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ABSTRACT Some problems arise in analyzing massive complex data consisting of multivariate response
variables and a large number of multicollinear predictor variables, especially when the sample sizes
compared to the number of predictors are small. Rather than ordinary linear regression modeling approaches,
latent variable regression modeling approaches such as partial least squares regression can be used to
capture the relationship between the response and predictor variables for such cases. However, for complex
nonlinear relationships between the predictor and the response variable, the performance of inference
and prediction using regression modeling approaches can be deflated. Regression trees can capture such
complex relationships. Thus, we develop a partial least squares tree modeling algorithm that detects complex
relationships and makes precise predictions by integrating the merits of partial least squares and regression
trees. It is shown that it has better predictive performance than other methods through simulation and it is
demonstrated that it generates interpretable predictive models with real data of usedcar and orthognathic
surgery.

INDEX TERMS Multicollinear, partial least squares, complex nonlinear relationships.

I. INTRODUCTION
In modern biomedical fields, the following data are often
observed. Predictors consist of foundation information vari-
ables and multicollinear variables, whereas the number of
response variables is large and multicollinear with predictor
variables. For example, we consider orthognathic surgery
case. The surgery aims to correct conditions of the jaw
and face associated with orthodontic problems [1]. Various
points were chosen to evaluate the shape of the patient before
and after the surgery. The landmark value was measured
as a two-dimensional coordinate value from the origin
to the landmark. The predictors consisted of six external
factor variables (age, gender, and so on) and 232 landmark
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variables composed of 168 skeletal landmarks before and
after surgery, and 64 facial landmarks before surgery. The
response variables consisted of 64 facial landmarks after
surgery. We are attempting to construct an interpretable
predictive model for facial changes before and after surgery
by interpreting the effects of predictors. However, many
landmark variables are highly correlated with each other,
as well as many correlated response variables. Since the
dimension of the response variables is large, Chew et al. [2]
and Kneafse et al. [3] attempted to fit a multivariate
linear regression model. However, it cannot work with
multicollinearity and can only work if the number of targets
exceeds the number of predictors. To solve this problem,
Suh et al. [4] adopted a partial least squares (PLS) regression
model. However, the performance of inference and prediction
using regression modeling approaches can be deflated for
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complex nonlinear relationships between the predictors and
the response variables. In entrust, regression trees can capture
such complex relationships.

Tree-structured models have advantages in terms of
interpretation and data visualization. An advantage of a tree-
structured model as a nonparametric method is that it helps to
easily interpret the response effects of predictors, whereas it
can provide suggestive insights through model interpretation
and data visualization. Since the advancement of the auto-
matic interaction detection algorithm by Morgan et al. [5]
for univariate responses, decision trees have become very
popular in various fields. Breiman et al. [6] proposed a
classification and regression tree and the fast algorithm for
classification tree by Loh et al. [7] had a powerful effect on the
field of decision trees. It is because of pruning techniques and
variable selection approaches. Additionally, It has relatively
low computational costs and led to numerous subsequent
studies. For example, the survival tree by Ahn et al. [8],
the piecewise-polynomial regression trees by Chaudhuri
et al. [9], the regression impurity tree by Alexander and
Grimshaw [10], the Bayesian tree by Chipman et al. [11],
the unbiased interaction selection and estimation by Kim and
Loh [12], the mixed-effects longitudinal tree by Eo et al. [13],
the Seemingly unrelated regression tree [14] and the Unified
Noncrossing Multiple Quantile Regressions Tree [15] by
Kim et al. The generalized, unbiased interaction detection
and estimation by Loh [16]. More recently, there have
been papers on modeling analysis based on regression trees
approach in many fields. Such as the piecewise symbolic
regression tree by Zhang et al. [17], the boosted regression
tree (Knierim et al. [18], Said et al. [19], Han et al. [20], and
Alnahit et al. [21]), the logistic regression trees by Loh [22],
the bayesian additive regression tree (Pan and Bunn [23],
Clark et al. [24], Um et al. [25]) and so on.
Our goal is to construct an interpretable predictive model

for the data consisting of multivariate response variables and
multiple multicollinear predictor variables. Thus, we com-
bine the merits of regression tree modeling and PLS
regression modeling, which detect complex relationships and
make an accurate prediction. The idea has been tried in
several papers. Yeh and Spiegelman [26] and Reddy et al. [27]
sequentially fit PLS regression and regression tree, whereas
Hao et al. [28] combined PLS regression and regression
tree, and additionally combined PLS regression and random
forests. All predictors were used for splitting and fitting
in the latter, and only univariate response variables were
considered in the studies. We can also use all predictor
variables simultaneously for splitting and fitting. However,
depending on the characteristics of the data, we divided the
predictor variables into two parts. One is for fitting with high
collinearity, and the other is for splitting with interpretation.
If all predictors are used to construct latent variables,
interpretation of predictors in PLS is difficult because the
effects of external factor variables, which clinical researchers
want to know can be hidden by complex latent structures.

