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ABSTRACT Stroke is one of the leading causes of disability among the elderly population and is a
significant public health problem worldwide. The main impact of stroke is functional disabilities due to
motor impairment after stroke. Advances in modern medicine and technology have significantly improved
diagnosis and treatment; however, most post-stroke care is based on the effectiveness of rehabilitation. Stroke
rehabilitation depends on two main components: (i) training (or therapy) to restore the patient to pre-stroke
mobility and (ii) assessing motor functionality of affected patients performing activities to track motor
recovery. This article highlights how combining wearable devices and machine learning (ML) produces
new pathways for effective stroke rehabilitation. While wearable devices help capture patient movements
at much finer time resolutions, ML allows us to build predictive models from wearable data to assist
clinicians in diagnosis and treatments. Specifically, we expand on how wearable devices and ML can improve
monitoring quality in training intervention, assessment, and remote monitoring. In addition, we provide our
main findings from the literature, research challenges, and future directions in post-stroke therapies using
wearable devices and ML.

INDEX TERMS Stroke rehabilitation, wearable devices, machine learning, interventions, remote
monitoring.

I. INTRODUCTION

Stroke is the second leading cause of death, and 17 million
people worldwide suffer from stroke each year [1]. Stroke can
have devastating effects, including death or severe disability,
which can cause social and family burdens. Even though
the majority of the victims are older adults, the number of
people 60 years of age or older is projected to increase from
an estimated 488 million in 1990 to nearly 1,363 million in
2030 [2]. Since stroke is the leading cause of adult disability
in the world and 70-85% of stroke patients have hemiplegia
after the first stroke [3], motor recovery is one of the most
crucial aspects for stroke victims. Wearable devices, when
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paired with machine learning (ML), enable us to continuously
monitor subjects and ascertain the progressive course towards
enhanced motor recovery. It is vital to monitor stroke patients’
daily activities and exercise schedules in the absence of a
physician to monitor progression regularly. Wearable devices
will enable us to collect patient data continuously, which
would otherwise lead to missed opportunities for diagnosis
and treatment. Combining ML with wearable devices will
improve the remote monitoring of stroke patients. Figure 1
provides an overview of stroke monitoring using wearable
devices, smartphones, cloud computing, and the Internet of
Things.

To improve and regain mobility following strokes,
we require two primary components: (i) more practice and
training (including physiotherapist instruction sessions and
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FIGURE 1. Depicts a visionary diagram of wearable sensor-based remote monitoring of stroke patients’ activity during rehabilitation.
Whenever a person suffers a stroke, they are rushed to the hospital, and a computed tomography (CT) scan is performed to determine the next
course of action, including the type of stroke. The rehabilitation period commences 24 hours after the onset of stroke. Wearable sensor-based
remote monitoring detects motor recovery when patients engage in exercises in a rehabilitation facility or at home without the assistance of a
medical professional. Patients wear a wearable device (wrist-based), and sensors onboard the device record their activities. The data is then
transferred to a phone or tablet via Bluetooth. The app will send data to a cloud server using Wi-Fi or internet-enabled devices. The cloud
server allows clinicians to retrieve and analyze data to track patients remotely. An alert process can be incorporated if the clinician needs to
provide some feedback to patients. The primary advantage of wearable devices for remote monitoring is that they can capture finer time
resolutions for near-real-time monitoring and data visualization. Integrating this functionality, specifically fine-time resolution data, with ML

enables clinicians to access real-time predictive analytics.

personal practice) and (ii) periodic evaluations (to gauge the
impact of training). Therefore, monitoring the performance
to assess the progress remotely is essential when the patient
is at home or practicing exercises alone. It is imperative
to conduct objective monitoring without any biases or
prejudices. No single measure is capable of predicting
all dimensions of recovery and disability [4], despite the
availability of several stroke assessment scales to measure
functional outcomes at each level of the World Health
Organization International Classification of Functioning,
Disability, and Health (WHO-ICF) [5]. For further details
about stroke assessment scales, readers are referred to
Table 1 (with 17 scales for impairment), Table 2 (with
16 scales for activity), and Table 3 (with eight scales for
participation restriction class) of the included supplementary
material.

A comprehensive overview of the numerous techniques
employed in stroke therapy for motor recovery is depicted
in Figure 2. As shown in Figure 2, we note that training and
monitoring (i.e., motor evaluation) are crucial components of
motor recovery. In addition to conventional physical therapy
(manual), six widely utilized rehabilitation training programs
are presented in Figure 2. Either in-person or remote
evaluations can be employed to evaluate motor recovery. The
physical therapist conducts a manual evaluation; however,
it is also feasible to perform it remotely using an inexpensive
wearable sensor.

Mobile health (mHealth) technology [6] uses smartphone
processing power and mobility to provide and support
healthcare solutions. The utilization of current cell phone
technology and applications enables patients to access their
health status by interacting with healthcare providers at
any time and location. The primary advantage of mHealth
is its ability to provide remote healthcare services, such
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as medical advice and consultations, through smartphones
when patients cannot visit a healthcare center. mHealth
has become essential, especially in rural or regional areas
with limited access to health facilities. With the rise of
smartphone applications, it is now possible for people to
download and use easily usable applications to record,
monitor, and report different aspects of their health to
relatives and health professionals. Smartphones and other
health monitoring tools can help provide information on
various health-related parameters, such as physical activity,
body mass index, heart rate, and blood pressure. The apps can
be used to promote physical activity and motivate individuals
to engage in more physical activity [7], [8], [9], [10],
[11], [12].

Furthermore, the data from these apps can be shared
with clinicians to monitor the condition for consultation
and treatment. Ambient Intelligence (Aml) is another related
technology that uses sensors and artificial intelligence to
create an environment that can respond to needs, for
example, by adjusting the air conditioning according to the
temperature [13], [14]. However, it can be challenging to
monitor stroke patients with smartphones because of health
conditions. Hence, portable devices, such as the form factor
of a wristwatch, are more appealing to observing stroke
subjects.

Wearable devices coupled with ML will significantly aid
in assessing patients’ motor recovery status by automatically
collecting continuous data objectively and inferring progress
conditions. Patients can wear wearable devices to gather
data relating to their health, and the sensors on such
devices will monitor various activities. While wearable
devices can capture movements at finer time resolutions,
signal processing helps us analyze wearable data, and ML
helps us build models to help clinicians diagnose and treat
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FIGURE 2. Shows the overview of different methods used in stroke rehabilitation for motor recovery. Two main components of stroke

rehabilitation for motor recovery are training and motor assessment. In training, six common rehabilitation training schemes are shown in
addition to conventional physical therapy. Manual or remote assessments can be performed to assess motor recovery. A physical therapist
performs a manual evaluation, and remote evaluation can be performed using a low-cost wearable sensor. This article will focus on the use of

wearable devices for stroke rehabilitation.
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FIGURE 3. The figure shows this article’s different sections and outlines.

diseases. Therefore, wearable devices and ML present a
suitable means of remotely analyzing the wearable data
of stroke patients and obtaining details on their motor
recovery status. This approach enables the creation of a
continuous record of movements and a diary for the resulting
assessments.

In this article, we concentrate on various wearable
devices and machine-learning techniques to monitor stroke
patients’ motor recovery during rehabilitation. Specifically,
the methods by which they can enhance the quality of
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monitoring in training intervention, assessment, and remote
monitoring (as outlined in Section V). Figure 3 provides a
summary of the main sections of this article. Our review
differs from a recent review paper [15] in examining the
advantages and limitations of various wearable sensors
extensively utilized in stroke rehabilitation. Furthermore,
we provide open research challenges and prospective
directions in diverse aspects of stroke rehabilitation research,
which are absent in [15].
Therefore, this review aims to help:
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« determine the type of remote monitoring that is most
relevant and objective

o determine which sensors are most relevant and best
suited to specific problems

« identify deficiencies in the current techniques and
approaches

o compare the results of various ML models to pick the
most effective ML algorithms

« suggest deep learning models suitable for real-time
outcomes by considering cost, power, time, and model
complexity requirements.

Il. WEARABLE SENSORS IN STROKE REHABILITATION
This section outlines the significance of wearable sensors in
stroke rehabilitation, their methodologies, the monitoring of
motor recovery progress, and the diverse types of sensors
utilized in wearable devices.

A. NEED FOR WEARABLE SENSORS

During rehabilitation, different therapeutic exercises are
recommended for patients, who are asked to try some daily
activities (motor tasks). In hospital rehabilitation, healthcare
professionals evaluate patients’ motor abilities and provide
scores based on assessment scales. This evaluation procedure
is conducted regularly at crucial intervals. Nonetheless, these
assessment scales possess limited predictive capability [4].
Since this periodic monitoring is not continuous, we do
not receive an accurate estimate of motor activity progress,
leading to missed opportunities and early interventions.
This is where wearable sensors play a crucial role in
facilitating the continuous monitoring of individuals in
hospitals, rehabilitation facilities, and homes.

B. ADVANTAGES OF WEARABLE SENSORS

In stroke rehabilitation, the use of wearable sensors presents
two significant advantages. First, utilizing a wearable device
equipped with appropriate sensors and algorithms coupled
with an internet connection enables the real-time monitoring
of subjects. Second, the small form factor of these wearable
devices makes them comfortable for patients to wear without
causing discomfort or inconvenience, encouraging them to
participate actively in rehabilitation exercises and activities.

C. MONITORING MOTOR RECOVERY
Two approaches are used to monitor motor recovery through
wearable sensors: 1) obtaining clinical equivalent assessment
scores by detecting tasks, and 2) measuring the amount of
activity performed by the affected part.

