0 0 N0 0 0
0 0 0 0 0 N0
0 0 N0 0 0 0
0 0 0 0 0 N0
0 N0 0 0 0 0
0 0 0 0 N0 0
0 N0 0 0 0 0
0 0 0 N0 0 0


(14)

FIGURE 2. Phase arrangement for a 9-teeth 8-poles concentrated
winding. Symbols

⊙
and

⊗
denote conventional current directions

(respectively pointing outwards and inwards). A, B and C are the phases.

Once the winding matrix is defined, the magnitude of the
MMF harmonics produced by the winding when energized
with a symmetrical balanced set of currents of amplitude I0
can be computed as explained in [32]. Specifically, the nth

order MMF space harmonic revolving in the same (κ = +1)
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TABLE 1. Conventional numbering of stator phases.

or opposite (κ = −1) direction with respect to the rotor has
an amplitude given by:

Fmax
n,κ =

∣∣∣∣∣∣∣∣∣∣∣
anI0
2

∑
u = 1, 2, ..,Z
v = 1, 2, .., 6

[W]u,ve
i
[
−

π
3 (v−1)+κn 2π

Z (u−1)
]
∣∣∣∣∣∣∣∣∣∣∣

(15)

where

an =
2
π

(−1)n

n
sin
(

πn(Z − 1)
Z

)
(16)

TABLE 2. Design details of the example machine.

For example, in the case of the machine taken as an exam-
ple (Figure 2), the MMF space harmonics produced by the
stator winding and computed through (14)- (16) are given in
Figure 3 assuming a phase current amplitude I0 = 100 A

FIGURE 3. MMF harmonic amplitudes obtained analytically (orange bars
if revolving in the rotor direction and grey bars if counter-rotating) and by
FE analysis (yellow bars).

and a number of turns per tooth N0 = 25 . In the same plot,
we have included the MMF space harmonics obtained from
FE simulation of the same machine, whose design details are
provided in Table 2. The MMF harmonics from FE analysis
are obtained multiplying the magnetic field space harmonics
by the magnetic air-gap width.

Limiting the attention to the first 15 space harmonics,
Figure 3 shows that non-null harmonics rotating in the same
direction as the rotor, obtained from (15) with κ = +1, have
harmonic orders 1, 4, 7, 10 and 13, while non-null harmon-
ics rotating opposite to the rotor, obtained from (15) with
κ = −1, have orders 2, 5, 8, 11 and 14. Overall, the harmonic
amplitudes computed through (15) are in good accordance
with FE results.

III. ANALYTICAL MODEL SOLUTION
The magnetic and eddy-current field solutions for the space
harmonic of order n revolving in the direction κ (κ = 1
meaning like the rotor and κ = −1 opposite to the rotor)
can be expressed by solving partial-derivative differential
equations involving the vector potential complex phasors
Aairn,κ (r, θ) and A

mag
n,κ (r, θ) respectively defined in the air gap

and magnet regions. Specifically, in the air gap domain the
vector potential Aairn,κ (r, θ) satisfies the Laplace’s equation:

1
r

∂

∂r

(
r
∂Aairn,κ
∂r

)
+

1
r2

∂2Aairn,κ
∂θ2

= 0 (17)

while in the magnet region the vector potential Amag
n,κ (r, θ)

satisfies the Helmholtz’s equation:

1
r

∂

∂r

(
r
∂Amag

n,κ

∂r

)
+

1
r2

∂2Amag
n,κ

∂θ2
+ kn,κ2A

mag
n,κ = 0 (18)

where

kn,κ2 = −iωn,κσµ0 (19)

Once the vector potential is known in the two regions, the
magnetic flux density components in the air gap and magnets
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can be derived as:

Bair,rn,κ =
1
r

∂Aairn,κ
∂θ

, Bair,θn,κ = −
∂Aairn,κ
∂r

(20)

Bmag,r
n,κ =

1
r

∂Amag
n,κ

∂θ
, Bmag,θ

n,κ = −
∂Amag

n,κ

∂r
(21)

where Bair,rn,κ and Bmag,r
n,κ denote the radial components while

Bair,θn,κ and e Bmag,θ
n,κ denote the tangential components, respec-

tively in the air gap andmagnet region. It may be worth noting
that the flux densities (20) and (21) have the meaning of
spatial phasors, hence, for example, the actual flux density
components in the air gap can be obtained as functions of
both space and time from:

Re
(
Bair,rn,κ (r, θ) eiωn,κ t

)
, Re

(
Bair,θn,κ (r, θ) eiωn,κ t

)
(22)

The same applies to all the other complex phasors in the
paper.