It is unsuitable to extract all predictors as latent variables
because some external factor variables may be indirectly
associated with the response variables. Therefore, we need a
model that provides a direct interpretation of external factors
concerning personal characteristics whereas maintaining the
prediction of performance. For this, we develop a PLSRT
(PLS Regression Trees) modeling algorithm by dividing
predictors into two parts: external factors for splitting and
landmark factors for fitting.

The remainder of this paper is structured as follows.
Section II introduces the proposed PLSRT model. Section III
presents the simulation studies. The performance of the
proposed method is further compared with that of several
other models. This is demonstrated using two real data sets in
Section IV. Finally, Section V presents concluding remarks.

II. PROPOSED METHOD
This section describes a new model, PLSRT, with basic
model settings, impurity functions, split rules, and tree size
determination.

A. BASIC MODEL
Let y1, y2, . . . , ym and x1, x2, . . . , xp+q be the response
and predictor variables with n subjects. We consider the
multiple response general linear model for regressing y on
x, as follows:

y = B0 + xB+ ϵ (1)

where y = (y1, y2, . . . , ym), x = (x1, x2, . . . , xp+q),
B0 is the intercept term, B is the (p + q) × m matrix
for the regression coefficients, ϵ is an error term. Some
of the predictor variables are correlated with each other.
To construct PLSRT, we divide the p+ q predictor variables
into two parts and assign different roles. For convenience,
it is assumed that the first p variables are used for fitting
and the others q variables are used for splitting. That is, let
x1, x2, . . . , xp be fitting variables and xp+1, xp+2, . . . , xp+q
be split variables. To distinguish easily, we use z1, z2, . . . , zq
instead of xp+1, xp+2, . . . , xp+q.

We find appropriate estimates of the regression coefficients
B to interpret and predict the response values Y of individuals
at each partitioned node. To do this, we employ partial least
squares (PLS) to solve the seriously correlated regression
problem. For tree-based PLS regression modeling, a basic
model with individuals at an arbitrary node t is defined as
follows:

yki = β
(t)
k0 +

p∑
j=1

β
(t)
kj xji + ϵki, k = 1, 2, . . . ,m, i ∈ t

(2)

where yki, xji, β
(t)
kj and ϵki are the elements of the response

variables y, predictor variables x, regression coefficients B
and error terms ϵ. The regression coefficients are estimated
using PLS, with individuals at node t . Therefore, the response
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variables yki, (k = 1, 2, . . . ,m, i ∈ t) are obtained from the
PLS estimates β̂

(t)
k0 , β̂

(t)
k1 , . . . , β̂

(t)
kp as follows:

ŷki = β̂
(t)
k0 +

p∑
j=1

β̂
(t)
kj xji, k = 1, 2, . . . ,m, i ∈ t (3)

B. IMPURITY FUNCTION
An impurity function is a fundamental element in the
construction of a tree. We consider the sum of squared errors
as an impurity function at node t as follows:

i(t) =

m∑
k=1

∑
i∈t

(yki − ŷki)2 =

m∑
k=1

∑
i∈t

(yki − β̂
(t)
k0 −

p∑
j=1

β̂
(t)
kj xji)

2

(4)

The impurity function measures the prediction errors which
are the differences between yki and ŷki at each node.

C. SPLIT RULE SELECTION
To find a good split, we can evaluate the following reduction
of impurities for all possible splits.