1) Obtaining clinical equivalent assessment scores by
detecting tasks. Clinical scores are calculated remotely
(without a clinician) using data recorded on wearable
devices [16], [17]. Sensors acquire movement data from
the affected body parts while executing prescribed tasks
at a rehabilitation facility or home. Using this sensor
data, patterns can be detected for different activities.
It is possible to convert the data later into another
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index representing the patient’s status, similar to the
assessment score. The newly released index is transmit-
ted to the healthcare professional via either an Internet
web application or a smartphone application, enabling
the healthcare professional to guide patients residing
in remote locations. For instance, in a hospital setting,
equivalent National Institutes of Health Stroke Scale
(NIHSS) scores were calculated using accelerometer
sensors to assess motor recovery during the initial
24 hours following a stroke [18].

2) Measuring the amount of activity carried out by
the affected part. The total amount of exercise the
affected body part performs is determined by wearable
sensor data. Different movement metrics are calculated,
such as the complete linear or angular movement, the
distance covered, and the amount of daily use of the
affected body part [19], [20]. For instance, a radial basis
function (RBF) was employed to correlate differential
magnetometer readings from a ‘“manumeter” to wrist
and finger joint angles [19]. These techniques are not
only cost-effective and remotely accessible (i.e., time-
efficient) but also provide objective methods to measure
body movements and calculate scores.

D. SENSORS

Table 1 depicts wearable sensors commonly used in health-
care applications, capabilities, and limitations. It presents the
eight sensors widely used with wearable devices, including
an accelerometer, gyroscope, magnetometer, goniometer, tilt
sensor, pressure sensor, pedometer, and electromyography
(EMG) sensor. Each sensor measures a particular physical
phenomenon (second column of Table 1), which means it also
has its limitations (third column of Table 1). For instance,
accelerometers can measure acceleration, but they cannot
measure angular velocity, which can be accomplished by
utilizing gyroscope sensors. Depending on the problem, many
studies use single sensors, while others use a combination of
sensors that complement each other to capture the desired
signals. For further details on the use and applications of
wearable devices in healthcare applications, we encourage
readers to refer to [25]. The following subsections provide
a brief overview of each sensor and its primary application in
stroke rehabilitation.

1) INERTIAL MEASUREMENT UNITS (IMUS)
Micro-electromechanical systems (MEMS) facilitate the
miniaturization of electrical and mechanical components.
These components are fabricated into integrated circuits
(ICs) with a form factor ranging from a few micrometers
to millimeters [26]. MEMS technology allows for a smaller
form factor while reducing costs and requiring low power.
These characteristics make MEMS-based sensors particularly
attractive for wearable devices. The three commonly used
IMUs are:
o Accelerometer sensors are used in wearable devices
to measure acceleration (the rate of velocity change).
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TABLE 1. List of eight wearable sensors commonly used to detect motor activities in stroke monitoring and rehabilitation, along with their measures and

limitations.
Sensor Measure Limitations
Accelerometer Accelerations or decel- | (i) Unable to differentiate between (i) active and passive movements, and (ii) loaded and unloaded
erations, velocity, and | activities [17].
displacement
Gyroscope Angular velocity, rota- | Sensor values drift over time. Therefore, additional mechanisms in hardware or software must be
tion needed to calibrate the sensors regularly. Drift correction algorithms may also be needed.
Magnetometer Spatial orientation Ferromagnetic materials can cause distortions in measurements. When a subject is in motion, the
measurement may be affected when the subject is near a ferromagnetic material.
Goniometer Range of motion The presence of a fixed hinge imposes a fixed center of rotation when measuring the bending angle in
some joints, leading to inaccurate results [21]
Pressure Force and pressure dis- | The accuracy of measurements is dependent on hysteresis, linearity, temperature sensitivity, pressure
tribution range, sensor detection area, operating frequency, creep, and repeatability [22]
Pedometer Number of footsteps (i) Measures motion in only one plane, which may not be sufficient for measuring stroke recovery
progress
(ii) Inaccurate in measuring sedentary behavior and missing data [23]
Electromyography Muscle activity Activation level of serratus anterior during isometric abduction and flexion, dynamic abduction and
(EMG) flexion, and bench press is not reliable [24]
Tilt Angle of tilt (i) The force-balanced sensor is expensive
(ii) Micro-electromechanical systems (MEMS) based tilt sensors have very high thermal coefficients,
which can damage the physical as the temperature increases.
(iii) The vibration of sensors tends to create erratic or random signals.
(iv Fluid-based sensors have limited response time, whereas mercury-based sensors are toxic.
Accelerometer sensors typically measure three- utilized to calculate the total angular distance traveled by the

dimensional accelerations (x, y, and z) [27] and are
capable of measuring up to + 16 g [28].

« Gyroscope sensors are utilized to measure angular
velocity, commonly measured in degrees per second
or revolutions per second [27]. Gyroscopes are advan-
tageous instruments for determining orientations and
evaluating rotations on three axes.

« Magnetometer is used to measure magnetic fields and
fluxes in the Earth’s magnetic field [27].

Accelerometers are limited to linear accelerations, whereas

gyroscopes can measure rotations and orientation. Therefore,
it is possible to combine accelerometers and gyroscopes
to obtain a complete picture of object movement in 3D
space. This combination is called an IMU and has several
applications, including stroke monitoring [18] and epilepsy
monitoring [29]. Adding a magnetometer allows us to
estimate the direction, which is helpful in many applications,
such as navigation systems [30] and sleep monitoring [31].
IMUs possess significant practicality in evaluating motor
function in individuals who have undergone strokes. Numer-
ous researchers have utilized accelerometers in Upper
Extremity (UE) studies [16], [32], [33], [34] due to their
ability to provide reliable and valid objective measurement
and their potent psychometric attributes [35]. For instance,
accelerometers were employed to assess arm usage [33],
calculate Functional Ability Scale (FAS) scores from
accelerometer data [16], acquire gait patterns [36], and
document Activity of Daily Living (ADL) [34]. Further,
IMUs were used to determine the body’s specific force
and angular rotation rate [37]. A wristwatch device and a
magnetic ring worn on the index finger (‘““manumeter’’) are
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wrist and finger joints [19].

2) GONIOMETER

A goniometer is an instrument used to measure a joint’s
angle (range of motion) and is commonly used in orthopedics
to measure the angles of the joints [38]. In rehabilitation,
wearable goniometer-equipped systems aid in reconstructing
human posture, providing support both in clinics and at
home [39]. A sensing glove with three knitted piezoresistive
fabric (KPF) goniometers was used to track the flexion and
extension movement of the metacarpophalangeal joint of the
thumb, index, and middle fingers [40].

3) TILT SENSORS

Tilt sensors, also called inclinometers, measure the angle
of gravity. Compared to goniometers, inclinometers pos-
sess a higher degree of reliability [41], and studies have
demonstrated their superiority in detecting intricate move-
ments [42]. Since inclinometers use gravity, they cannot
measure angles in a horizontal plane.

4) PRESSURE SENSORS

Pressure sensors measure the applied pressure in the sensing
area, and force resistive sensors (FSRs) are commonly used
to detect physical tension, squeezing, and contact. Examples
include detecting gait patterns with FSR sensors embedded
in shoes [43], gait abnormalities [44], and monitoring of
daily life among stroke survivors [45]. An FSR can monitor
multiple major muscle groups that govern the movements
of the hand and wrist [46]. It has been demonstrated that a
combination of FSR and gyroscopes can accurately detect
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FIGURE 4. An overall ML pipeline comprises six steps, from data collection to building models to model deployment. Data is collected from
sensors and equipment, and the first step is capturing electronic health records (EHR). In the next step, the data is pre-processed to remove
unwanted noise and missing values, then normalized. The third step is feature engineering, which comprises feature extraction and selection. The
fourth step is building the appropriate ML model, training the model, and validating the model. In the fifth step, the model’s performance is
measured through various metrics using a test dataset. In the final step, the model is deployed to an edge server, cloud server, or wearable device
for real-time predictions. The model’s performance is constantly measured, and the feedback is used to improve the processes and the model’s

performance.

precise gait patterns [47]. Furthermore, a gait shoe consisting
of an IMU, FSR, and electric field height sensors was used
to quantitatively analyze gait parameters (heel strike and toe-
off) between healthy people and patients with Parkinson’s
disease [48]. In stroke patients, shoe-based accelerometers
and FSR sensors were used to detect temporal gait parameters
to differentiate posture allocation and activities [49].

5) PEDOMETERS

A pedometer is used to measure the number of steps an
individual takes and to record the vertical acceleration [50].
Wearable pedometers often use a 3-axis MEMS-based
accelerometer to estimate 3D motion patterns and deduce the
number of steps [51]. The pedometer is a more valid method
for measuring ambulatory activity in stroke patients [52].
It proved advantageous in objectively assessing the number
of steps walked during walking and describing the pattern and
intensity of an activity [53].

6) ELECTROMYOGRAPHY (EMG)

EMG measures electrical activity in muscles and can detect
activities such as moving fingers or clenching the fist.
There are primarily two types: intramuscular EMG (iIEMG)
and surface EMG (SEMG) [54]. Intramuscular EMG is an
invasive technique in which needles are inserted through the
skin to measure electrical signals. On the other hand, SEMG is
anon-invasive technique that measures electrical signals from
the skin’s surface. Due to the non-invasiveness of SEMG, it is
commonly used in wearable systems [55]. The accelerometer
and SEMG sensors were combined to monitor ADL [17] and
provide feedback during ADL [32]. Additionally, they were
used to assess the quality of motor performance in home
rehabilitation so that appropriate feedback could be provided
to promote high-quality exercises.
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Until now, we have discussed commonly used sensors in
wearable devices. The next section provides an overview
of ML steps in stroke rehabilitation, including data types,
ML types, and ML models.

