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ABSTRACT Precise segmentation is vital for successful diagnosis and treatment planning. Medical image
segmentation has demonstrated remarkable advances with the introduction of deep convolutional neural
networks, particularly encoder-decoder networks such as U-Net. Despite their excellent performances, these
methods have some limitations. First, the structure is limited in its ability to combine information because
feature maps to extract valid information from the final encoding stage are incompatible at the encoding
and decoding levels. Second, the approach ignores significant semantic details and does not consider
different types of small-scale contextual informationwhen segmentingmedical images. Lastly, mostmethods
employing 3D architectures to process input medical images increase the computational complexity of the
model without significantly improving the accuracy. To resolve these issues, we propose a segmentation
network called Multi-Attention Gated Residual U-Net (MAGRes-UNet). This network incorporates four
multi-attention gate (MAG) modules and residual blocks into a standard U-Net structure. The MAG module
integrates the information from all encoding stages and focuses on small-scale tumors while disambiguating
irrelevant and noisy feature responses, thereby promoting meaningful contextual information. The residual
blocks simplify the network training and mitigate the problem of vanishing gradients. This improves the
ability of the network to effectively learn intricate features and deep representations. Moreover, our network
employs the Mish and ReLU activation functions (AFs), which utilize AdamW and Adam optimization
strategies to achieve enhanced segmentation performance. The proposed MAGRes-UNet method was
compared with the U-Net, Multi-Attention Gated-UNet (MAG-UNet), and Residual-UNet (ResUNet)
models. In addition, a statistical T-test was performed to assess the difference in model significance between
the approaches. The analysis revealed thatMAGRes-UNet employingMish andAdamWprovides significant
performance improvement over the ReLU AF and Adam optimizer on two benchmark datasets: Multi-
Class BT T1-weighted Contrast-Enhanced Magnetic Resonance Imaging (T1-CE-MRI) and skin lesions
HAM10000 (Human Against Machine with 10,000 training images). MAGRes-UNet using Mish and
AdamW provides competitive performance over the representative medical image segmentation methods.

INDEX TERMS Attention mechanism, brain tumor segmentation, Mish activation function, residual block,
U-Net.
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I. INTRODUCTION
In recent years, the rapid development of medical imaging
modalities, such as magnetic resonance imaging (MRI),
computed tomography, ultrasound, and X-rays, has led to
the generation of large image datasets, which have improved
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the usability and accessibility of the imaging modalities
in clinical scenarios [1]. Medical image analysis also
contributes to quicker diagnosis and treatment procedures.
MRI provides excellent contrast between soft and hard tissues
for the assessment of brain tumors (BTs) without exposing
the patient to radiation. According to the International
Association of Cancer Registry (IARC) [2], more than 28,000
BT cases are annually reported in India. The precise surgical
diagnosis and planning of BT are intricate processes that
improve the survival rate of patients with BT [3]. The
appropriate segmentation of BTs is essential for accurate
surgical localization and diagnosis [4]. Because the BT
regions vary in size, shape, position, and light dispersion,
their accurate segmentation remains challenging [5]. MRI
offers precise information about the tissue structure of BTs
and helps in accurate segmentation in BT tasks [4]. To locate
the BT regions, radiologists examine different T1-weighted
contrast-enhanced (T1-W CE), T1-W, T2-W fluid-attenuated
inversion recovery (FLAIR), and T2-W sequences simultane-
ously [6]. However, manual segmentation is time-consuming
and highly dependent on the competence level of the
radiologist [3]. Hence, automation is essential to make BT
segmentation more reliable and efficient.

Recently, deep learning (DL) algorithms have demon-
strated excellent performance in image segmentation [7], [8],
[9], [10], [11], [12]. Convolutional neural networks (CNNs)
are valuable for medical image analysis because they can
automatically extract features at low to high levels [13].
In particular, deep convolutional neural networks (DCNNs)
are increasingly being used in medical image segmentation.
Furthermore, fully convolutional neural networks (FCNNs)
[7], [14] and U-Net-like encoder-decoder architectures [8],
[9], [15], [16], [17] have shown superior performance
when compared with traditional approaches [18], [19], [20].
In these networks, the convolutional layers are combinedwith
the encoder’s downsampling layers and the decoder’s upsam-
pling layers to extract deep features and fuse high-resolution
features to achieve accurate pixel-level semantic predictions.
They are particularly suitable for medical image segmen-
tation because they can extract features and learn complex
patterns from medical images.

Walsh et al. [21] developed a U-Net-based lightweight
segmentation method for BT. The application was tested
on the BITE dataset with promising results. In their study,
the intersection over union (IoU) achieved a success rate of
89%. According to Ronneberger et al. [8], a U-shaped seg-
mentation successively produces convolutional operations.
Their model integrates and reconstructs the encoder stage
features in the decoder stage for segmentation. However,
this approach may result in semantic gaps. Skip connections
have been proposed to eliminate these gaps [1], [22]. The
authors of [23] presented UNet++, a convolution-based
segmentation model that incorporates dense skip connections
for segmenting medical images. The skip connections in the
proposed model outperformed those in the U-Net model.

However, it had too many parameters when compared with
the U-Net model. Consequently, more straightforward skip
connections were favored in the ResUNet+ architecture
than the UNet++ model. Cao et al. [24] proposed the
DenseUNet model to improve the performance of the U-Net
segmentation model and solve the vanishing gradient issue.
Instead of convolutional layers, dense blocks were employed
in the U-Net-based model. The testing of their model on the
ISBI 2012 EM dataset was performed without a pre-training
phase or post-processing module. To enhance the feature map
discrimination, the ResUNet+ model incorporates residual
blocks and convolution layers. Li et al. [25] incorporated
pretrained block structures in the segmentation model to add
a node structure to the encoder and decoder, which provided
superior features over U-shaped segmentation models.