The solutions to (17) and (18) can be written in the form:

Aairn,κ (r, θ) = einθ
(
Ĉn,κrn + D̂n,κr−n

)
(23)

Amag
n,κ (r, θ) = einθ

[
C̃n,κJn

(
kn,κr

)
+ D̃n,κYn

(
kn,κr

)]
(24)

where Ĉn,κ , D̂n,κ ,C̃n,κ and D̃n,κ are complex constants to
be determined based on boundary conditions and Jn (∗) and
Yn (∗) represent Bessel functions of the first and second kind,
respectively.

As regards the current density field in the magnet region,
it has only the axial component and the relevant phasor j(r, θ)
can be obtained from the vector potential as [33]:

jn,κ (r, θ) = −iωn,κσ
[
Amag
n,κ (r, θ) + ∇zϕn,κ (r, θ, z)

]
= −iωn,κσAmag

n,κ (r, θ) − iωn,κσ∇zϕn,κ (r, θ, z)

(25)

where ∇z denotes the z component of the gradient operator
and ϕn,κ is an arbitrary continuously differentiable complex
scalar function, which, for the sake of generality, is supposed
to possibly depend on all the three cylindrical coordinates
r, θ and z. Equation (25) descends from the fact that the
vector potential is not uniquely defined and its possible values
differ by the gradient of a function [33]. The function ϕn,κ will
be suitably set in the following so as to account for magnet
segmentation.

A. MODEL SOLUTION WITHOUT SEGMENTATION
As a first step, we can find a solution assuming that all
magnet segments are merged into a single annulus of uniform
conductivity where the current is free to flow in the axial
direction with no constraint [32]. Under this hypothesis, the
solution can be plainly obtained by imposing the only bound-
ary conditions:

Bair,θn,κ (Rs, θ) = −
∂Aairn,κ
∂r

∣∣∣∣∣
r=Rs

= µ03n,κeinθ (26)

Bair,θn,κ (Rm, θ) = −
∂Aairn,κ
∂r

∣∣∣∣∣
r=Rm

= Bmag,θ
n,κ (Rm, θ) = −

∂Amag
n,κ

∂r

∣∣∣∣∣
r=Rm

(27)

Bair,rn,κ (Rm, θ) =
1
r

∂Aairn,κ
∂θ

∣∣∣∣∣
r=Rm

= Bmag,r
n,κ (Rm, θ) =

1
r

∂Amag
n,κ

∂θ

∣∣∣∣∣
r=Rm

(28)

Bmag,θ
n,κ (Rr, θ) = −

∂Amag
n,κ

∂r

∣∣∣∣∣
r=Rr

= 0 (29)

Equation (26) prescribes that the tangential magnetic field
on the stator bore surface must equal the current density at
any point; equations (27)- (28) impose the continuity of the
flux density across the magnet outer surface; equation (29)
imposes the tangential flux density to vanish on the outer rotor
core, supposed of infinite permeability.

Using the vector potential expressions (23)- (24)
in (26)- (29) we obtain four linear equations in the unknows
Ĉn,κ , D̂n,κ ,C̃n,κ and D̃n,κ , which can be therefore easily deter-
mined. In particular we are interested in the two constants
C̃n,κ and D̃n,κ which are involved in the current density
expression in the magnet region (25).

From the boundary conditions (26)- (29) the following
symbolic expressions are derived for C̃n,κ and D̃n,κ :

C̃n,κ = 3n,κCn,κ (30)

D̃n,κ = 3n,κDn,κ (31)

with

Cn,κ = −2µ0RmnRsn+1Y
′

n
(
kn,κRr

)
/1n,κ (32)

Dn,κ = 2µ0RmnRsn+1J
′

n
(
kn,κRr

)
/1n,κ (33)

1n,κ =

[
J

′

n
(
kn,κRm

)
Y

′

n
(
kn,κRr

)
− J

′

n
(
kn,κRr

)
Y

′

n
(
kn,κRm

)]
× kn,κRm

(
Rm2n

+ Rs2n
)

+

[
J

′

n
(
kn,κRr

)
Yn
(
kn,κRm

)
−Y

′

n
(
kn,κRr

)
Jn
(
kn,κRm

)]
× n

(
Rm2n

− Rs2n
)

(34)

In (32)- (34) we have introduced the derivatives of Bessel
functions as follows [34]:

J
′

n(z) =
∂Jn(z)

∂z
=
Jn−1(z) − Jn+1(z)

2
,

Y
′

n(z) =
∂Jn(z)

∂z
=
Yn−1(z) − Yn+1(z)

2
. (35)

The expressions for Ĉn,κ and D̂n,κ are omitted for the sake
of brevity as they will not serve the purpose of eddy-current
loss computation.