IIl. MACHINE LEARNING IN DATA ANALYSIS

In this section, we discuss various data types used in ML,
types of ML, pre-processing steps, feature engineering,
ML models, training of the models, evaluation of the models,
deployment of the models, and qualitative and quantitative
effects of various steps on the outcomes. The overview of
these steps is shown in Figure 4.

A. DATA TYPES

Different methods are used to collect patient information to
provide the appropriate medical attention in medical estab-
lishments. Sensor data is primarily quantitative (numerical or
a natural number). On the contrary, the data gathered through
electronic health records (EHR) is predominantly qualitative
(categorical) and typically comprises a digital patient history
form. The EHR is longitudinal data collected over time.
It contains information about age, gender, demographics,
problem history, immunizations, physician’s observations,
reports, and laboratory results. It is also known as electronic
medical records (EMR) and computer-based patient records
(CPR) [56], [57]. Figure 5 shows a graph depicting the data
collection in the medical field divided into four categories:
discrete, continuous, nominal, and ordinal. The numerical
(quantitative) data is categorized into discrete (such as the
number of hospital visits) and continuous (such as the weight
of patients). On the contrary, categorical (qualitative) data
can be classified into nominal (unordered data, such as
male or female) and ordinal (ordered data, such as cancer
stages [[-IV])). These data types are crucial in defining ML
problems and creating appropriate models.
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FIGURE 5. The figure illustrates how data collected in the medical domain can be classified into four
types: discrete, continuous, nominal, and ordinal. The numerical (quantitative) data is categorized into
discrete (such as the number of hospital visits) and continuous (such as the weight of patients). On the
other hand, categorical (qualitative) data can be partitioned into nominal (unordered data, such as male
or female) and ordinal (ordered data, such as the cancer stages [I-1V]).

B. MACHINE LEARNING TYPES

ML is a field of artificial intelligence (AI) concerned with
performing tasks by learning patterns from the dataset
and generalizing without being specifically programmed.
In other words, ML algorithms try to automate tasks by
improving the learning process without human participation.
There are four types of ML: (i) supervised learning, (ii)
unsupervised learning, (iii) semi-supervised learning, and
(iv) reinforcement learning. Figure 6 shows the four types
of ML. Below, we briefly describe the four types of ML
paradigms [58]:

1) In supervised learning, the ML algorithm is presented
with a dataset whose input (feature vector) and the
desired output (label) are explicitly provided. The
algorithm learns to map the input to the output by
learning the hidden patterns. Suppose we have N
labeled examples: {(x;, y,-)}f/ , where x; is a vector input
and y; is a (scalar) output. The label y; can be a
real number (regression problem) or a finite set of
classes {0, 1,2, ..., C} (classification problem). Then,
the supervised learning algorithm uses the dataset to
generate a model that takes x as input and delivers
output labels (y). The desired output is also called target
variable. Examples of supervised classification algo-
rithms include Support Vector Machine (SVM) [59],
k-nearest neighbors (k-NN) [60], Naive Bayes [61],
decision trees (DT) [61], random forest (RF) [61], and
neural networks (NN) [62]. Examples of supervised
regression algorithms [61] include linear, non-linear,
Bayesian, polynomial regression, ensemble methods,
and NN.

Supervised learning is beneficial for learning
from data and making predictions. For example,
data collected from wearable devices during stroke
rehabilitation can be used to build a personalized ML
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2)

3)

model for individuals and subsequently use these models
to track and predict the quality of exercises during
remote monitoring.
In unsupervised learning, we do not have specific
labels, i.e., the dataset will be a collection of unlabeled
examples {(x,-)}f»V . The goal here is to build a model
that transforms the input data (or a feature vector) into
another vector or value such that it helps to solve the
problem at hand. For example, in clustering problems,
unsupervised learning can be used to find clusters in
the data so that it helps to make decisions. Another
application of unsupervised learning is to find associ-
ations between variables in large databases. Examples
of unsupervised algorithms include K-means [63],
fuzzy c-means [64], hierarchical [65], Density-based
spatial clustering of applications with noise (DBSCAN)
[66], Gaussian Mixture Model (GMM) [67], Principal
Component Analysis (PCA) [68], and NN.
Unsupervised learning is advantageous when we do
not have the labels for the data and want to explore
the data for hidden patterns. For example, data from
wearable devices without labels can be extracted and
clustered according to stroke severity level and exercises
during rehabilitation, establishing connections between
subjects and exercises.
In semi-supervised learning [69], the dataset con-
tains both labeled and unlabeled examples. Ordinarily,
the number of unlabeled examples will be much
higher than labeled examples. The objective here
is similar to supervised learning, i.e., to produce a
model that learns not only from the labeled examples
but also uses unlabeled examples. The idea here is
that the unlabeled examples add more uncertainty,
and this helps to generate better models. Exam-
ples of semi-supervised learning algorithms include
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FIGURE 6. The figure illustrates the four types of ML: (i) supervised learning, (ii) unsupervised learning, (iii) semi-supervised
learning, and (iv) reinforcement learning. Depending on the target variable, the supervised learning can be further categorized
into classification (categorical) and regression (numerical, real number). In the case of unsupervised learning, the target
variable is unavailable. However, we can perform clustering and association-type problems. In the case of semi-supervised
learning, it primarily handles categorical target variables, which can be grouped into classification and clustering problems.
Reinforcement learning deals with categorical target variables to manage classification problems. When the target variable is
unavailable, the problems usually fall into the category of control (e.g., self-driving cars).

Expectation-Maximization [70] and semi-supervised
GMM [71].

Semi-supervised learning becomes extremely useful
when we have limited labeled data. For example, time-
series data from stroke rehabilitation exercise sessions
may consist of a few minutes for each exercise for each
subject. In such a scenario, semi-supervised learning
can be used to train a supervised learning model from
the unlabeled data by exploring temporal associations
between exercises and segments of data.

4) In reinforcement learning [72], an agent (ML
algorithm) interacts with an environment and is capable
of comprehending the state of the environment. The
agent can execute actions in all states. Different actions
bring different rewards, and the agent can move to a
different environment. A policy is a function that accepts
a state’s feature vector as input and produces the best
course of action to take while in that state, much like
the model in supervised learning. The goal of the RL is
to learn a policy, which is optimal if a course of action
maximizes the expected average reward.

Reinforcement learning is beneficial when the
decision-making is sequential to solve the problem over
the longer term. For example, robots can learn to interact
with stroke victims to help improve motor recovery
in the stroke rehabilitation process. Examples of RL
algorithms include Trust Region Policy Optimization
(TRPO) [73], Proximal Policy Optimization (PPO)
[74], Q-learning [75], and Deep Q Neural Network
(DQN) [76].

C. ML SPECIFIC TO STROKE REHABILITATION
ML approaches offer distinct applications in stroke rehabili-
tation. Depending on the rehabilitation objective, specialized
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classifiers may be employed. For instance, supervised learn-
ing holds advantages in classification tasks, as it enables the
precise classification of stroke patients based on established
patterns, such as identifying ADL or distinct stroke types and
severity levels.

In instances where specific target classes are not readily
available, clustering can be employed to identify patient
clusters with common characteristics or to identify groups
of exercises suitable for specific severity groups. Semi-
supervised classifiers are advantageous when the labeled data
is restricted. By utilizing clustering algorithms, it becomes
feasible to harness the patterns present in unlabeled data and
extract features that can subsequently be utilized to classify
labeled data.

Reinforcement learning can be used in developing adaptive
intervention strategies, where the patient learns to improve
the outcome of the sequential task by maximizing the total
rewards. In such an approach, the patient learns by trial
and error while accumulating rewards. This enables the
optimization of treatment plans in real-time by utilizing
individual patient responses and progress. This approach
allows for personalized treatment, but it is essential to
prioritize ethical considerations, implement safety measures,
and integrate expert knowledge when applying reinforcement
learning to stroke rehabilitation.

D. PRE-PROCESSING

This subsection provides a brief overview of the steps
involved in the ML approach to data analysis. Once sensor
data is collected, the next step is to separate activity types and
provide a comparative index equivalent to a clinical score.
As shown in Figure 4, pre-processing steps are performed
depending on the acquired data (after collecting the data). The
data may consist of noise and artifacts. Typical pre-processing
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efforts include centering and scaling (zero mean with unit
standard deviation), removing outliers, and handling missing
values [77]. The condition of the data determines whether
these steps are required.

E. FEATURE ENGINEERING

A feature (also known as a predictor) compactly represents
the sensor data and reveals its distinguishing characteristics.
The fundamental steps in feature engineering consist of
feature extraction and feature selection.

Feature extraction transforms the input data (feature
vector) into a different feature space for better model perfor-
mance. Feature extraction requires a solid understanding of
the problem, domain knowledge, and related aspects of the
problem. Often, new features are created from existing ones
to improve ML model performance. The features extracted
from the sensor data can be primarily classified into five
groups (or domains): (1) time domain, (2) frequency domain,
(3) statistical features, (4) morphological features, and (5)
data-specific features.

1) Time domain features encompass the characteristics
extracted directly from the time series data (either raw
or pre-processed), capturing the temporal patterns and
dynamics without transforming them into alternative
domains.

2) Frequency domain features are obtained by transform-
ing time series data into the frequency domain, reveal-
ing information about the distribution of frequency
components and their corresponding magnitudes.

3) Statistical features provide the quantitative measures
calculated from valuable insights into data distribution,
its central tendency, and variability.

4) Morphological features capture the shape and struc-
tural information of data, focusing on the time series’
patterns, trends, or structural characteristics.