Qamar et al. [26] used inception module components
in a novel U-Net model for segmenting brain tissues.
Zhang et al. [27] proposed a U-Net residual attention network
(AresU-Net), and simultaneously deployed the attention
technique and residual blocks to the U-Net model for the 2D
BT segmentation network. Huang et al. focused on improving
the features and gathered multiscale features for analysis,
thereby reducing the network parameters and increasing the
accuracy [28]. Zhang et al. [29] proposed a U-Net based
on a swin transformer and used the spatial and channel
information of the image to achieve more accurate semantic
segmentation. Wang et al. [30] proposed repeating loop
unit structures by fusing the encoder and decoder structures
used in the U-Net architecture. The model developed by
Zhuang [31] incorporates several pairs of encoder and
decoder branches to capture intricate details.

Several approaches have been used to segment skin
lesions according to the preference and experience of the
researcher. The initial studies used histograms and threshold-
ing methods [32], [33], [34], [35], [36]. The authors of [34]
presented a new technique for skin lesion segmentation
based on type-2 fuzzy logic. Compared with other studies,
this method successfully detected uncertainties at the edges
of the lesions. Çelebi et al. [35] processed a wide range
of dermoscopic images using ensembles of thresholding
techniques. They applied multiscale thresholding fusion to
analyze the skin lesion images. However, the approach had
a limited degree of effectiveness with a single threshold
coefficient. Peruch et al. [36] used an impressive thresholding
technique and proposed a stepwise process that resem-
bled a dermatologist’s actions. Other alternative methods
include techniques such as preprocessing, dimensionality
reduction, blurring, thresholding, and post-processing. Al-
Masni et al. [37] presented a deep-resolution convolutional
network for segmenting skin lesions. Unlike U-Net [8],
this approach does not use upsampling or downsampling
techniques to ensure precise resolution across feature maps.
The RGB color images are immediately provided to the
network using DL techniques, which require minimal
preprocessing.
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Recent studies have shown that increasing the number of
input color channels improves the skin lesion segmentation.
Three RGB channels, three HSV channels, and one L channel
of the CIELAB color space were combined by Yuan and
Lo [38] to create seven channels for their DNN model,
resulting in improved segmentation. The authors of [39]
also employed 7 channels in the DL method but adopted
different strategies. The initial layer included three RGB
channels, whereas the deeper intermediate layer contained
four more channels (S of the HSV color space, I of
the YIQ color space, B of the CBR color space, and
Z of the XYZ color space). Xie et al. [40] developed
a high-resolution feature block containing three branches:
normal convolutional, spatial, and channel attention. ASCU-
Net was proposed by Tong et al. [41], which employed three
attention techniques: an attention gate [17], spatial attention
module, and channel attention module. The segmentation of
skin lesions was improved using a transfer learning approach.
Kadry et al. [42] and Rajinikanth et al. [43] used a pretrained
VGG network [44] to encode the key features of a skin lesion
image, whichwere then resampled to generate a segmentation
mask.

Many studies have addressed the flaws of the standard
U-Net models [8]. However, the structure of convolutional
operations can lead to the under- or over-segmentation of
medical images. Therefore, the realization of an automated
segmentation model remains challenging because of the
following factors: (1) the need for labeled medical data
can distort the assessment of model performance and cause
potential overfitting when dealing with limited datasets. (2)
To properly handle medical datasets that involve image pro-
cessing tasks, it is essential to have background knowledge
to guide the learning process of the model. (3) Medical
images present difficulties owing to their unclear boundaries,
movement distortion, varying intensities, and inconsistencies
in the size and shape of the critical area. (4) Models struggle
to perform well on new datasets because of differences in
the equipment used for the same medical procedure and
variations in the image-acquisition protocols. Considering
these constraints, automated segmentation has become a
popular research topic.

With the advancement of CNNs [45], several networks [7],
[46] utilizing encoder-decoder architectures have been used
for semantic segmentation. The encoder classifies and
analyzes the local pixels to extract high-level semantic
information from the low-level local pixels. The decoder
simultaneously maps high-level semantic information onto
specific pixels [47]. To be effective, these networks require
large datasets with numerous samples, which is difficult in
the medical field [48].
To solve these problems, the U-Net [8] model was

proposed, which provides good medical image segmen-
tation performance by using skip connections between
the encoding and decoding stages. This mitigates the
downsampling-induced information loss [49]. However,

semantic gaps may exist between the encoder and decoder
levels [15], leading to invalid fusion and misclassification
of the decoder results, which may affect the segmentation
process [47]. Several novel U-Net networks, including
UNet++ [23], U-Net3+ [28], and MultiResUNet, have been
proposed to reduce the effect of semantic gaps and improve
the segmentation performance [15]. U-Net++ and U-
Net3+ utilize nested, dense, and full-scale skip connections,
whereas MultiResUNet replaces the skip connections with an
improved Res path.

However, these methods have limited feature extraction
capabilities, and some information is diluted when certain
layers cannot extract certain features. In addition, a skip
connection introduces irrelevant clutter (e.g., invalid features
caused by poor extraction capabilities in the encoding
stage), as shown in Fig. 1(c-e). Some skip connections may
negatively affect the segmentation performance because of
their ineffectiveness [47].

Several methods have recently been proposed to solve
these problems. The Context Pyramid Fusion Network
(CPFNet) [50] uses multiple global pyramid guidance
modules to provide information from various stages of
encoding, and atrous convolutions are used to broaden the
receptive field [51]. These modules provide information
from different levels to the decoding stage and suppress
low-level background noise and features. In contrast, CPFNet
decoders obtain limited encoder information at low levels,
preventing the effective use of the encoder’s multiscale
information. Moreover, CPFNet skips connections, which
may result in data loss during downsampling [52]. A channel
transformer module was designed using a transformer
module in UCTransNet [47]. Integrating the encoder-level
information into the decoders enabled the decoder features
to efficiently carry multiscale information, thereby reducing
ambiguity. However, the transformer requires a large amount
of training data and performs poorly on datasets with fewer
samples.