1(t) = i(t) − [i(tL) + i(tR)] (5)

where i(t), i(tL) and i(tR) are the impurities at node t , its
left and right subnodes, tL and tR, respectively. Among all
possible splits, the best split generates the greatest reduction
in impurity. We refer this routine to as the exhaustive search
(ES) approach. The ES approach has some problems, such
as variable selection bias and considerable computational
cost, as indicated by Loh [16], [29] in classification and
regression tree problems. Therefore, we can use the residual
analysis (RA) approach to solve these problems. In this paper,
we apply the RA approach first to define the residuals at node
t , as follows:

rki = yki − ŷki, k = 1, 2, . . . ,m, i ∈ t (6)

These are the differences between the response values yki and
predicted values ŷki. The signs of the residuals are formed as
follows:

sign(rki) =

{
−1, if rki ≤ 0
+1, if rki > 0

(7)

We further constructed a contingency table with the signs
of the residuals for each split variable. If a split variable
zl(l = 1, 2, . . . , q) is numerical, we divide it into four
quantile categories (C1,C2,C3,C4) to construct a 2 ×

4 contingency table. If a split variable zl(l = 1, 2, . . . , q) is
categorical with g categories (C1,C2, . . . ,Cg), we construct
a 2 × g contingency table, as shown in Table 1. We fur-
ther obtain the Pearson chi-squared statistic χ2

ν for each
contingency table. Because the degrees of freedom differ
for each predictor variable, we equalize them into one by
employing theWilson-Hilferty approximation [30],Wk (zl) =

max
(
0,

[
7
9 +

√
ν

{(
χν

2

ν

) 1
3

− 1 +
2
9ν

}])
, (k = 1, 2, . . . ,

TABLE 1. Contingency table.

m, l = 1, 2, . . . , q). The transformed statistics for each
predictor variable are compared, and the predictor variables
with the largest statistics are selected as the split variable.
The split point (or set) of the selected split variable can be
determined by evaluating the reduction of impurities. The ES
and RA approaches are summarized as follows:

PLSRT-ES algorithm for split rule selection:
1. Fit the basic model (2) with the fitting variables to the

data.
2. Calculate impurity (4).
3. Evaluate the reduction of impurity (5) for all possible

splits of the split variables.
4. Choose the best split variable and split point (or set) to

maximize the reduction of impurity (5).
PLSRT-RA algorithm for split rule selection:
1. Obtain the residuals (6) after fitting the basic model (2)

with the fitting variables to the data.
2. Obtain the statistic χ2

1 for each categorical split
variable.
a) From a 2 × g contingency table, obtain the chi-

squared statistic χ2
ν to test independence, where ν

is the degree of freedom of the contingency table
(ν = g− 1).

b) Use theWilson-Hilferty approximation to convert
χ2

ν to 1-d.f.chi-squared χ2
1 .

3. Obtain the statistic χ2
1 for each non-categorical split

variable.
a) Divide the non-categorical variables into four

quantile categories C1, C2, C3, C4.
b) Use theWilson-Hilferty approximation to convert

χ2
ν to 1-d.f.chi-squared χ2

1 .
4. Find the best split variable with the largest χ2

1 .
5. Choose the best split point (or set) to maximize the

reduction of impurity (5) for all possible split points
(or sets) of the selected split variable.

The PLSRT-ES or PLSRT-RA algorithm is applied recur-
sively to partition the data until each node has fewer than a
pre-specified number of observations. Thus, a tree-structured
model is obtained.

D. TREE SIZE DETERMINATION
One of the important problems to consider whereas con-
structing a tree model is determining tree size. It is crucial
to determine an appropriate tree size because trees that are
too small may miss significant splits, whereas trees that are
too large may cause an overfitting problem. Appropriate
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stopping and pruning rules can be used to solve these
problems. We employ the cost-complexity pruning technique
by Breiman et al. [6], which splits the data recursively until
the sample sizes at each node are reasonably small and then
prunes off insignificant branches of nodes. The minimal cost-
complexity pruning technique finds an optimal tree T by
minimizing the cost-complexity: Rα(T ) = R(T ) + α∥T̃∥,
whereR(T ) is the sum of the resubstitution loss functions over
the terminal nodes of a tree T , α is a complexity parameter,
and ∥T̃∥ is the number of terminal nodes, T̃ , in T . The
algorithm first obtains a series of candidate trees, which are
evaluated to select a final value for α, and hence a final tree.

III. SIMULATION STUDY
In this section, we investigate the performance of the
proposed PLSRT modeling algorithm using simulated data.
They are compared with several other methods for split
variable selection and prediction accuracy under several
situations for univariate and multivariate response cases.
In both cases, we simulate the data using the following fitting
and split variables. The fitting variables (x1, x2, . . . , x5) are
assumed to follow N (µ, 6), where:

µ =


5
5
5
5
5

 , 6 =


1 0.9 0.7 0.5 0.3
0.9 1 0.9 0.7 0.5
0.7 0.9 1 0.9 0.7
0.5 0.7 0.5 1 0.9
0.3 0.5 0.7 0.9 1

 (8)

The three split variables are numerical: z1 ∼ N(0, 1),
z2 ∼ U(0, 1), z3 ∼ Exp(1), and the two split variables
are categorical: z4 ∼ Binomial(1/2, 1/2) and z5 ∼

Multinomial(1/12, . . . , 1/12), which have two and twelve
categories, respectively, with the same probabilities.