5) Data-specific features are patterns extracted from
specific datasets, tailored to the characteristics of that
particular dataset, rather than being generalized for
all datasets. For example, a velocity sequence can be
extracted as a data-specific feature in accelerometer
sensor data.

On the other hand, feature selection deals with selecting
the best k features to improve the model’s performance and
help with the models’ interpretability [61]. Feature selection
(also known as subset selection) helps reduce redundancy
of features and time complexity [61]. There are three main
approaches to feature selection [78]: (1) filter methods, (2)
wrapper methods, and (3) embedded methods.

1) Filter methods use various statistical tests to determine
their correlation with the classes and then rank these
features. Some frequently used statistical tests include
the X2 test, Fisher’s exact test, the Euclidean distance,
Pearson’s correlation, information gain, and others.

2) Wrapper methods select features by eliminating
features that do not contribute (unimportant or less
significant) by using the performance (typically of
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classification algorithms). As a result, wrapper methods
depend on classification algorithms to select the best
features. Some algorithms include sequential forward
and backward selection and genetic algorithms.

3) Embedded methods select features by dynamically
adjusting the weights given to each part during training,
and this mechanism is built into the classifier. Some
techniques include tree-based classification (e.g., deci-
sion trees, random forests) and regularization models
(ridge regression, most minor absolute shrinkage, and
selection operator).

Both feature extraction and selection are part of feature
engineering. Furthermore, procedures such as dimension
reduction may be applied for specific problems, which
require projecting the data into a lower-dimensional space
(using PCA) and reducing the correlation among features.

F. CLASSIFICATION MODELS

The literature shows that most machine-learning models
developed using wearable sensors in stroke rehabilitation
tend to address classification problems. In this article,
we have identified five application areas concerning stroke
rehabilitation. They are (i) identifying ADL, (ii) estimating
clinical scores, (iii) monitoring exercises, (iv) recognizing
postures, and (v) recognizing gestures. These approaches are
reviewed in Section IV. These application areas use various
data types, but most target categorical outputs. Therefore,
we focus on classification models in this article.

Classification models are mathematical models designed
to make decisions on a new observation (e.g., sensor data)
and categorize the outcome based on the learned features of
the collected data. For example, classifiers can help clinicians
make an informed decision on whether the patient is
recovering or deteriorating after treatment by using wearable
devices [18]. The selection of models depends mainly on the
type of feature, the complexity of the task, and the sample
size. After the model is trained using training data, it is
evaluated, validated, and calibrated before deployment to
predict new test data.

In this subsection, we provide a high-level description
of the most commonly used traditional classifier models
(k-nearest neighbors, SVM, RF, and k-means algorithms)
and the most recent deep learning models (convolutional
neural network, recurrent neural networks, transformers).
The reader is encouraged to follow the relevant references for
more detailed explanations.

a: TRADITIONAL MODELS

Most models in this category require a set of selected
features to be used as input to build classification models.
The previous subsection III-E presented a brief overview
of feature extraction, where features are hand-crafted. The
hand-crafted features may or may not be good, as this is
subjective. Therefore, the classification performance may
suffer.
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K-nearest neighbors (K-NN) is a supervised algorithm
used for classification. Suppose that we have a set of data
points (x1, y1), (x2,¥2), - .., (xXn, yn), Where x; is the data
value and y; are the class labels. The k—NN algorithm
classifies a new data point x; into one of the y; classes
using a distance metric that minimizes the distance to one
of the existing data points x;. Distance metrics can include
Euclidean, City Block, Manhattan, and others [61]. The
parameter k determines the number of neighbors it looks
for while deciding the label for the new data point. It uses
majority voting to make the final class label for this new data
point. For example, with k = 5, the algorithm looks for the
five closest data points of x; and assigns the labels based on
most of the labels y; of these 5 data points. It is one of the
simplest supervised learning algorithms. It performs faster
than other models as it has no sophistication (i.e., explicit
training step) to classify a new data point.

Support Vector Machine (SVM) is a supervised learning
algorithm for binary and multi-class classification. The idea
behind the SVM is to find the hyperplane so the distance from
the closest points (that belong to two classes in the binary) to
the hyperplane is maximized and is given by [79]

Z‘,z(s ), (1)

min Sl + =

subject to
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where x; is a feature vector, n is the number of feature
vectors, b is the bias term, w is the weight vector, C
is a positive regularization constant and & is the slack
term. The points close to the decision boundary are called
support vectors. In cases where the data is not linearly
separable using the hyperplane, the kernel techniques allow
for class separation by projecting the data points into a
high-dimensional space. SVM can be trained with kernels,
including linear, polynomial, radial basis function (RBF), and
Sigmoid [80]. The RBF kernel is often used, as it allows
the points to be separated into different classes and is given
by [79]

2
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where K(-,-) is the RBF kernel, x and x' are feature
samples in the input space and a free parameter o. The
grid search optimization algorithm [81] provides the optimal
positive regularization constant C and the kernel parameter
0. SVM can handle high-dimensional data and is highly
effective in cases where the number of predictors exceeds
the observations. SVM is primarily used for classification
problems, and the binary classification can be extended to
multi-class classification problems. However, a variant of
SVM called the Support Vector Regression (SVR) can be used
for regression problems.
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Random Forest (RF) is a supervised learning algorithm
that combines a collection of tree-structured classifiers to
classify a new data point [82]. Predictor trees are created by
randomly sampling data points with replacements from the
training dataset (also referred to as Bootstrap Aggregation
or Bagging). The decisions of each tree are aggregated
(majority vote) for the new data point, that is, the predicted
class [61]. Bootstrap Aggregation helps to reduce variance
by building uncorrelated trees by selecting random samples
and then splitting them into binary trees. There are several
hyperparameters, such as the depth of the tree, the number
of leaf nodes, and many others. RF can be used both for
classification and regression problems. We urge the readers
to refer to [61] and [83] for more details.

K-means [67] is a clustering algorithm that assigns one
of the k labels to unlabeled data points in the dataset.
Suppose we have a dataset consisting of N observations:
{x1,X7,X3,...,Xy}, where x is a d-dimensional vector.
Then, our goal is to partition the dataset into k clusters. This
is primarily used in exploratory data analysis. We encourage
the readers to refer to [67] for further details.

b: NEURAL NETWORKS AND DEEP LEARNING
In contrast to traditional classification models that employ
manually designed features, modern deep learning models
use artificial neural networks (ANN) to automatically learn
effective representations (attributes) hidden deep in the data.
In addition, as the dataset grows, it becomes increasingly
challenging to identify good features from complex datasets
using handcrafted features. Therefore, deep learning models
tend to have a better generalization power (better predictions
for unseen samples) than traditional classification models,
leading to the widespread adoption of algorithms in the recent
past. Neural networks, the fundamental building block of
deep learning models, began in the 1950s with the creation of
the perceptron [84]. In the 1980s and 1990s, many techniques
were invented, such as the backpropagation algorithm [85],
which is the powerhouse of modern deep learning algo-
rithms; however, they became more prominent after the
2012 research work by Krizhevsky et al. [86], especially with
the availability of large data sets and computing facilities.
ANNs use artificial neurons (modeled like biological
neurons) to create an artificial brain-like structure with
links between artificial neurons, representing synapses in
the physical brain. Artificial neurons are often organized
as layers with connections between them. ANNs are also
called neural networks (NN) in short. We provide our data
(to be modeled) to the first layer (or the input layer)
and the expected output to the last layer (the output
layer). We then use the backpropagation algorithm and
various mathematical optimization techniques to learn the
weights (of the links between artificial neurons) so that the
difference between the expected output and the predicted
output by the NN is minimized. The crucial part of these
deep learning models is learning the proper weights, and
the optimization algorithms adjust these weights through
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various mathematical procedures. ANNs can be used both for
classification and regression problems. We recommend the
readers refer to [62] and [87] for more information.

Convolution Neural Network (CNN) is a class of ANN,
and the name ‘“‘convolution” is due to a mathematical
convolution operation. NNs implement convolution layers,
which are a series of convolution filters. CNNs are widely
used in image processing, natural language processing, and
time series data [87]. CNNs are robust to noise, can extract
deep features and are equivariant (i.e., they provide the
correct output corresponding to changing input in time-
series data, independent of time). Although the CNNs were
primarily made for non-sequential data, they sometimes
perform well on specific applications. This makes CNN very
useful for time series classification. For example, CNNs have
been used in activity recognition [88], detection of atrial
fibrillation from electrocardiography (ECG) signals [89],
stroke rehabilitation [90], [91], and many others.

Recurrent Neural Network (RNN) is another class of
ANN where they are explicitly geared to handle sequential
input (such as text, audio, and video). RNNs incorporate
a cyclical process between neurons, allowing the display
of dynamic temporal behavior. This makes RNNs highly
useful for time series data and applications such as speech
recognition, language translation, handwriting recognition,
and many other applications [62], [87].

Long Short-Term Memory (LSTM) model is a type of
RNN that uses ‘“‘short-term memory” and long-term depen-
dencies of RNNs and was introduced in 1997 [92]. They
use efficient gradient-based learning techniques to reduce the
longer training time (owing to slow changes in weight) of the
default RNNs by repeating backpropagation [92]. Therefore,
LSTMs avoid the problem of vanishing gradients, commonly
seen in deep NNs [93], and are used in applications such
as robot control, music composition, time series prediction,
human action recognition, and others. We encourage readers
to refer to [94] for a comprehensive treatment of LSTMs and
their extensions.

Transformer is a sequence-to-sequence model that
employs the attention mechanism [95], allowing the
models to capture dependencies independent of the distance
between input and output. Transformer models avoid the
recurrent relations present in RNNs and LSTMs. Instead, they
use attention mechanisms to calculate global dependencies
between the information and work to provide the predictions.
We urge the readers to go through [95] for further details
on the attention mechanisms and how they are used in
sequence modeling applications. Furthermore, the reader
can refer to [96] for in-depth information and usage of the
transformers.