Our study proposes MAGRes-UNet (Multi-Attention
Gated Residual U-Net) to solve the above problems by
integrating two modules into an existing U-shaped frame-
work. First, we employed MAG modules to enable seamless
information flow between the encoding and decoding stages.
These MAG modules target the reduction of semantic
gaps and ensure efficient transfer of pertinent information
across the network architecture, ultimately improving the
segmentation performance. Second, the proposed network
incorporates residual blocks to elevate the feature extraction
capabilities and extend the potential dilution of informa-
tion in specific network layers to multiple scales. This
design enhancement is crucial for maintaining feature
quality throughout the network, which contributes to more
precise and accurate segmentation results. Our approach
effectively mitigates issues with multiscale clutter and
suboptimal skip connections, which are often observed in
conventional U-Net models. Furthermore, integrating the
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Mish AF and AdamW optimizer further enhanced the
model’s performance by improving the nonlinearity and
optimizing the weight updates. MAGRes-UNet presents a
promising solution for enhancing the segmentation accuracy
even with limited data. This study makes the following
contributions:

1) A U-shaped framework called MAGRes-UNet, shown
in Fig. 2, which leverages two modules—multi-
attention gates (MAGs) and residual blocks module—
to improve the medical image segmentation perfor-
mance is proposed.

2) The standard U-Net [8] model in our study incorporates
four MAG modules to use high-level decoding fea-
tures, thus facilitating the enhancement of lower-level
encoding features. This improves the concatenation
between the encoder and decoder when processing
small-scale tumors. The inclusion of residual blocks
deepens the network through identity connections,
optimizing the training process. These connections
enable the transmission of fine-grained details and
reduce issues related to vanishing gradients, resulting
in more accurate and robust segmentation of medical
images between different classes.

3) This study used the Mish [53] activation function
(AF) and AdamW [54] optimizer. Our MAGRes-UNet
model demonstrated remarkable improvement in train-
ing and segmentation accuracy, as validated by the
experimental results. Comparative analysis, includ-
ing statistical tests T-Test, showcased the consis-
tent superiority of our approach over MAG-UNet,
ResUNet, and U-Net across various performance
metrics. This superiority was consistently observed
on two distinct medical imaging datasets, BT T1-
weighted CE-MRI and skin cancer HAM10000,
when compared with state-of-the-art (SOTA) DL
models.

The remainder of this paper is organized as follows: Section II
examines the proposed methods. Section III explains and
analyzes the experiments, including data preprocessing and
metric evaluation. Section IV presents results and discussion
along with a performance comparison with the state-of-the-
art (SOTA) models. Finally, section V presents the main
conclusions of this study.

II. METHODS
This study proposes aMAGRes-UNet framework to precisely
segment multiclass brain MRI tumors and skin lesions. Our
architecture is based on U-Net because of its successful
application in biomedical image segmentation. U-Net is an
FCNN and is widely known for its effectiveness in semantic
segmentation tasks. By incorporating the MAG and residual
blockmodules, we extend the capabilities of U-Net to address
the challenges inherent in medical image segmentation. U-
Net and MAGRes-UNet are presented in detail, and their
distinct features are outlined.

A. U-Net MODEL
According to Ronneberger et al. [8], the U-Net is a
DL CNN architecture developed for biomedical image
segmentation. U-Net has numerous applications, including
consumer videos [55], [56], earth observations [57], and
medical imaging [58], [59], [60]. This network consists of
an encoder followed by a decoder with a bottleneck layer
between them. Our architecture uses convolutional blocks as
building blocks for the encoders and decoders. As part of this
block, we performed 2D convolution, batch normalization
(BN), dropouts, and Mish (discussed in Section II-B3) as the
AF, and max-pooling for downsampling with a stride size of
2. Mish [53] is a newly proposed AF that has demonstrated
superior performance over rectified linear units (ReLU) [61],
leaky ReLU [62], exponential linear units (ELUs) [63], and
Swish [64] in various DL [65] methods. The number of
feature channels is doubled for each downsampling step
(64, 128, 256, 512). The encoder stage is followed by a
bottleneck layer containing 1024 feature channels.

The decoder network is based on upconvolution, fol-
lowed by coupled convolution, BN, dropout, and Mish
AF, and decreases the number of feature channels by
half (512, 256, 128, 64). A skip connection is utilized to
convey the spatial information from the encoder to the
decoder to recover lost information in the encoder blocks
without introducing new parameters or processing costs; this
improves the processing speed and accuracy [66]. To transfer
the features of the preceding layer to the desired number of
classes, a 1×1 convolutional layer is adopted at the end of the
network, followed by the softmax [67] function. U-Net has
been extensively used for semantic segmentation, including
biomedical image segmentation. Fig. 1(a) shows the visual
representation of the standard U-Net architecture.

B. PROPOSED MULTI-ATTENTION GATED RESIDUAL-UNet
(MAGRes-UNet) MODEL
The U-Net model is a popular choice for medical image
segmentation; however, it has some limitations, such as a
vanishing gradient with increasing network depth. As the
network deepens, the gradient becomes almost zero in the
lower layers [68]. Furthermore, when generating segmen-
tation masks using the U-Net framework, the low- and
high-level features that contain information on the boundary,
edges, and location of the tumor region are equally important.
Consequently, essential features may become less influential,
whereas unimportant ones may become more valuable. This
undermines the success of the segmentation. To improve the
medical image segmentation performance metrics, we must
address the gradient vanishing problem associated with the
traditional U-Net design. To access more distinctive features,
it is essential to utilize downsampling rather than relying
solely on skip connections between the encoder and decoder.
However, this approach may lead to a loss of local details
from previous layers owing to convolutional operations.
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FIGURE 1. Comprehensive overview of clutter issues in the standard U-Net model, which are passed to the decoder via skip connections. (a) The
standard U-Net model serves as the baseline architecture. (b) Original input medical images. (c), (d) Feature maps (fm1 and fm2) of the standard U-Net
model in (a); the feature map characteristics are visualized without incorporating attention gates and residual blocks. (e) Results of combining the
feature maps of (c) and (d) using a basic skip connection. These simple skip-connected features limit the ability to capture intricate patterns and
salient features. (f), (g) Feature maps of the proposed MAGRes-UNet model shown in Fig. 2, which leverages MAGs and residual block modules.
(h) Resulting features after concatenating (f) and (g) when utilizing MAG instead of a skip connection. The utilization of MAG and residual blocks
enhances the model’s ability to capture detailed and pertinent information within the region of interest while suppressing irrelevant information,
thereby improving the feature quality and segmentation accuracy. By contrast, skip connections can introduce unwanted clutter, complicating the
segmentation performance.
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FIGURE 2. Illustration of the end-to-end proposed MAGRes-UNet model with two encoding-decoding modules. The MAGRes-UNet model combines
residual blocks and attention gates using a single U-Net architecture. A series of MAG units are added to the skip connection to highlight important
feature information while disambiguating undesirable and noisy feature responses. MAGRes-UNet not only extracts abundant semantic information to
enhance feature learning, but also focuses on small-scale tumors, potentially resulting in improved performance in medical image segmentation tasks.