As regards the eddy-current field in the magnet region,
in absence of segmentation we can choose ϕn,κ (r, θ, z) = 0
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in (25). So, based on (24), (25) and (30)- (31), we can write:

jnosegn,κ (r, θ)

= −iωn,κσAmag
n,κ (r, θ)

= −iωn,κσ3n,κeinθ
[
Cn,κJn

(
kn,κr

)
+ Dn,κYn

(
kn,κr

)]
(36)

The choice ϕn,κ (r, θ, z) = 0 is physically consistent
because it assures the total current flowing through the mag-
net region (defined by Rr < r < Rm and 0 < θ < 2π ) to be
zero. In fact:∫ Rm

Rr

∫ 2π

0
jnosegn,κ (r, θ) rdθdr

= −iωn,κσ3n,κ

∫ Rm

Rr

[∫ 2π

0
einθdθ

]
×
[
Cn,κJn

(
kn,κr

)
+ Dn,κYn

(
kn,κr

)]
rdr = 0 (37)

because
∫ 2π
0 einθdθ = 0.

For the following it should be noted that
∣∣jnosegn,κ (r, θ)

∣∣2
does not depend on θ . In fact, from (36) and considering (9)
we can write:∣∣jnosegn,κ (r, θ)

∣∣2 = ωn,κ
2σ 23max

n,κ
2 ∣∣Cn,κJn (kn,κr)

+Dn,κYn
(
kn,κr

)∣∣2 . (38)

B. EDDY CURRENT DENSITY IN PRESENCE OF
SEGMENTATION
In presence of segmentation, an additional constraint for the
model solution beside (26)- (29) is that the currents cannot
flow from one segment to the other. In other words, the net
current through a segment should be zero. To satisfy the
condition, we can define the current density within the mth

magnet segment according to (25) as follows:

jseg,mn,κ (r, θ) = −iωn,κσAmag
n,κ (r, θ) − iωn,κσ∇zϕ

m
n,κ (r, θ, z)

(39)

where we decide to define the scalar function ϕmn,κ as follows:

ϕmn,κ (r, θ, z) = z
Jmn,κ
iωn,κσ

(40)

In (40), Jmn,κ is a suitable constant to be determined. The z
component of the gradient of ϕmn,κ (r, θ, z) is:

∇zϕ
m
n,κ (r, θ, z) =

∂ϕmn,κ

∂z
=

Jmn,κ
iωn,κσ

(41)

Considering (36) and (41), we can thus express (39) as:

jseg,mn,κ (r, θ) = jnosegn,κ (r, θ) − Jmn,κ (42)

The total current Imn,κ flowing through the mth seg-
ment, which spans over the cross-section region defined by
(Figure 1)

Rr < r < Rm, (m− 1)
2π
M

< θ < m
2π
M

(43)

can be computed as:

Imn,κ =

∫ Rm

Rr

∫ m 2π
M

(m−1) 2πM

jseg,mn,κ (r, θ) rdθdr (44)

which must be set equal to zero:

Imn,κ = 0 (45)

This constraint enables us to define the constant Jmn,κ in (42)
for the generic mth magnet segment. In fact, from (42), (44)
and (45) we have:

Imn,κ =

∫ Rm

Rr

∫ m 2π
M

(m−1) 2πM

jnosegn,κ (r, θ) rdθdr

−
π
(
Rm2

− Rr 2
)

M
Jmn,κ = 0 (46)

which yields:

Jmn,κ =
M

π
(
Rm2

− Rr 2
) ∫ Rm

Rr

∫ m 2π
M

(m−1) 2πM

jnosegn,κ (r, θ) rdθdr

(47)

By using (36) for the expression of jnosegn,κ (r, θ), after sym-
bolic integration with respect to the variable θ , we have:

Jmn,κ = 3n,κ
M

π
(
Rm2

− Rr 2
) σωn,κ

n
e
2π imn
M

(
e−

2π in
M − 1

)
×

∫ Rm

Rr

(
Cn,κJn

(
kn,κr

)
+ Dn,κYn

(
kn,κr

))
rdr (48)

In particular, to obtain (48) we have used the following
identity:

−i
∫ m 2π

M

(m−1) 2πM

einθdθ =
1
n
e
2π imn
M

(
e−

2π in
M − 1

)
(49)

Unfortunately, the integration with respect to the vari-
able r cannot be performed symbolically in (48). Hence a
closed-form expression for the integral in (48) cannot be
given.