G. MODEL TRAINING

In this step, we choose the appropriate ML classification
model, which can be based on the expertise of the domain,
the nature of the data, and the expected results. Once a
classification model is chosen, the next step is to divide the
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data set into three sets: the train set, the validation set, and
the test set. Often, the proportion of the data for the training,
validation, and test sets is chosen to be 80:10:10 percentages
(likewise, 70:20:10 and 60:20:20 are also utilized in some
cases), and partitioning of the data set is performed randomly
to eliminate the introduction of bias.

The train set is used as input to the chosen classification
model. It is trained using optimization methods to minimize
the error between the given labels and the model’s predicted
output. In the case of classification problems, we try to reduce
class errors by leaning on the model classification parameters.
Each classification model requires a type of optimization
algorithm to minimize the mistakes. For example, deep
learning models use Stochastic Gradient Descent, Adagrad,
Adadelta, RMSprop, Adam, AdamW, and others to learn the
weights and biases in deep learning models [97].

The training process may also include dividing the train set
into batches so that extensive data is divided into batches to
train the model. An epoch refers to the process in which the
model has used all the training data, and an iteration refers
to the number of batches in an epoch. The training process
is completed when the error is minimized, or the training
process has reached a predefined number of epochs. Once
the model is trained, we use the validation set to assess the
model’s performance. The hyperparameters of the model are
tuned [98] to obtain the best model for the given metric. The
metric is chosen based on the outcome needs and is tied to the
domain.

Once the fine-tuning of the model is completed, the model
is used in test environments. In training, we decided to
partition the data sets into training, validation, and testing
sets. This is also called the holdout method. However, this
may often cause models to have a high variance or have
limited data samples. In such cases, we often refer to
model training using k-fold cross-validation, where the data
is split into k subsets, and we train the model on k — 1
subsets and validate the model using the remaining set. The
process is repeated until all training is performed on all &
subsets, and the performance is averaged. The k-fold cross-
validation helps reduce the models’ variance to learn the best
parameters. Usually, the value of k is chosen to be 5 or 10.
When the number of samples is highly limited in the data
set, the leave-one-out cross-validation is used and is similar
to k-fold, where one sample data point is used for validation
and the rest for training. We urge the readers to refer to [99]
to explore related methods and their variations.

Often, one has to train several classification models and use
different validation strategies to select the best-performing
classification model for the problem at hand.

H. MODEL EVALUATION

Once the best-performing model has been selected, we have
several metrics to evaluate classification performance. The
most commonly used classifier prediction metrics in new
unseen data are precision, recall, F1-Score, sensitivity,
specificity, accuracy, root-mean-square error (RMSE), and
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coefficient of determination (R%). They are given by:
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where TP represents the number of true positive predictions,
TN the number of true negative predictions, FP the number
of false positive predictions, and FN the number of false
negative predictions; y represents the actual value y represents
the predicted value, y represents the mean value, n is the
number of data points. Each metric measures certain aspects
of the model’s performance and allows us to interpret the
results specific to the application problems. For example,
we may need a model that requires both precision and recall
to be high for specific medical applications. In such cases,
we have to choose a classification model that provides higher
precision and high recall, not simply based on the model of
choice.

I. MODEL DEPLOYMENT

The best-performing model against the set criteria is then
used for real-world predictions (often called the production
model). The model predicts the outcomes on newer data
samples, and labels for these samples may or may not
exist. The model’s outcome is recorded, and the actual
labels are registered (if they exist). The model performance
against the desired metrics is continuously monitored, and
feedback is generated to identify the cases where model
performance needs improvement. This feedback may apply to
any previous steps in the ML pipeline, as shown in Figure 4.
Feedback is then analyzed, an appropriate corrective measure
is taken, and the model is retained and deployed. The model’s
development, monitoring, feedback analysis, and fine-tuning
are an ongoing process.

J. QUALITATIVE AND QUANTITATIVE EFFECT ON ML
PIPELINE

1) DATA

The impact of data on shaping ML models is significant,
both in qualitative and quantitative aspects. Qualitatively,
noise, data imbalance, outliers, and other factors pose a
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potential risk of overfitting. Quantitatively, the dimension,
diversity, correlations, and overlap of classes in the data
directly impact a model’s efficacy in extracting features from
the data or learning from the data. Consequently, acquiring
representative and balanced data is pivotal in determining
whether ML models can qualitatively develop meaningful
patterns and quantitatively utilize their knowledge with new
data.

2) SENSORS

The first step is to choose a sensor, considering factors
such as activity type, ease of use, and financial implications.
There are several advantages and disadvantages to each
sensor. For instance, a triaxial accelerometer solely records
movement along three axes without providing physiological
data. However, sSEMG sensors only detect the activity of
muscles. Therefore, employing numerous sensors to collect
diverse data types enhances efficiency and presents diverse
viewpoints.

Nonetheless, it is imperative to balance the quantity and
placement of sensors while avoiding any unnecessary burden
on patients. Furthermore, we must use only relevant sensors
to acquire valuable information. The number of sensors
and the quality of the data they generate will impact the
qualitative aspects of the ML model’s learning capabilities
and quantitative outcomes.

3) PRE-PROCESSING

Pre-processing removes unwanted noise from sensor data
and improves the data quality. This helps ML models find
hidden patterns, which makes them very effective. For
example, pre-processing accelerometer readings can have a
quantitative effect on improving the detection of movements
and prediction score accuracy on new data. Similarly, pre-
processing steps can help improve the quantitative outcomes
of ML models by incorporating data from additional
Sensors.

4) FEATURE ENGINEERING

To detect activities from time-series data, windowed data
is preferred over long data streams, providing equal infor-
mation in smaller segments while reducing complexity
and dimensionality. The features extracted are deemed
representative of identifying valuable patterns, thereby
facilitating data interpretation. Therefore, feature extrac-
tion helps improve the model’s quantitative performance.
Feature selection reduces model complexity by eliminat-
ing redundant and irrelevant features, improving quality.
The reduction of data dimension enables the visual-
ization and modeling of features by removing feature
correlations and enhancing the qualitative aspects of the
modeling.

5) CLASSIFICATION MODELS
When selecting a classifier model, it is essential to consider
the data types, complexity, and sample size. For example,
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linear models, such as linear discriminant analysis (LDASs),
are easier to use but lack the structure to handle complex
data. They may underfit intricate data, resulting in suboptimal
performance. However, LDAs are less likely to overfit with
small sample sizes. On the contrary, ANNs can handle
complex data; however, they may exhibit overfitting without
regularization or with fewer samples.

Furthermore, the outcomes of the ANN models pose a sig-
nificant challenge in their interpretation and rationalization.
Therefore, the choice of classifier has a qualitative impact
on the quality of the model. Quantitatively, classifiers impact
performance metrics such as accuracy, Fl-score, sensitivity,
and specificity. The selection of the correct classification
model is, therefore, crucial and will have a significant impact
on the prediction’s performance.

IV. EXISTING APPROACHES IN STROKE REHABILITATION
This section reviews the relevant research on stroke
rehabilitation and provides an overview of each work
from 2009 to 2023. Based on the primary objectives of this
review, we have cataloged the literature into six subsections
for easy understanding and comprehension. These include (i)
identifying ADL, (ii) estimating clinical scores, (iii) moni-
toring exercises, (iv) recognizing postures, (V) recognizing
gestures, and (vi) deep learning methods.

At the end of this section, Table 2 summarizes the research
objectives, sensors, devices, number of subjects, research
context, placement of sensors, ML models, results, and
limitations from 2009 to 2023. In addition, Table 3 shows the
high-level summary of features (extracted and processed) in
stroke rehabilitation using wearable sensor devices.

A. IDENTIFYING ADLS

Identifying ADLs is primarily a classification problem. In this
direction, Roy et al. [17] used an accelerometer and SEMG
sensors to classify 11 ADLs from 10 subjects (five men
and five women). Sensors were placed on the shoulders,
thigh, wrist, and waist. They used the adaptive neuro-fuzzy
ML model and ANN to identify ADL with a sensitivity
of 95% and a specificity of 99.7%. One of the significant
limitations is that they designed ML models for each subject
individually, which limits the usage of models for a more
generic population.

Arif and Kattan [100] used three triaxial accelerometers
to monitor the physical activities of nine healthy subjects
(eight men and one woman). Sensors were placed on the
ankle, chest, and wrist. They used k-NN, RF, and NN to
identify 12 types of physical activity. The Rotation Forest
model achieved 98% classification accuracy. One of the
significant drawbacks of this work is that it requires selecting
optimal features, which may not always be generalizable
and may need re-selection of features upon change in the
data.

Sadarangani et al. [101] uses FSR sensors attached to the
forearm to classify three tasks (reach, grasp, and move
an object). They collected data from 16 subjects (eight
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strokes and eight healthy). They used SVM with RBF kernel
and LDA to classify the three tasks. SVM with the RBF
model provided 92.2% accuracy in subjects with stroke
and 96% precision in healthy subjects. However, they did
not investigate the effect of the object’s weight on grasp
detection accuracy and did not change the importance of the
entities. Furthermore, they did not seek to study the impact of
re-donning the FSR sensors and the tightness levels.