FIGURE 3. Illustration of MAG architecture. A feature map with features from various stages, x and g, serves as an input to the MAG. The result of the
MAG is given by At = X · α, where α is the attention coefficient, and · denotes element-wise multiplication. The MAG change map was closer to the
ground truths (GTs).

To address these challenges, the MAGRes-UNet model
was introduced as a solution. This model incorporates
residual blocks to address the gradient vanishing problem,
which helps retain low-level features. Consequently, residual
blocks are favored in the encoder structure of the proposed
model. Moreover, the classical U-Net structure suffers
from semantic gaps between the encoder and decoder.
To remedy this, in contrast to other U-Net variations,
new connection nodes, known as MAG nodes, are intro-
duced between the encoder and decoder, which enhance
the segmentation performance for both the BT and skin
cancer datasets. Fig. 2 offers a comprehensive view of
the proposed MAGRes-UNet model. We conducted an

in-depth investigation of the intricacies of theMAGRes-UNet
model.

As shown in Fig. 2,MAGRes-UNet has an encoder-decoder
architecture consisting of contracting (left encoder) and
expanding (right decoder) paths. The network has the input
dimensions of 256 × 256 × 3, where each image measures
256× 256, and the input comprises 3 channels. The standard
U-Net comprises four plain blocks. The contracting path
replaces them with four residual blocks. Each residual block
has two convolutional units. The initial number of layers
within the contracting path is 256×256×64. The individual
convolutional unit encompasses a BN and dropout layer
and employs the Mish AF (discussed in Section II-B3).
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Mish is a newly proposed AF with superior performance
over the widely used ReLU employed in the original U-
Net architecture [8]. Our model employs a convolutional
layer with a 3 × 3 filter along with the Mish AF. For
downsampling, we selected a 3 × 3 convolutional kernel
with a stride of 2. The number of channels for the feature
maps was doubled during this process; however, the map
size was halved. The fourth residual block in the contracting
path acts as a bridge connecting the two paths and has
dimensions of 16 × 16 × 1024. The expanding path consists
of four MAG units and four residual blocks, differentiating
it from the current segmentation models. This arrangement
eliminates the vanishing gradient issue to optimize the
training process, disambiguates undesirable and noisy feature
outcomes, and improves the prominence of important feature
information. Each layer in the residual block produces a
gating signal vector along the expansion path. The feature
maps at the bottom level serve as the initial gating signal
for the expanding path. The gating signal and feature map
are combined with an attention gate unit to enhance the
segmentation performance for small-scale tumors with more
accurate location information. The feature map is upsampled
using bilinear interpolation before the individual residual
blocks, after which the output of the attention gate and
the 3 × 3 convolution are concatenated. The image size is
doubled for each upsampling operation; however, the number
of feature channels is reduced by half. At the end of the
expanding path, 1 × 1 convolution and softmax AF are used
to map the multichannel feature maps to the desired number
of classes.

1) MULTI-ATTENTION GATES
The attention mechanisms were proposed by
Bahdanau et al. [69] and Luong et al. [70]. They were
subsequently applied to the U-Net model by Oktay textitet al.
to segment the pancreas [17]. To the best of our knowledge,
MAGRes-UNet is the first model to segment multiclass
(glioma, meningioma, and pituitary) brain MRI tumor and
skin cancer datasets. The main goal of the MAG is to
reduce irrelevant feature responses in the feature maps
and effectively focus on the intended area while learning
significant features. Recent research has shown that training
the DL models using MAG can improve the network
performance [71], [72]. Fig. 3 illustrates the architecture of
the MAG units used in this study.

The MAG module in Fig. 3 accepts two inputs and
produces one output. The input feature x belongs to the
encoder part, and the gating feature g belongs to the lower
decoder part. The gating feature g allowsmore useful features
to be extracted from the encoded feature x, whereas invalid
features are ignored. Furthermore, the input feature x is
downscaled in steps of 2 to be compatible with the gating
feature g. The inputs x and g are combined pixel-by-pixel
using 1 × 1 convolutional operations (Cx,g) and BN (bx,g).
A ReLU (Ry = max(0, y)) AF is applied to activate the

FIGURE 4. Residual blocks. The symbol (+) indicates the addition of
elements.

results obtained in the previous step. Subsequently, both x
and g are processed through 1 × 1 convolutional (Cm) and
BN (bm) operations to obtain the weights. The collective
weights are passed through a sigmoid AF (Sy =

1
1+e−y ),

which converts the input values to a range between 0 and 1.
Then, the collective weight signal is multiplied element-wise
and rescaled to the same scale as the input signal X . The
following formulae can be used to describe the feature
selection procedure of MAG.

β = Rx
[
(Cgg+ bg) + (Cxx + bx)

]
(1)

A = Sy(Cmβ + bm) (2)

At = X ∗ α (3)

Rx represents the ReLU AF and Sy represents the sigmoid
AF. Cg, Cx , and Cm are the linear transformations calculated
using 1 × 1 × 1 convolution. At represents the MAG output,
α represents the attention coefficients, and ∗ represents the
element-wise multiplication of the original vector X .