A. UNIVARIATE CASE
1) MODEL SETTING
We considered five different models to evaluate PLSRT.

y = 1 + x1 + ϵ (9)

y =

{
1 + x1 + ϵ if z1 ≤ 0
(1 + β1) + (1 + β2)x1 + ϵ otherwise

(10)

y =

{
1 + x1 + x2 + ϵ if z1 ≤ 0
(1 + β1) + (1 + β2)x1 + x2 + ϵ otherwise

(11)

y =


1 + x1 + x2 + x3 + x4 + x5 + ϵ if z1 ≤ 0
(1 + β1) + (1 + β2)x1 + x2 + x3 otherwise
+x4 + x5 + ϵ

(12)

y =

{
1 + x1 + ϵ if z1 ≤ 0 and z4 ∈ {0}
(1 + β1) + (1 + β2)x1 + ϵ otherwise

(13)

where the random error ϵ follows a standard normal
distribution N (0, 1). From each model, 200 observations are
generated for training, and 200 are independent for testing.

TABLE 2. Variable selection probabilities with models (9), (10), (11), (12),
and (13).

2) SPLIT VARIABLE SELECTION
We further investigated the split variable selection of PLSRT.
The estimated probabilities of selecting each predictor are
recorded for 200 iterations, as listed in Table 2.

The response variable for the null model (9) is independent
of all the split variables zl(l = 1, 2, . . . , 5). Therefore, the
five split variables should have the same selection probability
of 0.2. PLSRT-RA selects each split variable with similar
probabilities. However, using PLSRT-ES, the binary variable
z4 is not selected, and the 12-category variable z5 is often
selectedwith a probability of 0.715. It tends to choose z5 more
frequently than the other split variables because z5 has a
larger number of possible splits. For the other models (10),
(11) and (12), the response variable y depends on the split
variable z1. Therefore, it is expected that split variable z1 is
selected. By PLSRT-RA, z1 is mostly selected, but z1 is less
selected, and z5 is selected by PLSRT-ES. For model (13), the
response variable y depends on the split variables z1 and z4.
Therefore, it is expected that split variables z1 or z4 is selected.
By PLSRT-RA, the split variables z1 and z4 are mostly
selected, however, the variable z1 and z4 are less selected,
and z5 is often selected by PLSRT-ES. This result implies
that the ES approach is vulnerable to selection bias towards
variables with larger possible splits. The RA approach selects
the correct split variables fairly accurately.

3) PREDICTION ACCURACY
The proposed PLSRT method requires a stopping rule when
performing the split, which sets the terminal node size to 10 or
more. To evaluate the prediction accuracy, the correlation
(Corr) between the observed and predicted response values
yi and ŷi and the mean squared errors (MSE) are calculated
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TABLE 3. Mean and standard error of Corr & MSE with models (9), (10),
and (11).

as follows:

Corr =

n∑
i=1

(yi − ȳi)(ŷi − ¯̂yi)√
n∑
i=1

(yi − ȳi)2
n∑
i=1

(ŷi − ¯̂yi)2
(14)

MSE =
1
n

n∑
i=1

(yi − ŷi)2 (15)

where ȳi and ¯̂yi are the sample means for yi and ŷi. They are
evaluated by independent n=200 test observations. Several
other methods such as ordinary least squares (OLS), principal
component regression (PCR), ordinary regression tree (Tree),
random forest (RF), and partial least squares (PLS) are
included for comparison. The Corr and MSE values are
calculated for 200 iterations.

Table 3 and Table 4 show the mean and standard error
(s.e) of Corr and MSE values, respectively. Corr(mean)

TABLE 4. Mean and standard error of Corr & MSE with models (12)
and (13).

and Corr(s.e) are the mean and standard error of Corr and
MSE(mean) and MSE(s.e) are the mean and standard error of
MSE. For the OLS, PCR, and PLS methods, all the predictor
variables are used for fitting, whereas for the tree and
random forest methods, all the predictor variables are used
for splitting. It is shown that PLSRT-ES and PLSRT-RA had
higher correlations and lower MSEs than the other methods.
Additionally, PLSRT-RA shows slightly better performance
than PLSRT-ES.