O’Brien et al. [102] used the Samsung Galaxy S4 smart-
phone to collect data from 45 subjects (30 stroke and
15 healthy). The smartphone was strapped to a belt pouch
and tied to the waist. The data included an accelerom-
eter, gyroscope, and barometer sensor readings. Subjects
self-labeled the activities and were sent to a server via
Wi-Fi and 4G communications. They created 270 features
(131 from the accelerometer, 131 from the gyroscope,
and eight from the barometer), and RF was used to
classify the six activities. The findings suggested that the
model performed better when trained on stroke data (75%
recall) than healthy activity data, and models trained on
data collected in the laboratory performed poorly (56%
recall) when the same models were tested at home. Some
limitations include (i) a lack of study of environmental
effects on the model performance and (ii) a limited num-
ber of subjects and data samples outside the laboratory
environment.

Tran et al. [103] uses a single wrist-worn accelerometer to
classify functional and nonfunctional arm movements. The
study included 20 subjects (10 healthy and ten strokes) and
extended the previous research [104]. The study strongly
suggests that RF performs better overall when compared
with SVM-RBEF, linear SVM, and k-means. However, the
performance of RBF-SVM was better than RF in inter-subject
for the standard group, and k-NN was slightly better than
RF in inter-normal and intra-stroke group [103]. One of the
significant limitations of this work is that it is limited to
only 4 ADLs and requires additional sensors to measure
angular velocity, which is crucial sensing information to
consider in measuring ADLs.

Lee et al. [32] use a wrist-worn triaxial accelerometer
and gyroscope (Shimmer Ireland) to (i) detect upper limb
movements detected with goal-directed (GD) during ADL
and (ii) evaluate motor performance quality during home
rehabilitation of 30 subjects (20 strokes and ten healthy).
Logistic regression was used to classify GD and non-GD
movements, and the model detected GD movements with
87% Area Under the Curve (AUC). RF detects whether
exercise requires feedback for home rehabilitation with an
F1 score of 84.3%. Some limitations of this work include
that they did not consider both movements that belong
to GD and non-GD movements. In addition, the approach
has not been tested in home settings. Furthermore, the
process requires two algorithms to detect tasks and quality
assessments.

Chen et al. [105] uses five IMUs (one on each wrist, one on
each of the upper arms, and one on the hip) to detect 10 ADLs

VOLUME 12, 2024



N. Sengupta et al.: Survey of Wearable Sensors and ML Algorithms

IEEE Access

using four ML models. They collected data from 11 subjects
after the stroke, and Apple Watches (Series 3) were used
to manage the data. Decision Tree, RF, SVM, and Extreme
Gradient Boosting (XGBoost) were used in the analysis, and
they found that XGBoost achieved 82% accuracy on 10 ADLs
and 90% accuracy on seven tasks. One of the main limitations
of this work is the limited sample size (n = 11), which
is limited in diversity (data variations) due to a limited
number of samples. Furthermore, the data was collected in
a structured script-based simulated environment, which is
unnatural (as in a home).

B. ESTIMATING CLINICAL SCORES

Estimating clinical scores can be both a classification and
regression problem. This depends on the desired clinical
scores. If the scores are whole numbers (1, 2, 3, and so on),
they fall under the classification category. On the other hand,
if the clinical scores are a range of numerical values, they fall
under the category of regression.

Patel et al. [16] used accelerometer sensors on the hand,
forearm, upper arm, and trunk to estimate FAS scores [106].1
The study included 24 hemiparesis subjects and used RF to
estimate FAS scores on 15 motor tasks. The RF model and
further evaluation of motor tasks revealed that they could
calculate scores with 0.04 points and a standard deviation
of 2.43 points (with a coefficient of determination R> =
0.96). We note that the tasks in the study were segmented
and separated, which helps the RF model select the features
and identify the tasks correctly. Furthermore, further work is
required to evaluate the model’s performance when the jobs
are isolated (as in the real world) and when the subjects wear
the sensors (self-calibration and position variation).

Yu et al. [107] used two accelerometers and seven flex
sensors to estimate the Fugl-Meyer Assessment (FMA)
scores of 24 stroke subjects (consisting of 16 men and eight
women). They used ensemble regression using an Extreme
Learning Machine (ELM) of 7 weak models and could predict
the FMA scores of the seven exercises with the coefficient of
determination (R? = 0.917). The FMA estimation framework
was designed to work in both laboratories and homes.
However, the system was not tested in an open, free-living
environment, nor was the model deployed on a wearable
device.

Oubre et al. [108] used two inertial sensors (attached to the
wrist and sternum) to estimate the levels of upper extremity
impairment using FMA scores. They collected data from
23 subjects (seven men and 16 women) who had experienced
a stroke. As a first step, they used DBSCAN [66] to group
time series segmented data to extract features and later
support vector regression (SVR) to estimate FMA scores.
Their regression approach calculated the FMA scores with a
normalized root-mean-square error of 18.2% (R* =0.70) and

IThe Wolf Motor Function Test (WMFT) quantifies the upper extremity
(UE) motor ability through performance time (WMFT-TIME) and functional
ability (WMFT-FAS).
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only required one minute of time series data to estimate. One
of the limitations of this method is that the model is dependent
on large continuous movements. This dependency, in turn,
may cause exhaustion among subjects. The second limitation
is that they do not evaluate the correctness of activities, which
is necessary to determine the quality of movements.

Park et al. [109] developed an automatic grading system to
measure subtle weaknesses in the upper and lower extremi-
ties. They collected 60 instances of kinematic characteristics
of motor disorders in stroke patients with the NIHSS score
(0 or 1) or Medical Research Council (MRC) grades (7, 8,
or 9). This included 15 stroke subjects (10 men and five
women). They also used a synthetic minority oversampling
technique [110] to complement the imbalance. They achieved
0.912 AUC for NIHSS scores of 83.3% accuracy using an
ensemble of SVM kernels and boost algorithms, while they
achieved 0.86 AUC for MRC scores of 80% accuracy with
SVM. One of the drawbacks of this approach is that it
generates synthetic data to handle class imbalance, which is
not ideal, as the generated data could have different statistical
characteristics. Therefore, the models may not generalize
well for out-of-distribution (OOD) samples.

Adans-Dester et al. [111] use wearable sensors (consisting
of 6 accelerometers) strapped to the arm, chest, fingers, and
wrist to estimate the severity and quality of the impairment.
They collected data from 37 subjects (16 stroke, 21 traumatic
brain injury) and developed a modified RF model. They
estimated FMA scores (severity of impairment) with the
coefficient of determination R = 0.86. On the other hand,
they estimated FAS (quality of movement) with R> = 0.79.
The approach assumes that the data precisely segments
activities, meaning the models could calculate the scores.
However, more studies are needed to assess performance in
home and community settings, where tasks may not be clearly
understood.

C. MONITORING EXERCISES
Pan et al. [112] developed a home-based self-rehabilitation
system to monitor and detect exercises of the shoulder joint
using a smartphone and two wireless accelerometer sensors.
The plan was tested on 10 healthy subjects (three men and
seven women) and 14 stroke subjects (five men and seven
women). In the study, the authors included five exercises: ear
touch, hand raise, climbing wall, pendulum movement, and
assisted active stretching. The SVM classifier classified these
exercises with 96% accuracy. Some limitations of this system
include: (i) the data was easily segmented into different
exercises with the use of the Android app; (ii) the authors
did not specify whether the SVM model was deployed on the
smartphone to classify the exercises or the data was collected
in a centralized location, and then the analysis was performed
offline.

Yurtman and Barshan [113] developed an autonomous
system to detect and evaluate physical therapy exercises
using wearable sensors. They used five IMUs strapped
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to the arms and legs of five healthy subjects (three men
and two women). They proposed a multi-template, multi-
match dynamic time warping algorithm (MTMM-DTW)
to detect multiple occurrences of more than one exercise
type. The algorithm could see and classify eight types of
exercise with 93.46% accuracy. Furthermore, it counted and
evaluated the practices as correct or incorrect with 88.65%
accuracy. However, this method has some limitations. First,
the template of each exercise for each subject must be re-
recorded. Second, it has not been used in clinical settings,
which limits its applicability in healthcare institutions. Third,
sensors must be attached to the exact locations (as in template
sequence recordings) to correctly detect the exercises, which
can be practically difficult at home and in other community
settings.

Zhang et al. [37] developed a system to identify everyday
rehabilitation exercise movements during a routine exercise
session. The study included 14 stroke patients (10 men and
four women), and IMUs were attached to the patient’s wrist to
collect data while performing six joint UE exercises (Bobath
handshake, straight arm palm press, horizontal flexion and
extension of the shoulder, reaching the forehead with the
elbow, shoulder touching and wrist turn). They compared
eight different ML models to classify the exercises, and
the fuzzy kernel classifier (FKC) obtained a 0.56% error
(with a standard deviation of 0.64). Some limitations include:
(i) the system has not been tested in an open free-living
environment, and (ii) needs expert fine-tuning of model
parameters for new data points.

Yu et al. [114] proposed a wearable sensor network system
to monitor and assess upper extremity motor function
quantitatively. Compared to traditional approaches, they used
compressed sensing technology to reduce data transfer to
the computer (using a sparse representation). The study
included 230 stroke subjects (13 men and 10 women),
and accelerometer sensors were strapped to the forearm
and shoulder. The exercises had a Bobath handshake and
shoulder touch, and the results indicated that accelerometer
signals could be compressed by one-third of the raw
signal length. They used the ELM algorithm to detect and
compare the exercises, resulting in an accuracy of 89.5%
(compared to the accuracy of 92.5% of the raw signal
model). One of the main limitations is that the study
has not considered additional sensing modalities and how
they affect the performance of the compressed sensing
model.

D. RECOGNIZING POSTURES

Sazonov et al. [115] proposed a shoe-based wearable sensor
device to monitor postures and activities. They observed that
heel acceleration and plantar pressure uniquely characterized
postures and typical movements. The study included nine
subjects (3 men and six women). Each shoe had five FSRs
and an accelerometer sensor implanted at the critical contact
points. SVM was used to classify six postures (sitting,
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standing, walking/jogging, ascending stairs, descending
stairs, cycling) with an accuracy of 95% in the complete sen-
sor set and more significant than 98% in the optimized sensor
set.