2) RESIDUAL BLOCKS
Because there are currently only a few layers in the standard
U-Net architecture, we deepened it considerably to improve
its performance [73]. The U-Net model uses encoder and
decoder architectures with skip connections to acquire high
and low-level features. However, as the network deepens,
a vanishing gradient occurs, which implies that the gradients
diminish during backpropagation, resulting in ineffective
learning [74]. To solve this problem, Hu et al. [75] introduced
residual blocks to facilitate the gradient flow and ease the
training process. Consequently, we implemented a residual
block in the standard U-Net model, as shown in Fig. 4.
In Fig. 4, each block has two 3 × 3 convolutional layers,
followed by BN and Mish AF. The input to the residual
block passes through a 1 × 1 convolutional layer, which
undergoes BN and is then summed element-wise with the
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output. The network can pass information more effectively
owing to the residual blocks. It can use and access low-level
feature details for accurate predictions because the original
input data are preserved through a shortcut connection.
Consequently, the features can be integrated better across
different network layers, thereby enhancing the overall
performance. According to [75], each residual block is
defined as follows.

yi = h(xi) + F(xi,Wi) (4)

xi+1 = f (yi) (5)

The inputs and outputs of the ith residual unit are xi and xi+1,
where F(·) is the residual function, f (yi) is the activation
function, and h(xi) is the identity-mapping function.Wi is the
weight vector of the feature map in the i-th residual unit.

3) MISH ACTIVATION FUNCTION
Neural networks incorporate nonlinearity through the AF.
Therefore, it is essential to develop and test deep neural
networks. The widely used AFs are the ReLU [61],
leaky ReLU (L-ReLU) [62], and the recently introduced
Swish [64]. Our method uses the most up-to-date AF
Mish [53], outperforming ReLU and Swish on challenging
datasets. In addition, Mish is easy to implement in neural
networks because of its simplicity [53]. Mish is a smooth,
non-monotonic AF for a neural network, written as

f (x) = tanh(ω(x)) (6)

where ω(x) is a softplus activation function, given by ln(1 +

ex). Mish is an activation function that implements the
self-gating property. This function replaces other point-wise
activation functions, such as ReLU. By using the self-
gating property, network parameters can be modified without
providing any input to the gate. The Mish function in
TensorFlow is defined as x multiplied by the hyperbolic
tangent of the softplus function x (x · tanh(softplus(x))). Mish
must be non-monotonic, smooth, and unbounded above and
below to achieve optimal neural network results. The Mish
activation plot is shown in Fig. 5.

III. EXPERIMENTS
This section introduces the dataset and preprocessing used
to evaluate the model. Next, we discuss the implementation
details and evaluation process followed in the study. The
selected hyperparameters are listed in Table 1.

A. DATASET AND PREPROCESSING
The proposed model was evaluated on two publicly available
medical image datasets. The first dataset, T1-weighted
CE-MRI [76], was acquired from Nanfang Hospital in
Guangzhou, China, and the General Hospital at Tian-
jing Medical University, China, from 2005 to 2010. The
data pertained to 3064 slices collected from 233 patients
(708 meningiomas, 1426 gliomas, and 930 pituitary tumors).
The in-plane resolution of the images was 512 × 512. Each

FIGURE 5. Mish activation function.

FIGURE 6. Multi-class BT T1-weighted CE-MRI sample dataset.

tumor class was manually annotated by an expert radiologist.
Fig. 6 shows the original tumor class and corresponding
masked-image samples. Table 2 lists the details of the BT
CE-MRI image dataset.

The second dataset comprised 10015 skin cancer
HAM10000 dermoscopic images [77] of 450 × 600 pixels,
with masked images representing seven types of lesions:
actinic keratoses, basal cell carcinomas, benign keratoses,
dermatofibroma, melanoma, nevi, and vascular lesions. The
images were collected from different population groups by
using different dermoscopic devices, resulting in diverse and
representative datasets. Fig. 7 shows skin cancer samples
from the HAM10000 dataset.

Medical images contain complex biological tissue struc-
tures and may have low imaging quality, which makes their
segmentation challenging. Because of limited processing
resources, both dataset images were downscaled to 256 ×

256. Pixel intensities differ based on the manufacturer,
acquisition conditions, and sequences; therefore, the input
scans must be normalized. Furthermore, we employed Z-
score normalization on the 2D images to reduce device noise,
thus significantly increasing the preprocessing and decreas-
ing overfitting. Each image is processed by calculating the
Z-score based on its mean value and standard deviation, and
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FIGURE 7. Skin cancer HAM10000 sample dataset.

FIGURE 8. Data preprocessing steps: (a) BT T1-weighted CE-MRI
modalities (b) Skin cancer HAM10000 modalities.

TABLE 1. Hyperparameter values for the proposed model.

it can be calculated as

z′ =
z− µ

δ
(7)

where z and z′ represent the input and normalized images,
respectively. The mean and standard deviations of the input
images were µ and δ, respectively. A similar method was
used for all the annotated masked images in the training
set. Deep models require data preprocessing to improve the
segmentation accuracy, even though they are primarily noise-

TABLE 2. Details of BT CE-MRI image dataset.

resistant. Fig. 8 shows the data preprocessing used in this
study to effectively train the DL model and mitigate the
class imbalance, leading to a significant improvement in
segmentation performance. The allocation strategy for both
datasets involved dedicating 80%of the data for training, 10%
for validation, and another 10% for testing purposes.

B. METRICS EVALUATION
Themodels were evaluated using several criteria to determine
their efficiency. Our model was assessed quantitatively based
on the accuracy, IoU, Dice score, specificity, sensitivity,
and precision. For each evaluation criterion, higher scores
indicated better segmentation. These metrics can be mathe-
matically defined as follows.

Accuracy =
TP+ TN

TP+ TN + FN + FP
(8)

IoU =
TP

TP+ FP+ FN
(9)

Dice-score =
2TP

2TP+ FN + FP
(10)

Specificity =
TN

TN + FP
(11)

Sensitivity =
TP

TP+ FN
(12)

Precision =
TP

TP+ FP
(13)

True Positive (TP) in the equations indicates that the actual
tumor matches the suspected tumor. A True Negative (TN)
indicates that the predicted and actual non-tumor areasmatch.
False Positive (FP) indicates that the predicted tumor area
is not the actual tumor. In contrast, False Negative (FN)
indicates that the predicted non-tumor area is the actual tumor
area.

IV. RESULTS AND DISCUSSION
The proposed method was evaluated using two datasets to
assess its effectiveness and robustness. This will be discussed
in the following subsections. A comprehensive performance
evaluation is presented in the first subsection based on two
datasets: BT CE-MRI and skin cancer HAM10000 dataset.
In the second subsection, we explore the ablation study of the
proposed method, where we discuss the effects of the critical
components, namely, the residual blocks,MAG,Mish, ReLU,
Adam, and AdamW, on the segmentation performance. In the
third subsection, we compare our performance results with
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TABLE 3. Proposed model performance on BT CE-MRI dataset.