For the following of the paper it is worth noticing that∣∣Jmn,κ ∣∣2 does not depend on m. In fact, from (48) and consid-
ering (9) we can write:∣∣Jmn,κ ∣∣2 = 4

[
sin
(πn
M

)]2
3max
n,κ

2 M2

π2
(
Rm2

− Rr 2
)2 σ 2ωn,κ

2

n2

×

∣∣∣∣∫ Rm

Rr

(
Cn,κJn

(
kn,κr

)
+ Dn,κYn

(
kn,κr

))
rdr

∣∣∣∣2
(50)

In particular, to obtain (50) from (48) we have used the
following identity:∣∣∣e− 2π in

M − 1
∣∣∣2 = 4

[
sin
(πn
M

)]2
(51)
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C. PERMANENT MAGNET LOSS COMPUTATION
1) LOSSES WITHOUT SEGMENTATION
For the computation of the losses in permanent magnets,
it is convenient to start with the model without segmentation.
In this case, the eddy-current losses are:

Pnosegn,κ =
L
2σ

∫ Rm

Rr

∫ 2π

0

∣∣jnosegn,κ (r, θ)
∣∣2rdθdr (52)

By using (38), after integration with respect to θ we find:

Pnosegn,κ

= πLσωn,κ
23max

n,κ
2
∫ Rm

Rr

∣∣CnJn (kn,κr)+ DnYn
(
kn,κr

)∣∣2rdr
(53)

Unfortunately, the integral in (53) does now allow for
symbolic solution and needs to be computed numerically.

2) LOSSES IN PRESENCE OF SEGMENTATION
As regards the model with segmentation, the total eddy cur-
rent losses can be obviously found as:

Psegn,κ =

∑M

m=1
Pseg,mn,κ (54)

where Pseg,mn,κ are the losses that occur in the mth magnet
segment. The latter can be expressed as follows:

Pseg,mn,κ =
L
2σ

∫ Rm

Rr

∫ m 2π
M

(m−1) 2πM

∣∣jseg,mn,κ (r, θ)
∣∣2rdθdr (55)

Through the detailed passages provided in Appendix A, the
expression above can be equivalently written as follows:

Pseg,mn,κ =
1
M
Pnosegn,κ −

L
2σ

π
(
Rm2

− Rr 2
)

M

∣∣Jmn,κ ∣∣2 (56)

Since
∣∣Jmn,κ ∣∣2, given by (50), does not depend on m, sum-

ming all the loss contributions from the magnet segments
according to (54) can be easily done as follows:

Psegn,κ = MPseg,mn,κ = Pnosegn,κ −
L
2σ

π
(
Rm2

− Rr 2
) ∣∣Jmn,κ ∣∣2

(57)

As the last step, we can use the expressions (53) and (50)
respectively for Pnosegn,κ and

∣∣Jmn,κ ∣∣2 in (54). The final formula
for the total losses Psegn,κ in presence of segmentation will be:

Pseg,mn,κ = πLσωn,κ
23max

n,κ
2

[
Hn,κ − Kn,κ

sin2
(

πn
M

)(
πn
M

)2
]

(58)

where the two constants Hn,κ and Kn,κ are introduced for the
sake of convenience and defined as follows:

Hn,κ =

∫ Rm

Rr

∣∣Cn,κJn (kn,κr)+ Dn,κYn
(
kn,κr

)∣∣2rdr (59)

Kn,κ =

2
∣∣∣∫ RmRr (Cn,κJn (kn,κr)+ Dn,κYn

(
kn,κr

))
rdr
∣∣∣2

Rm2
− Rr 2

(60)

Equivalently, the total losses can be expressed as a function
of the MMF amplitude 3max

n,κ of the wave causing them. For
this purpose, (13) can be used in (58) giving:

Pseg,mn,κ = πLσωn,κ
2 n

2Fmax
n,κ

2

Rs2

[
Hn,κ − Kn,κ

sin2
(

πn
M

)(
πn
M

)2
]
(61)

FIGURE 4. Flow chart summarizing the procedure for permanent magnet
loss computation, from the input data to the final formula.

Finally, we can observe that the different space harmonics
induce rotor eddy currents with different frequencies. Hence
the superposition principle can be applied [35] leading to
compute the total losses Ptot in the magnets as the sum of
the losses caused by all the space harmonics:

Ptot =

∑
n = 1, 2, 3, ..
κ =+1, −1

Pseg,mn,κ (62)

IV. PRACTICAL REMARKS ON MAGNET LOSS
COMPUTATION
A. SYNOPSIS OF THE NUMERICAL PROCEDURE
Although the derivation of (58) or (61) is relatively lengthy,
the computation of permanent magnet losses through (58)
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or (61) is an easy numerical task which can be accomplished
almost instantaneously in whatever engineering calculation
environment.