Fulk and Sazonov [116] also proposed a similar shoe-based
wearable sensor to classify three postures (sitting, standing,
and walking) with SVM. They included data from eight
stroke subjects (six men and two women). Using SVM,
they achieved a classification accuracy of 99% (recall and
precision from 0.99 to 1) for individual models and an
accuracy of over 76.9% (recall and precision from 0.82 to
0.99) for group models.

In another work, Fulk et al. [117] developed a smart shoe
to identify three postures (sitting, standing, and walking)
using ANN instead of SVM. The study included 12 stroke
subjects (6 men and six women). They achieved an accuracy
of more than 97.2% (95-99% recall and 95.4-98.7% preci-
sion). However, the three studies were limited to laboratory
settings. Another drawback of these studies is that they do
not monitor activities in the upper extremities. Furthermore,
subjects without ambulatory abilities cannot use these
systems. Moreover, they have not measured the power of
the sensors to measure the transition from one activity to
another.

Cheng et al. [118] used four SEMGs and two accelerom-
eter sensors to identify seven body postures (including
50 categories of dynamic activities). The seven body postures
include standing, sitting, squatting, lying on the right, lying
on the left, lying face up, and lying face down. The SEMG
and accelerometer sensors were strapped to the chest and
right thigh. The hidden Markov model (HMM) [119], [120]
was used to classify gestures by combining the SEMG and
accelerometer data. The average accuracy of posture recog-
nition was 98.3%, where the model sometimes misclassified
sitting and squat postures. However, the classification model
is complex, requires much time to process data to detect
activities, and is unsuitable for practical use on wearable
devices.

Xiao and Menon [46] developed a prototype to monitor
the FMG signals from the upper extremities using FSR
straps attached to the forearms. The study includes only six
healthy subjects (six men). They used non-kernel ELM to
classify six postures related to drinking tasks by organizing
the forearm FMG in real-time, with an accuracy of 92.33%
and a standard deviation of 3.19%. However, the study is
limited to the discrete classification of six postures of the
upper extremities. Moreover, the system cannot automatically
identify the signatures of different types of multijoint
movements.

Masse et al. [121] developed the characterization of sit-
to-stand and stand-to-sit (STS) using inertial sensors and
barometric pressure (BP) sensors. Each subject was simul-
taneously paired with an inertial sensor (3D accelerometer
and 3D gyroscope) sampling at 200 Hz and a BP sensor
sampling at 25 Hz. The study included 12 stroke subjects
(seven men and five women), 345 STS were recorded, and
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subjects were monitored in a semi-structured conditioned
protocol. They used Logistic Regression to classify STS with
a single device comprising inertial with 75.4% accuracy.
In addition, they combined inertial and BP sensors to achieve
90.6% accuracy. Therefore, the classification algorithm
is not easily generalizable and depends on the collected
dataset. Furthermore, the BP sensor is vulnerable to external
perturbations, so validating further in different settings is
critical.

E. RECOGNIZING GESTURES

Yang et al. [122] introduced an IoT-enabled stroke rehabili-
tation system based on a smart wearable armband (SWA),
ML algorithms, and a 3D printed dexterous robotic hand to
recognize nine gestures (agree, close hand, open hand, pointer
thumb and middle finger, thumb and little finger, flex hand,
extend hand and relax). The study included three subjects
(two men and one woman). The authors compared three
ML models to identify the nine gestures: LDA, multi-layer
perceptron (MLP), and SVM. The MLP model identified
the nine gestures with 96.02% classification accuracy. The
system and the approach come with the following limitations:
(1) the train and test data came from the same subjects and
were not tested on data from unknown subjects; (ii) the
dataset itself is limited to three topics and lacks diversity;
(iii) the system is limited to only nine gestures; (iv) the
accuracy of the system decreases as and when other gestures
are introduced; and (v) the position of the armband changes
the results, which is not such an attractive option if we were
to use such a system in home settings.

F. DEEP LEARNING METHODS

In this subsection, we highlight the deep learning approaches.
The (last) four references (on page 21) in Table 2,
comprehensively summarize four deep learning approaches.

Panwar et al. [90] proposed a “Rehab-Net” framework
to classify three upper limb movements from wrist-based
accelerometer data. The Rehab-Net uses a CNN-based
deep learning model. The framework was tested in two
situations: (i) a semi-naturalistic environment (making tea)
with four-stroke subjects and (ii) a natural environment (any
desired arm movement for 120 min) with ten-stroke subjects.
They achieved an accuracy of 97.89% on semi-naturalistic
data and 88.87% on naturalistic data. The CNN-based model
outperforms LDA, SVM, and k-means. The model has also
been optimized (algorithmic level) for real-time hardware
implementation. One of the drawbacks of this study is that
the deep learning (DL) models were trained specifically for
individuals and, therefore, lacked generalizability.

Kaku et al. [123] developed an LSTM-based approach
to identify five functional primitives using nine internal
measurement units. Data were collected from 48 stroke
subjects (22 men and 26 women). The nine IMUs were
attached to the cervical vertebra C7, the thoracic vertebra
T12, the pelvis, arms, forearms, and hands. They achieved
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an accuracy of 78%. The study included only subjects with
dominant rights. This hand dominance may have a differential
influence on the preferential roles of the UEs and, there-
fore, needs further investigation. Furthermore, classification
performance deteriorates significantly for severely impaired
patients, lacking generalizability.

Chae et al. [124] developed a home rehabilitation system
using a smartwatch and a smartphone. They attached a
smartwatch (equipped with an accelerometer and a gyroscope
sensor) to a wrist and collected data during exercises. Data
were collected from 10 control subjects and 22 subjects
with stroke. They used a CNN model and achieved 99.80%
accuracy (when both accelerometer and gyroscope were
combined) versus 98.13% (only accelerometer data) and
96.07% (gyroscope data). The study selected four exercises
to suit chronic stroke patients, particularly those based on
bilateral movement therapy. However, these exercises may
not fit all stroke subjects. Therefore, we cannot apply the
same approach to issues with stroke.

Recently, Nair and Sakthivel [91] proposed a system to
identify the completion status of rehabilitation exercises.
They used triaxial accelerometers attached to the hands and
forearms to collect data. The study included approximately
five subjects and wrist, forearm, and shoulder exercises. They
used a CNN model to classify 12 activities (six wrists, four
forearms, two shoulders) with 98.61% accuracy. The model
outperforms the Decision Tree, SVM, Linear discriminant
(LD), and Naive Bayes classifiers. One of the limitations
of this approach is that it is not automated, i.e., we need
to convert time series data into images for feeding to CNN,
which may not be a practical approach, as LSTMs are robust
models for processing time series data. It will be inconvenient
to use such an approach for real-world processing.

V. OPEN RESEARCH CHALLENGES AND FUTURE
DIRECTIONS

Wearable sensors and ML will play an important role in
stroke rehabilitation. Wearable sensors are the most practical
option, from different training interventions to automated
objective assessment and creating predictive models using
ML. Figure 7 shows the combined view of wearable
devices and ML algorithms to improve stroke rehabilitation
outcomes. In this section, we discuss potential open research
challenges and future research directions to solve problems
in stroke rehabilitation.

A. TRAINING INTERVENTIONS

The two most prevalent issues encountered in training
interventions relate to the insufficient knowledge of new
physiotherapists and the execution of the optimal dose of
therapy required for a particular patient. Except for studies
that use biofeedback, the mandatory use of wearable sensors
during the application of all other interventions has not
yet been implemented. Wearable sensors can establish a
connection between training and its effects in real-time,
which helps improve training and maximize potential results.
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TABLE 2. A comprehensive review of existing stroke rehabilitation approaches using wearable devices.

Year Aim Sensors  Device Device Subjects Context Placement ML Model  Results Limitations
Type
2009  ADL ACC, Analog Wired 10 Lab Shoulders, ANN Identify 11 daily Algorithms were
[17] sEMG Devices, thigh, wrist, living activities with a trained separately;
DelSys waist sensitivity of 95% and needs proper segmenta-
a specificity of 99.7% tion of tasks.
2010  Clinical ACC Viatport Wired 24 Lab Chest, RF Derive accurate Tested only in con-
[16] scores fingers, estimates of FAS scores  trolled environments.
forearm, during the performance  Needs evaluation on the
upper arm of 15 motor tasks using  placement of sensors.
an accelerometer
2011 Postures  ACC, Custom Wireless 9 Lab Feet SVM Classify the accuracy Sensor readings may
[115] FSR (Interlink, of six postures of 95% differ in uncontrolled
ST Micro- in the complete sensor environments. Tasks of
electronics) set and over 98% in the  the upper limb are not
optimized sensor set. monitored.
2011 Postures  ACC, Custom Wireless 8 Lab Feet SVM Classify three postures ~ Limited to subjects
[116] FSR (Interlink) with 99% accuracy with ambulatory
for individual models abilities only. Unmea-
and 76.9% for group sured ability to detect
models transitions from sitting
to/from standing.
2012 Postures ACC, Custom Wireless 12 Lab Feet ANN Identify posture with an  Not tested in open free-
[117] FSR (Interlink) accuracy of 97.2% living environments
and during task
transitions.
2013 Exercises ACC Custom Wireless 24 Remote  Shoulders SVM Classify 5 activities Tasks were segmented
[112] (Smart- with 96% accuracy. using the Android app;
phone) whether the ML model
was deployed on the
smartphone is unclear.
2013 Postures ACC, Delsys My-  Wired 10 Lab Lower limb, HMM Fusion of sEMG and ML model is complex
[118] sEMG omonitor chest accelerometer achieved  and requires significant
v 98.3% classification time and resources. Not

accuracy

suitable for wearable
devices.