TABLE 4. Proposed model performance on skin cancer HAM10000 dataset.

FIGURE 9. Validation performance of the proposed model using the Mish
AF and AdamW optimizer, assessed on the BT T1-weighted CE-MRI
dataset: (a) Accuracy, (b) IoU, (c) Dice score, and (d) Loss.

those of the SOTA segmentation approaches by using the BT
and skin cancer datasets.

We conducted experiments using Keras with a TensorFlow
backend. A mechanism for early termination was employed

FIGURE 10. Validation performance of the proposed model using the
Mish AF and AdamW optimizer, evaluated on the skin cancer HAM10000
dataset: (a) Accuracy, (b) IoU, (c) Dice score, and (d) Loss.

in the validation set to prevent overfitting. We evaluated
the results based on various metrics, including accuracy,
Dice score, IoU, sensitivity, specificity, and precision.
Furthermore, we conducted a statistical test to assess whether
the proposed models exhibited significant differences in
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performance. Table 5 lists the statistical performance of
the proposed model. This analysis uses various evaluation
metrics to compare the efficiency of Mish AF with the
AdamW optimizer and ReLU AF with the Adam optimizer.
The proposed MAGRes-UNet consistently outperformed the
other architectures, including MAG-UNet, ResUNet, and U-
Net, on both medical datasets, as shown in Table 5. This
superiority is statistically significant, as shown in Fig. 11,
Fig. 12, and Table 5, when using the Mish AF and AdamW
optimizer.

A. OVERALL PERFORMANCE ANALYSIS
This study aimed to evaluate four distinct models (MAGRes-
UNet, MAG-UNet, ResUNet, and U-Net) on challenging
datasets: T1-weighted CE-MRI and skin cancer HAM10000.
The proposedmodel’s architecture draws inspiration from the
U-Net [8] model, known for its success in medical image
segmentation.

However, the U-Net model’s continuous downsampling
process reduces the segmentation accuracy for small-scale
tumor images. To address this limitation and achieve better
segmentation performance, we explored the integration of
a MAG and a residual block into the standard U-Net
architecture. The MAG highlights the salient features while
suppressing irrelevant noise, and the residual block aids
in training and mitigates the vanishing gradient problem.
Additionally, we utilized Mish and ReLU AF along with the
AdamW and Adam optimization strategies to improve the
segmentation accuracy.

The experimental results in Tables 3 and 4 demonstrate
that MAGRes-UNet with Mish and AdamW consistently
outperformed the other architectures (MAG-UNet, ResUNet,
and U-Net) on both datasets, demonstrating its exceptional
capabilities. MAGRes-UNet exhibited remarkable accuracy,
IoU, and Dice coefficient and significantly lower loss values
than those of the other models, as shown in Fig. 9(a)-(d)
and Fig. 10(a)-(d). Incorporating theMAG, residual modules,
Mish AF, and AdamW optimizer significantly improved
all the evaluation metrics. Specifically, on the T1-weighted
CE-MRI dataset, MAGRes-UNet achieved an impressive
accuracy of 99.94%, IoU of 98.29%, Dice score of 97.75%,
and a remarkably low loss of 0.0101%. Similarly, on the skin
cancer HAM10000 dataset, the model achieved an accuracy
of 99.71%, IoU of 97.83%, Dice score of 97.36%, and
a low loss of 0.0102%. Incorporating MAG and residual
mechanisms using Mish and AdamW resulted in a smoother,
faster, and more stable performance, reducing fluctuations in
the evaluation metrics.

A comprehensive evaluation was conducted using boxplots
of the testing dataset to assess the robustness of the
models. The boxplots in Fig. 11(a)-(d) and Fig. 12(a)-
(d) show the distribution and variability of the evaluation
metrics across test instances for each model employing
Mish AF with AdamW optimizer as well as ReLU AF
with the standard Adam optimizer. The results demonstrate
that MAGRes-UNet consistently surpasses the other models

(U-Net, ResUNet, and MAG-UNet) in performance across
all evaluation metrics, including accuracy, IoU, Dice score,
specificity, sensitivity, and precision, for both datasets.
We conducted a statistical T-test to confirm the results,
as presented in Table 5. By using the SciPy library in Python,
the T-test enables a comparison of the following performance
metrics: accuracy, IoU, Dice score, specificity, sensitivity,
and precision for the MAGRes-UNet, MAG-UNet, ResUNet,
and U-Net models employing both Mish with AdamW and
ReLU AF with the Adam optimizer. This analysis aimed to
determine the importance of the AF and optimizer pairings
in the suggested models. Accordingly, we postulated the
following hypotheses:
H0 (n.s.s*): The proposed models utilizing the (Mish +

AdamW) and (ReLU+Adam) pair do not significantly differ
from each other.
H1 (s.s∗∗): The proposed models utilizing the (Mish +

AdamW) and (ReLU + Adam) pair vary significantly from
each other.

Table 5 presents the findings of this analysis. According
to the null hypothesis H0, there is no statistically significant
(n.s.s∗) difference between utilizing (Mish + AdamW) and
(ReLU + Adam), whereas the alternative hypothesis H1
suggests otherwise at a significance level of 5% (α = 0.05).

Table 5 lists the P-values of the proposed models for accu-
racy, IoU, Dice score, specificity, sensitivity, and precision.
The table shows that s.s** indicates statistical significance,
whereas n.s.s* denotes no statistically significant difference.
Notably, the proposed MAGRes-UNet model employing
Mish AF with AdamW optimizer demonstrated statistical
significance across all metrics for both medical datasets,
as indicated by the corresponding P-values in Table 5.
For instance, for the BT CE-MRI dataset, the P-values
for the accuracy, IoU, Dice score, specificity, sensitivity,
and precision of the MAGRes-UNet model were 0.025,
0.028, 0.023, 0.005, 0.011, and 0.042, respectively. Similarly,
for the HAM10000 skin cancer dataset, the P-values were
0.003, 0.015, 0.043, 0.021, 0.174, and 0.000. P-values below
0.05 indicated significance.