B. MULTIVARIATE CASE
1) MODEL SETTING
For the multivariate response case, we first assume that Y =

(y1, y2) is a 2-dimensional response variable. We considered
four different models to evaluate PLSRT.

y1 = 1 + x1 + ϵ1

y2 = 1 + x2 + ϵ2 (16)

y1 =


1 + x1 + ϵ1 if z1 ≤ 0 and z4 ∈ {0}
(1 + β1) + (1 + β2)x1 otherwise
+ϵ1
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TABLE 5. Variable selection probabilities with models (16), (17), (18)
and (19).

y2 =


1 + x2 + ϵ2 if z1 ≤ 0 and z4 ∈ {0}
(1 + β1) + (1 + β2)x2 otherwise
+ϵ2

(17)

y1 =


1 + x1 + ϵ1 if z1 ≤ 0 and z4 ∈ {0}
(1 + β1) + (1 + β2)x1 otherwise
+ϵ1

y2 = 1 + x2 + ϵ2 (18)

y1 =


1 + x1 + x3 + x5 + ϵ1 if z1 ≤ 0 and z4 ∈ {0}
(1 + β1) + (1 + β2)x1 otherwise
+x3 + x5 + ϵ1

y2 =


1 + x2 + x4 + x5 + ϵ2 if z1 ≤ 0 and z4 ∈ {0}
(1 + β1) + (1 + β2)x2 otherwise
+x4 + x5 + ϵ2

(19)

where the random errors (ϵ1, ϵ2) follow a standard normal
distribution N (0, 1). From each model, 200 observations are
generated for training, and 200 are independent for testing.

2) SPLIT VARIABLE SELECTION
We investigated the split variable selection of PLSRT.
The estimated probabilities of selecting each predictor are
recorded for 200 iterations, as listed in Table 5.
The response variables Y = (y1, y2) for the null model (16)

are independent of all split variables zl(l = 1, 2, . . . , 5).
Therefore, the five split variables should have a similar
selection probability of 0.2. PLSRT-RA selects each split
variable with similar probabilities. However, the binary
variable z4 is not selected, whereas the 12-category variable
z5 is often selected with a probability of 0.715 by PLSRT-
ES. For the other models (17), (18) and (19), the response
variables y1 and y2 depend on the split variables z1 and z4.

Therefore, it is expected that split variable z1 or z4 is selected.
The split variables z1 and z4 are mostly selected by PLSRT-
RA. However, by PLSRT-ES, the z1 and z4 are less selected
and z5 is often selected. This is because it is the same as that
in univariate cases. Therefore, the ES approach is vulnerable
to selection bias toward variables with larger possible splits
in both univariate and multivariate response cases. The RA
approach selects the correct split variables fairly accurately.

3) PREDICTION ACCURACY
For the multivariate cases, the proposed PLSRT method
requires a stopping rule when performing the split, which
sets the terminal node size to 10 or more as in the univariate
case. We calculated Corr and MSE to examine the prediction
accuracy, as follows:

Corr =
1
m

m∑
k=1

n∑
i=1

(yki − ȳki)(ŷki − ¯̂yki)√
n∑
i=1

(yki − ȳki)2
n∑
i=1

(ŷki − ¯̂yki)2
(20)

MSE =
1

n× m

m∑
k=1

n∑
i=1

(yki − ŷki)2 (21)

wherem = 2 is the dimension of Y , ȳki and ¯̂yki are the sample
means of yki and ŷki. They are evaluated using independent
200 test observations. Several methods such as PCR and
PLS are further included for comparison. The Corr and MSE
values are then calculated for 200 iterations.

Table 6 shows the mean and standard error of Corr and
MSE values. For PCR and PLS, all predictor variables are
used for fitting. It is shown that PLSRT-ES and PLSRT-
RA had higher correlations and lower MSEs than the other
methods. Additionally, PLSRT-RA shows slightly better
performance than PLSRT-ES.