For the sake of clarity and conciseness, the numerical pro-
cedure for permanent magnet loss computation in presence of
radial segmentation of permanent magnets is summarized in
Figure 4 as a flow chart.

In the flowchart, the calculation inputs are assumed to be
the following:

• three parameters characterizing the air-gap magnetic
wave which cause the losses: these are the MMF ampli-
tudeFmax

n,κ of thewave, its space harmonic order n and the
parameter κ = ±1 used to identify the sense of rotation
(κ = 1 for waves revolving in the same direction as the
rotor, κ = −1 for counter-rotating waves);

• the stator angular frequency ωs;
• the design parameters of the machine, i.e. the num-
ber of pole pairs p, the three radii Rs, Rm and Rr
(Figure 1), the core length L, the number of permanent
magnet segments M and the permanent magnet electri-
cal conductivity σ .

All the passages involved in the algorithm are algebraic and
in closed form except for:

• the evaluation of Bessel functions Jn (∗) and Yn (∗) and
their derivatives J ′

n (∗) and Y ′
n (∗) defined as per (35);

• numerical integration with respect to the variable r
for the computation of the coefficients Hn,κ and Kn,κ
according to (59) and (60).

FIGURE 5. Diagrams of the function fn(M) for some values of the
harmonic order n (n = 1, n = 2, n = 3, n = 5, n = 10) and zoomed view for
1<M<15.

Nevertheless, all mathematical engineering software tools
include built-in efficient algorithms both for Bessel function
evaluation and numerical integration.

B. DEPENDENCY OF THE LOSSES ON SEGMENTATION
From (58) or (61) it is clear that the number of magnet
segments M appears only in these last formulas and, more
precisely, in the non-negative function

fn(M ) =
sin2

(
πn
M

)(
πn
M

)2 (63)

which multiplies the coefficient Kn,κ . Looking at this func-
tion, we can notice that in case of no segmentation (M = 1)
and for any space harmonic order n, we have:

Pseg,mn,κ
∣∣
M=1 = πLσωn,κ

23max
n,κ

2Hn,κ (64)

because sin2 (πn) = 0. Equation (64) in fact returns the
losses given by (53) for the no-segmentation case.

Moreover, we can observe that, since both the function
fn(M ) and the coefficient Kn,κ are non-negative according
to (60) and (63), magnet segmentation always causes a ben-
eficial reduction in the magnet losses, i.e. causes magnet
losses to be strictly smaller than they would be in absence of
segmentation. The only exception to this rule occurs whenM
is an integer divisor of the space harmonic order n. In this case
the function fn(M ) becomes zero because sin2 (πn/M) = 0
and the losses in presence of segmentation become equal to
the losses without segmentation. In other words, we can say
that any space harmonic whose order n is an integer multiple
of the number of magnet segmentsM causes the same losses
that it would if there were no segmentation.

The diagrams of the function fn(M ) is plotted in Figure 5
for different values of the space harmonic order n, specifically
for n = 1, n = 2, n = 3, n = 5, n = 10. It is important to
notice that, according to (58) or (61) and due to the coefficient
Kn,κ being non-negative, when the function fn(M ) increases,
the losses decrease and vice versa. It can be observed that for
the space harmonic of order n = 1 (with one pole pairs), the
function fn(M ) is monotonic with respect to M . This means
that the losses caused by the space harmonic wave of order
n = 1 always decrease when the number of segments M
increases.

FIGURE 6. Model for FE validation of the permanent magnet losses due to
a single space harmonic; zoomed view of a detail showing current points.
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TABLE 3. Details of the FE model used for validation.

For higher space harmonic orders, instead, the function is
non-monotonic.

By studying the function fn(M ) and its derivative as
detailed in Appendix B, the following facts can be proved:

M < n H⇒ fn(M )≤0.0472 (65)

M > n H⇒
d
dM

fn(M ) > 0 (66)

lim
M→∞

fn(M ) = 1 (67)

FIGURE 7. Permanent magnet losses from the analytical calculation and
from FE analysis for space harmonic order n = 2.