There was a statistically significant difference between the
proposed models that used the Mish + AdamW and ReLU
+ Adam approaches, as revealed by the 95% confidence
level test of significance applied to the accuracy, IoU, Dice
score, specificity, sensitivity, and precision. This proved
the alternative hypothesis (H1). Notably, MAGRes-UNet
utilized Mish with the AdamW counterpart, whereas the
other proposed models (U-Net, ResUNet, and MAG-UNet)
employed ReLU with Adam. As Table 5 indicates, the
MAGRes-UNet model using Mish and AdamW emerged as
a reliable and statistically significant choice and is preferred
for medical image segmentation tasks.

Fig. 13, Fig. 14, and Table 5 illustrate the effect of
incorporating MAG and residual blocks in the proposed
segmentation model, which led to a marked improvement in
performance on the BT T1-weight CE-MRI and HAM10000
skin cancer datasets. MAG enhances feature extraction
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FIGURE 11. Comparison between (a) MAGRes-UNet, (b) MAG-UNet, (c) ResUNet, and (d) U-Net in multi-class BT T1-weighted
CE-MRI dataset segmentation in terms of various metrics. (a) MAGRes-UNet consistently outperforms and is statistically significant
when compared with (b) MAG-UNet, (c) ResUNet, and (d) U-Net for all metrics. By using MAG for skip connections in the U-Net
model, (b) MAG-UNet yields higher segmentation performance than (c) ResUNet and (d) U-Net in most experimental
configurations. The notations s.s** and n.s.s* on the arrows indicate the level of significance measured by the P-value (s.s**
indicates statistical significance, whereas n.s.s* indicates no statistical significance) of the proposed model utilizing Mish with
AdamW and ReLU AF with Adam optimizer.

by allowing the model to focus on the most pertinent
elements within the input images. Furthermore, MAG aids
in capturing long-range dependencies, which are essential
for accurately delineating extensive structures and patterns
in both datasets. In addition, residual blocks facilitate the
training of deeper networks, which are vital for complex

image analysis and improve the resilience of the model
to noisy data. These architectural elements contribute to
improved generalization and ensure adaptability to diverse
cases. The qualitative results are shown in Fig. 13(d) and
Fig. 14(d). The quantitative results in Table 5 consistently
demonstrate the superiority of the proposed models using
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FIGURE 12. Comparison between (a) MAGRes-UNet, (b) MAG-UNet, (c) ResUNet, and (d) U-Net for the task of skin cancer
HAM10000 dataset segmentation in terms of different metrics. (a) MAGRes-UNet consistently outperforms and is statistically
significant when compared with (b) MAG-UNet, (c) ResUNet, and (d) U-Net for all metrics. By using MAG in the skip connections of
the U-Net model, (b) MAG-UNet also yields higher segmentation performance than (c) ResUNet and (d) U-Net in most experimental
configurations. The notations s.s** and n.s.s* on the arrows indicate the level of significance measured by the P-value (s.s**
indicates statistical significance, whereas n.s.s* indicates no statistical significance) of the proposed model utilizing Mish with
AdamW and ReLU AF with Adam optimizer.

MAG and residual blocks when compared with those without
them in Fig. 13(a)-(c) and Fig. 14(a)-(c), emphasizing their
crucial role in achieving precise and robust segmentation,
especially in the fields of medical imaging diagnosis.

A close comparison of Figs. 13(a)-(d) and 14(a)-(d)
reveals a noticeable trend. In particular, it is evident that
in the images in Figs. 13(d) and 14(d), the outputs of the
proposedMAGRes-UNet model are strikingly similar to their
respective GT masks. This similarity is considerably more

pronounced when compared with the results presented in
Figs. 13(a)-(c) and 14(a)-(c), where the U-Net, ResUNet,
and MAG-UNet models are applied. This observation is
substantiated by our comprehensive analysis, as detailed in
Tables 3,4, and 5. The in-depth evaluation of the models using
various metrics confirms that the MAGRes-UNet model,
which incorporates MAG, residual blocks enriched with the
Mish AF, and AdamW optimizer, outperforms all the other
models. This assertion holds for the multiclass brain MRI
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FIGURE 13. Segmentation results of the model on BT T1-weighted CE-MRI dataset: (a) U-Net (b) ResUNet (c) MAG-UNet (d) MAGRes-UNet.

tumor and skin cancer HAM10000 datasets. Fig. 15 presents
a holistic view of the qualitative assessment by comparing
the various models and datasets. The images in Fig. 15
are BT T1-weighted CE-MRI images displayed in different
planes—sagittal, axial, and coronal. Upon closer inspection,
it becomes evident that while some models suffer from
drawbacks, such as over-segmentation and inaccurate bound-

ary delineation, the segmentation predictions yielded by the
MAGRes-UNet model remain exceptionally accurate. The
U-Net and ResUNet models exhibited under-segmentation
issues for both datasets. Although the MAG-UNet model
demonstrated commendable performance, MAGRes-UNet
consistently outperformed the other models, as corrob-
orated by the data presented in Tables 3, 4, and 5,
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FIGURE 14. Segmentation results of the models (a) U-Net (b) ResUNet (c) MAG-UNet (d) MAGRes-UNet on skin cancer HAM10000 dataset.

along with the visual evidence provided in Figs. 13, 14,
and 15.

B. ABLATION EXPERIMENT
Ablation experiments were conducted on two datasets (T1-
weighted CE-MRI and skin cancer HAM10000) to evaluate
the performance of the proposed model. These datasets
were applied to configurations involving MAG mechanisms,
residual blocks, AFs, and optimizers. The primary objective
was to comprehensively evaluate the model performance
based on key metrics (accuracy, IoU, Dice score, specificity,
sensitivity, and precision) that accurately gauge their ability
to segment BTs and skin cancer in medical images.

The models tested with the BT CE-MRI dataset included
U-Net, ResUNet, MAG-UNet, and MAGRes-UNet. Table 5
presents the results of the baseline U-Net model equipped
with the MAG modules and residual blocks and employing
two distinct activation functions: ReLU and Mish. These
were paired with specific optimizers, including Adam and
AdamW. It is evident from the analysis that integrating
Mish AF consistently enhances the model performance.