IV. CASE STUDY
A. UNIVARIATE CASE
We consider univariate response data, referred to as Usedcar
data fromKcar Corporation. The data comprised 985 vehicles
sold. The response variable, the real sell price, is the vehicle’s
real sold price. The predictor variables are further used as
six spilt variables and six fitting variables. The variables as
described in Table 7.
Fig.1 shows the results of the PLSRT-RA and PLSRT-ES

for the Usedcar data. By PLSRT-RA, the type of vehicle
segment is the primary factor that creates the subgroups,
and then the vehicle used years and vehicle mileage divide
the vehicle sold situation into four parts. PLS fits for each
terminal node are obtained in the following form:

ŷ = β̂0 + β̂1x1 + β̂2x2 + β̂3x3 + β̂4x4 + β̂5x5 + β̂6x6
(22)

Table 8 shows the PLS estimates for each terminal node. The
PLS estimates for terminal node 5 significantly differ from
those for the other terminal nodes. Terminal node 5 belongs
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TABLE 6. Mean and standard error of Corr & MSE with models (16), (17),
(18), and (19).

TABLE 7. Variable description for the Usedcar data.

to a case in which the type of vehicle segment is not mid-
size and year is more than 5. It has little influence on the
recommended sell price (β̂3 = 0.01), whereas it has more
influence on the recommended purchase price (β̂1 = −0.22)
and the real purchase price (β̂2 = 1.24). According to
PLSRT-ES, the mileage factor is the primary factor that
creates subgroups, and the type of vehicle segment divides
the vehicle sold situation into three parts. The PLS estimate

FIGURE 1. PLSRT for the Usedcar data. (a) PLSRT-RA split rule selection
approach and the cost-complexity pruning. (b) PLSRT-ES split rule
selection approach and the cost-complexity pruning. An observation
moves to the left node if the condition is satisfied and moves to the right
otherwise.

TABLE 8. Estimates for each terminal node with PLSRT method.

values for terminal node 3 differ from those for the other
terminal nodes. Terminal node 3 belongs to the case where
the vehicle used year is less than 5.7, and the type of vehicle
segment is mid-size or compact. It insignificantly influences
the recommended sell price (β̂3 = 0.02), but has a greater
influence on the real purchase price (β̂2 = 1.07). Using
both approaches, the segment and mileage variables are more
important than the other split variables. Additionally, the
vehicle used year divides the data in more detail using the
PLSRT-RA.

B. MULTIVARIATE CASE
We consider multivariate response data, referred to as
SNUDH data, from the Seoul National University Dental
Hospital. The data included 318 patients and is detailed
in the Suh et al. [31]. The 64 response variables, Facial
landmarks after orthognathic surgery, are the facial landmarks
(x-coordinates and y-coordinates) after orthognathic surgery.
The predictor variables are divided into six spilt variables
(external factors) and 232 fitting variables (landmark factors),
as described in Table 9.

Fig.2 shows the results of the PLSRT-RA and PLSRT-ES
for the SNUDH data. PLS fits for each terminal node are
obtained in the following form:

ŷk. = β̂0,k + β̂1,kx1 + . . . + β̂232,kx232, k = 1, 2, . . . , 64

(23)
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TABLE 9. Variable description for SNUDH data.

FIGURE 2. PLSRT for SNUDH data. (a) PLSRT-RA split rule selection
approach and the cost-complexity pruning. (b) PLSRT-ES split rule
selection approach and the cost-complexity pruning.

According to PLSRT-RA, the type of jaw is a factor
that creates heterogeneous subgroups. It further divides the
surgery situation into two subgroups. Using PLSRT-ES,
the age at surgery divides the surgery situation into two
subgroups. There are 232 estimated regression coefficients
for each PLSRT model. In orthognathic surgery, the type of
jaw is more important than the age at surgery. Therefore,
PLSRT-RA yields a more realistic result.

V. CONCLUSION
In this study, we propose a new PLSRT modeling algorithm.
This can be used when many predictor variables have
multicollinear relationships. It integrates the merits of PLS
regression modeling and tree-structured modeling; hence,
it can solve the multicollinear problem and capture com-
plex non-linear relationships. This provides a visible and
interpretable predictive model. Such structures for modern
biomedical data are often found. First, we divided the
predictor variables into two categories. One is for fitting
with high collinearity and the other is for splitting with
interpretation. For variable selection, the RA approach solves
the problems encountered by the ES approach, such as
the undue preference for split variables with more possible
splits and considerable computational costs. The PLSRT
modeling method can be applied to both univariate and
multivariate response data. Through simulation and case
studies, we investigated the performance of PLSRT by
comparing it with existing methods. From these advantages,
we conclude that PLSRT satisfies both prediction accuracy
and model interpretation.
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