The relationships listed above mean that, if the number of
segments is less than the harmonic order, then the segmen-
tation is very little effective in reducing the losses; instead,
if the number of segments is larger than the harmonic order,
the segmentation is beneficial and the losses monotonically
decrease as the number of segments grows. The minimum
losses that can be theoretically achieved, according to (67)
applied to (58), is given below and would be achieved for the
number of segmentsM tending to infinity:

πLσωn,κ
23max

n,κ
2 [Hn,κ − Kn,κ

]
, (68)

FIGURE 8. Permanent magnet losses from the analytical calculation and
from FE analysis for space harmonic order n = 6.

FIGURE 9. Permanent magnet losses from the analytical calculation and
from FE analysis for space harmonic order n = 10.

FIGURE 10. (a) Meshed model used for time-stepping FE analysis.
(b) External circuit associated with the model to impress phase currents.

V. VALIDATION OF THE MAGNET LOSSES CAUSED BY A
SINGLE SPACE HARMONIC
In this Section the formula (58) for magnet loss computation
due to a single space harmonic is validated against FE sim-
ulations with the rotor at stand-still. The parameters treated
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as variables in the simulations are the number of magnet
segmentsM and the space harmonic order n.
To this end, the ideal model shown in Figure 1 is imple-

mented in the form shown in Figure 6. The details of the
model are provided in Table 3.

Since the rotor is at stand-still, the frequency of the induced
eddy currents is equal to the stator frequency ωs and the sense
of direction of the MMFwave does not have any influence on
the losses.

The effect of the single MMF space harmonic of order n
is reproduced by a sinusoidal linear current density spread
around the inner stator bore surface. Such current density is
obtained by placing 1000 equally-spaced punctual conduc-
tors along the stator bore circumference (Figure 6). Num-
bering the punctual conductors sequentially from 1 to 1000,
the following current complex phasor is assigned to the hth

punctual conductor:

3max
2πRs
1000

ei
2πn(h−1)

1000 (69)

The resulting current distribution represents the discretiza-
tion of a linear current density wave having amplitude 3max
and n pole pairs and revolving at ωs/n angular speed.

The FE analysis is run as a time-harmonic simulation at
fixed angular frequency ωs.
A comparison of the losses obtained with the proposed

analytical approach and through FE analysis is shown in
Figures 7, 8 and 9, which respectively refer to the harmonic
orders n = 2, n = 6 and n = 10. The frequency of the stator
currents (50 Hz) is maintained in all the three cases as well as
the linear current density amplitude3max. For each harmonic
order the number of magnet segments is varied in the range
from 2 to 40 taking only even values.

It can be seen that the analytical results almost perfectly
match FE simulation output in all cases.

Moreover, the results fully confirm that the segmentation
is very little effective (or even detrimental) forM < n while
it always leads to loss reduction for M > n. Only under the
latter condition, in fact, the losses decrease monotonically as
the number of magnet segments grows.

VI. VALIDATION OF THE TOTAL LOSSES CAUSED BY THE
STATOR WINDING
In this Section, the computation of eddy-current losses in
the permanent magnets of a whole SPM machines will be
considered. Its cross section is depicted in Figure 2 and its
design data are provided in Table 2. The machine is supposed
to operate at steady state and synchronous speed (750 r/min)
with sinusoidal stator currents having amplitude I0 = 100 A
at 50 Hz frequency.

For the simulation, the machine is modelled in the Flux
2D environment and a transient analysis is run. The meshed
model in depicted in Figure 10 along with the external circuit
associated with it.

To test the robustness of the proposed computation
algorithm, simulations are run for different numbers of

TABLE 4. Comparison of permanent magnet losses from FE analysis and
from analytical computation.

FIGURE 11. Comparison of permanent magnet losses computed from FE
analysis and with the proposed analytical approach with different
numbers of magnet segments.

magnet segments M , namely for M = 1 (ideal case of no
segmentation), M = 8 (two segments per pole), M = 16
(four segments per pole), M = 24 (six segments per pole),
M = 32 (eight segments per pole), M = 40 (ten segments
per pole).

For each number of segments, the total eddy-current losses
in permanent magnets at steady state is extracted from the FE
solutions.