Remarkably, the MAGRes-UNet model, which employs
Mish AF with the AdamW optimizer, shows exceptional
results. This configuration yielded notably higher accuracy,
IoU, Dice score, specificity, sensitivity, and precision values
than the other configurations detailed in Table 5. This
underscores the pivotal role of the combination of the MAG,
residual blocks, Mish AF, and optimized weight decay
(AdamW) in augmenting the precision of the model in BT
segmentation.

A similar trend in performance improvement was evident
for the skin cancer HAM10000 dataset. This strengthens
the perception that using Mish AF improves the model’s
performance. Again, the MAGRes-UNet model utilizing
Mish AF with AdamW optimizer emerged as the dominant
configuration, outperforming the other models across all the
metric values shown in Table 5.

Through this ablation analysis, we can observe that the
combination ofMAG, residual blocks,Mish AF, and AdamW
optimizer contributes significantly to the improvements in
the proposed MAGRes-UNet model for BT and skin cancer
datasets. To confirm the robustness of the model, a statistical
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FIGURE 15. Comparison of segmentation results of U-Net, MAG-UNet, ResUNet, and MAGRes-UNet models on both BT T1-weighted CE-MRI and skin
cancer HAM10000 datasets. The first column shows the input dataset, the second column shows the GT masked images, and the remaining columns show
the model-predicted results.

T-test was performed to evaluate the performance variance
between the different configurations. We compared the seg-
mentation outcomes achieved by the MAGRes-UNet model
using Mish with AdamW and ReLU with Adam optimizer.
Based on a statistical T-test analysis, the performances of
the two configurations differed significantly. According to all
evaluationmetrics for BT and skin cancer segmentation tasks,
the MAGRes-UNet model, which employs the Mish AF
and AdamW optimizer, consistently demonstrated superior
segmentation performance. These results are listed in Table 5
and Fig. 15. The obtained P-values are well below the
predefined significance level (α = 0.05), further confirming
the statistical significance of these differences, as shown in
Table 5. In this table, (s.s∗∗) represents statistical significance,

whereas (n.s.s∗) represents no statistical significance. This
study validated the feasibility of applying the proposed
MAGRes-UNet model to medical imaging applications. Fur-
thermore, it emphasized the importance of AF and optimizers
in the development of precise and reliable segmentation
methods.

C. COMPARISON WITH SOTA METHODS
This section compares the proposed method with SOTA
models to demonstrate its superiority in segmenting the
BT and skin cancer datasets. The results are listed in
Tables 6 and 7. The experimental results indicate that
MAGRes-UNet is more efficient than the SOTA models
because it obtains the best results for the metrics. The
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TABLE 6. Comparison results of the proposed and SOTA models on the BT dataset. The bold values indicate high scores for the respective metrics.

TABLE 7. Comparison results of the proposed and SOTA models on skin cancer datasets. The bold values indicate high scores for the respective metrics.

prediction mask generated by MAGRes-UNet is highly
consistent with the GTmask, as shown in Figs. 13, 14 and 15.
The structure of MAGRes-UNet is similar to those of U-
Net, ResUNet, and MAG-UNet. However, MAGRes-UNet
can extract multiscale contextual information, which allows
it to capture high-level features with more spatial context
information.

The results in Tables 6 and 7 unequivocally demonstrate
the superiority of MAGRes-UNet over the SOTA models.
Tables 6 and 7 show that the results of the various methodolo-
gies are comparable. However, the proposed MAGRes-UNet

showed superior performance for both medical datasets.
Among the most cutting-edge techniques currently used
for segmenting medical images [39], [78], [79], [80], [81],
[82], [83], [84], [85], [86], the methods in [78], [80], and
[84] performed slightly better for some metrics shown in
Tables 6 and 7 than our suggested 2D model. Despite this,
our model demonstrated enhanced segmentation of the tumor
area compared to the SOTA model. Overall, the proposed
2D model is advantageous, particularly considering the low
complexity of the model and the shorter time required for
training.
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V. CONCLUSION
This study investigated the effectiveness of MAG and
residual blocks for medical image segmentation using the
standard U-Net architecture. MAGRes-UNet adds a series of
attention gates to the skip connection to highlight relevant
feature information while preventing insignificant and noisy
feature responses, which is helpful in small-scale tumor
segmentation. In addition, the introduction of residual blocks
alleviated the vanishing gradient problem. The proposed
method was extensively evaluated using two benchmark
datasets. The MAGRes-UNet model utilizing the Mish
AF and AdamW optimizer delivered excellent accuracy
(99.91%), IoU (97.90%), Dice score (97.21%), specificity
(99.93%), sensitivity (99.50%), and precision (98.52%) on
the BT T1-weighted CE-MRI dataset. For the skin cancer
HAM10000 dataset, the proposed MAGRes-UNet model
achieved an accuracy of 99.75%, IoU of 97.80%, Dice score
of 97.10%, specificity of 97.81%, sensitivity of 98.52%,
and precision of 97.61%. Based on these results, it can
be concluded that the MAGRes-UNet model with Mish
and AdamW is superior to the other models (MAG-UNet,
ResUNet, and U-Net) with the ReLU AF and standard Adam
optimizer. Furthermore, a statistical T-test analysis revealed
a significant difference in the performance of the proposed
method usingMish with AdamWwhen compared with ReLU
with Adam for all metrics on both medical datasets, as shown
in Table 5.

In conclusion, the proposed MAGRes-UNet can enrich
semantic information, improve feature learning capability,
and focus on small-scale tumor information. MAGRes-
UNet requires a larger amount of contextual information
and local details between different slices because the 2D
U-Net model cannot utilize the 3D information from the
MRI data. To enhance the segmentation performance of
MAGRes-Net in the future, we will investigate 3D network
architectures and apply the enhanced architecture to addi-
tional datasets to demonstrate its generalizability. However,
our segmentation method and current MRI scanning systems
need improvements. Moreover, BT segmentation remains
challenging owing to the complexity of MRI brain images
and the limitations of labels for DL models. One of our future
projects will be to develop a clinical medical segmentation
model.
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