The results are summarized in Table 4 along with the ana-
lytical predictions obtained from (62) following the flowchart
given in Figure 4. The MMF space harmonics of orders n =

1, 2, 3, . . . , 30 are considered and their amplitudes are
computed from (14)- (16).
The results from FE simulation and analytical computation

are also graphically provided in Figure 11.
Finally, the eddy-current loss computation is compared to

FE results for different speeds of the machine and hence for
different frequencies, taking the cases of 1, 3 and 5 magnet
segments per pole (corresponding to a total number of seg-
ments equal to 8, 24 and 40, respectively). The results are
provided in Figure 12.
Overall, we can observe a satisfactory matching between

FE and analytical results. The discrepancies can be rea-
sonably explained considering that the analytical procedure
neglects slot openings, which cause a slight reduction in
the MMF harmonic field amplitudes as it can be noticed in
Figure 3. In fact, the losses predicted analytically appear to
be slightly higher than those obtained from FE simulations
for any numberM of magnet segments.
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FIGURE 12. Eddy-current losses in permanent magnets computed by FE
analysis and analytically for different number of magnet segments and
different speeds: (a) 250 r/min; (b) 500 r/min; (c) 750 r/min.

VII. CONCLUSION
In this paper an accurate but simple algorithm has been pre-
sented for the fast computation of permanent magnet losses
in a SPM machine in presence of circumferential segmenta-
tion. Compared to existing analytical methods, the proposed
approach does not resort to Fourier series decomposition of
field solutions and results in very easy-to-implement formu-
las. The axial segmentation is not explicitly addressed but
can be accounted for through suitable correction coefficients
proposed in existing literature. The final equations obtained
can therefore be a valuable tool for the SPMmachine designer
to quickly and easily predict permanent magnet losses for
different magnet segmentation options. The accuracy of the
procedure has been extensively validated against FE analysis.
In particular, the final expression obtained for permanent
magnet losses indicates that themagnet segmentation is effec-
tive in reducing the losses caused by a given space harmonic
of order n of the air-gap magnetic field only on condition that
the number of segments exceeds the space harmonic order n.

Overall, the proposed algorithm is suitable for being incor-
porated in design optimization procedures aimed at reducing
permanent magnet losses through the fast exploration of
a wide variety of possible design solutions. It is reason-
able that the best solutions thus identified are subsequently
investigated more in depth, typically though FE analysis,

to account for all design details and magnetic saturation
effects.

Studies are presently in progress to obtain easy-to-use
permanent-magnet loss computation algorithms incorporat-
ing 3D effects and thus directly applicable to magnet segmen-
tation both in the axial and the circumferential direction.

APPENDIX A
In this Appendix, the analytical passages used to obtain (56)
from (55) are provided in detail. In the passages, the complex
conjugate of a complex number z will be indicated as z.
Based on (42), equation (55) can be expanded as follows:

Pseg,mn,κ =
L
2σ

∫ Rm

Rr

∫ m 2π
M

(m−1) 2πM

∣∣jseg,mn,κ (r, θ)
∣∣2rdθdr

=
L
2σ

∫ Rm

Rr

∫ m 2π
M

(m−1) 2πM

jseg,mn,κ (r, θ) jseg,mn,κ (r, θ)rdθdr

=
L
2σ

∫ Rm

Rr

∫ m 2π
M

(m−1) 2πM

(
jnosegn,κ (r, θ) − Jmn,κ

)
×
(
jnosegn,κ (r, θ) −Jmn,κ

)
rdθdr = Um

n,κ +Vm
n,κ +Wm

n,κ ,

(70)

where

Um
n,κ =

L
2σ

∫ Rm

Rr

∫ m 2π
M

(m−1) 2πM

∣∣jnosegn,κ (r, θ)
∣∣2rdθdr (71)

Vm
n,κ =

L
2σ

∫ Rm

Rr

∫ m 2π
M

(m−1) 2πM

∣∣Jmn,κ ∣∣2rdθdr (72)

Wm
n,κ = −

L
2σ

∫ Rm

Rr

∫ m 2π
M

(m−1) 2πM

jnosegn,κ (r, θ) Jmn,κrdθdr

−
L
2σ

∫ Rm

Rr

∫ m 2π
M jnosegn,κ (r,θ)

(m−1) 2πM

Jmn,κrdθdr

= −Re
[
L
σ

∫ Rm

Rr

∫ m 2π
M

(m−1) 2πM

jnosegn,κ (r, θ) Jmn,κrdθdr

]
(73)

In (73) we have considered that, for any complex number,
z, the following property holds:

z+ z = 2Re(z) (74)

Regarding Um
n,κ in (71), we can remember that, accord-

ing to (38), the integrand does not depend on θ . Hence,
considering (52):

Um
n,κ =

L
2σ

∫ Rm

Rr

∫ m 2π
M

(m−1) 2πM

∣∣jnosegn,κ (r, θ)
∣∣2rdθdr

=
1
M

[
L
2σ

∫ Rm

Rr

∫ 2π

0

∣∣jnosegn,κ (r, θ)
∣∣2rdθdr

]
=

1
M
Pnosegn,κ

(75)

Regarding Vm
n,κ in (72), we can remember that

∣∣Jmn,κ ∣∣2 does
not depend on m according to (50). Hence the integral in (72)
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can be easily solved with respect to both r and θ , giving:

Vm
n,κ =

L
2σ

π
(
Rm2

− Rr 2
)

M

∣∣Jmn,κ ∣∣2 (76)

Finally, let us consider (47) and multiply both sides of the
equation by the complex constant jmn,k . We obtain:

Jmn,κJmn,κ

=
∣∣Jmn,κ ∣∣2

=
M

π
(
Rm2

− Rr 2
) ∫ Rm

Rr

∫ m 2π
M

(m−1) 2πM

jnosegn,κ (r, θ) Jmn,κrdθdr

(77)

which in turn gives:∫ Rm

Rr

∫ m 2π
M

(m−1) 2πM

jnosegn,κ (r, θ) Jmn,κrdθdr

=
π
(
Rm2

− Rr 2
)

M

∣∣Jmn,κ ∣∣2. (78)

By substituting (78) into (73) we have:

Wm
n,κ = −

L
σ

π
(
Rm2

− Rr 2
)

M

∣∣Jmn,κ ∣∣2. (79)

In conclusion, plugging (75), (76) and (79) into (70), the
relationship (56) is obtained.

APPENDIX B
In this Appendix, the relationships (65)- (67) are formally
proved.

The local maxima for fn(M ) occur for values ofM that are
zeros of the first derivative of fn(M ):

d
dM

fn(M )

= −
2

π2n2
sin
(πn
M

) [
πn cos

(πn
M

)
−M sin

(πn
M

)]
.

(80)

The derivative becomes zero when

sin
(πn
M

)
= 0 (81)

and when

πn cos
(πn
M

)
−M sin

(πn
M

)
= 0 (82)

Equation (82) can be equivalently written as:
πn
M

= tan
(πn
M

)
(83)

or as:

sin2
(

πn
M

)(
πn
M

)2 = fn(M ) = cos2
(πn
M

)
(84)

The condition (81) occurs when M is an integer divisor
of n and leads to fn(M ) = 0, i.e. to local minima of fn(M ).
The local maxima of fn(M ) therefore occur when the condi-
tion (83) and (84) are satisfied.

FIGURE 13. Function plots for the graphical determination of the local
maxima for the function fn(M).

The solutions to (83), which cannot be found analytically,
are the abscissas of the points P1, P2, P3, . . . in Figure 13.
The corresponding values taken by the function fn(M ) are,
according to (84), the ordinates of the pointsQ1,Q2,Q3, . . . It
is apparent that the highest local maximum is the ordinate of
point Q1, whose coordinates are:

Q1∼= (4.493, 0.0472) (85)

Therefore, we can state that the highest local maximum
for the function fn(M ) is 0.0472 and is taken for a number
of magnet segmentsM such that:

πn
M

∼= 4.493 ⇐⇒ M ∼= 0.699 × n (86)

This is in total accordance with what can be observed in
Figure 5 and proves (65) in a general manner.

As regards (66), it will be proven if we demonstrate that,
for M > n, the following inequalities, involving the factors
of the first derivative (80) of fn(M ) with respect toM , hold:

sin
(πn
M

)
> 0 (87)

πn cos
(πn
M

)
−M sin

(πn
M

)
< 0 (88)

The former is certainly satisfied when M > n because,
in this case, the angle πn

M falls in the range between 0 and π .
As to (88), it can be rewritten as:

πn
M

cos
(πn
M

)
< sin

(πn
M

)
(89)

If we study inequality (89) for M > n then, again, the
angle πn/M falls in the range between 0 and π and, thus,
two possible cases can occur.

When cos
(

πn
M

)
≤0, i.e., n < M≤2n, this inequality it is

certainly satisfied considering that M sin
(

πn
M

)
is positive for

M > n.
If we instead suppose cos

(
πn
M

)
> 0, which holds for M >

2n, we can rearrange (89) as:

tan
(πn
M

)
>

πn
M

(90)
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which is always satisfied for πn/M < π/2, as it can be seen
in Figure 12.
In conclusion, we have proven that, when M > n, both

inequalities (87) and (88) hold, which implies that the deriva-
tive (80) of fn(M ) is positive under the same condition. This
proves (66).
Finally, (67) is easily proven considering that:

lim
M→∞

fn(M ) = lim
πn
M →0

[
sin
(

πn
M

)
πn
M

]2
= 1 (91)
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