It enhances patient performance and provides a valuable
opportunity for a novice physiotherapist to gain insight into
the patterns (such as movement patterns and muscle activity)
of patients’ motor ability and progression in real-time.
Furthermore, by using wearable sensor data from healthy
subjects, physiotherapists may better understand the patient’s
status. Thus, the appropriate therapy and individualized
treatment dosage can be implemented in real time.

B. REMOTE MONITORING
Physicians currently recommend that patients perform pre-
scribed exercises with wearable devices when they gain
voluntary movement without a physiotherapist, in addition
to routine care. Nonetheless, whether the patients effectively
complete the tasks as per the instructions remains uncertain.
In [32], the researchers examined data from the unaffected
UE. However, assessing the health of the affected body parts,
specifically the upper or lower extremities, is advisable.
This is critical for making improvements. Furthermore, the
optimal amount of self-directed exercise and research related
to selecting more efficient activities for individual patients
to help regain pre-stroke movement ability remain to be
explored.
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Although wearable devices hold promise for remotely cap-
turing movement data, it is essential to note that movement
data alone is not always sufficient to reveal the fundamental
physiological conditions of patients. It is essential to
include sensors that record physiological signals such as
nerve conduction velocity, EMG, ECG, photoplethysmogram
(PPG), and others to provide additional information about
muscle and nerve activity. Furthermore, incorporating data on
heart rate, respiration rate, body temperature, blood pressure
information, and movement data may prove advantageous.
The correlation, however, has not yet been established.

Another crucial aspect of remote monitoring relates to the
ability of ML models to adapt to individual requirements. The
current systems posit that offline machine-learning models
can be utilized directly. Nonetheless, this is not the case,
as the ML models have only been exposed to labeled data
and cannot adapt to novel, unobserved data. This necessitates
researchers to consider adaptable ML models and novel
approaches to cater to personalized requirements.

C. CONTINUOUS ASSESSMENT
Visual assessment or solely utilizing clinical scales can result
in subjective errors, leading to inappropriate physical therapy
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TABLE 2. (Continued.) A comprehensive review of existing stroke rehabilitation approaches using wearable devices.

Year Aim Sensors  Device Device Subjects Context Placement ML Model  Results Limitations
Type
2014  Postures FSR Custom Wired 6 Lab Forearm ELM Classify six postures Limited to discrete
[46] (Interlink) related to the drinking classification of
task with 92.33% different postures of
accuracy UE:s. It cannot identify
the signature of multi-
joint movements
automatically.
2014 Exercises IMU XSens Wired 5 Lab Arms, legs MTMM- Detect and classify Needs sensor place-
[113] Technolo- DTW the 8 exercise types ments to be precise
gies (93.46% accuracy); and re-recording of
Evaluate exercises as exercise templates for
correct or incorrect new exercises.
(88.65%)
2015 ADL IMU Colibri Wireless 9 Lab Ankle, k-NN, Identify 12 different Needs further eval-
[100] chest, wrist ~ Rotation types of physical uation on optimal
Forest, activities using placement of sensors.
ANN three acceleration
sensors; Rotation
Forest achieving 98%
classification accuracy
in individual sensors;
k-NN achieving 97.9%
accuracy on combined
(3 sensors) data
2016 Exercises ACC, XSens Wired 14 Lab Wrist Fuzzy Achieves 0% error rate Not tested on wearable
[37] GYR Technolo- kernel for the low impairment  devices and needs
gies level patient group and  expert knowledge to
0.56% for all patients tune the model.
2016 Postures  BP, Physilog Wireless 12 Lab Chest LR IMU alone achieves Model parameters

[121] MU

75.4% accuracy
whereas combined

are highly dependent
on data and need re-

IMU and BP sensors training of ML model
achieve 90.6% for new data samples
accuracy

application. Nonetheless, wearable sensor-based continuous
monitoring of subjects during clinical evaluation, regular
hospital routines, and conventional physiotherapy can be
utilized to compile a log of activities. This approach will
assist in comparing the evaluated scores recorded by the
physiotherapist to the objectively recorded scores by the
wearable devices and inferred by the ML models.

Nonetheless, it is imperative to select the appropriate
assessment scale. Assessment scales are subject to limita-
tions, including but not limited to the ceiling effect, making
it impossible to detect improvements in motor activities
precisely. [107]. The use of wearable sensors that apply
patient-specific movement information (such as angle of
movement, time duration to complete a task, and total amount
of activity) for evaluation could help remove this error.
Furthermore, the non-linear analysis of wearable sensor data,
such as multiscale entropy [126] or the maximum Lyapunov
index [127], [128], can address this issue.

D. ASSESSMENT SCORES COMPARED TO TRADITIONAL
SCALES

The accuracy, reliability, and clinical validation of clinical-
equivalent assessment (CEA) scores (i.e., derived from
wearable sensor data) compared to traditional scales are
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essential in determining their practical utility and limitations.
Studies using CEA scores to match traditional scales are
accurate, valid, and practical. For instance, the CEA scores
that are produced to correspond to scales such as NIHSS [18],
FAS [16], and FMA [107], [108] have demonstrated
promising results.

The evaluation of the clinical validation of these scores
necessitates evaluating their testing and verification in diverse
stroke populations and diverse settings. The evidence backing
these assessment scores needs to be critically assessed by
researchers and healthcare professionals, considering their
practical utility, drawbacks, and the individual requirements
of stroke victims.

E. SELECTION AND PLACEMENT OF SENSORS

The placement of sensors on the body is essential for
obtaining the desired signal correctly. As each sensor
plays a crucial role in getting precise movement patterns,
artifacts, or noise, incorrect placements or displacements of
sensors can result in significant issues. Although doctors
can prescribe several training interventions and exercises,
it is always possible to misplace body sensors. We require
methods to monitor correct placements and observe sensor
placements automatically. ML algorithms are needed to
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TABLE 2. (Continued.) A comprehensive review of existing stroke rehabilitation approaches using wearable devices.

Year Aim Sensors  Device Device Subjects Context Placement ML Model  Results Limitations
Type
2016 Exercises ACC, Custom Wireless 24 Lab, Forearm, ELM Predict the FMA scores  Not tested on wearable
[107] Flex Remote  fingers, of the seven exercises devices.
shoulder with coefficient of
determination (R2 =
0.917)
2016 Exercises ACC Custom Wireless 23 Lab Forearm, ELM Monitor and quantita- Not tested on wearable
[114] shoulder tively assess upper limb  devices.
motion function with
89.5% accuracy
2017 ADL FSR Interlink Wired 18 Lab Forearm SVM, LDA SVM-RBF achieved Assessed on a single
[101] Electronics 92.2% accuracy grasp object of constant
(stroke) and 96% weight. It did not study
(healthy) in grasp the effect of removing
detection and redonning sensors
on the effect of an
object’s weight.
2017 ADL ACC, Samsung Wireless 45 Lab, Waist RF The model achieved Limited home data.
[102] GYR, Galaxy S4 Remote better performance Performance dropped
BP when trained in stroke when tested in home
data (75% recall) rather  environments (56%
than training on healthy  recall).
activity data
2018 Gesture sEMG Custom Wireless 3 Lab Forearm LDA, MLP, Identify nine gestures The train and test data
[122] SVM with 96.20% classifi- came from the same

cation accuracy with
MLP

subjects and have not
been tested on unseen

subjects’ data. The data
set itself is limited to

3 subjects and lacks
diversity.

detect misplacement, and they should also identify the
artifacts caused by incorrect positions and compensate for
incorrect information. To our knowledge, no such ML model
or methodology is utilized in rehabilitation.

Due to wearability issues and the sensors’ inefficiency,
we cannot capture the patterns of all the activities captured
by the sensors. Therefore, further studies are required to
determine the optimal location of the wearable sensors.

F. PATIENT COMFORT, PSYCHOLOGICAL IMPACTS, AND
ACCEPTANCE OF TECHNOLOGIES

The practical implementation and acceptance of these tech-
nologies hinges on crucial factors such as patient comfort,
adherence to wearable device usage, and the psychological
consequences of continuous monitoring. For the practical
application and acceptance of wearable devices and ML
models in clinical settings, patient-centered considerations
are essential.

It involves addressing issues of comfort, adherence, and
psychological impact. Wearable devices should be designed
to be ergonomic, lightweight, and non-restrictive. Addition-
ally, the technology designs should also use hypoallergenic
materials for individuals with skin sensitivities. Long-term,
continuous monitoring can cause psychological impacts such
as anxiety and stress.

To mitigate these risks, patients should receive education
about the purpose and benefits of monitoring and be informed
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about privacy and security measures. It is important to
provide regular communication and a means for expressing
concerns. It is important to incorporate patient feedback to
improve device usability and the patient experience.

G. SIGNAL QUALITY AND NOISE

The signal quality depends significantly on the sensitivity
of the particular sensors and the environment. Sensors that
capture external body movements exhibit greater sensitivity
and are more vulnerable to noise. A minor error during data
collection from healthy individuals can result in noisy data
and a noisy model of healthy individuals. Therefore, a stroke
patient can be attributed to being healthy, or vice versa; that
is, an inaccurate movement from a healthy subject can be
considered the movement of a stroke patient. Moreover, when
the sensor is positioned on a body part with a significant
degree of freedom, the signal may exhibit increased noise
if the number and placement of sensors are not precisely
calibrated.

Sometimes, simple movement sensors (for example,
accelerometers) cannot distinguish one movement from
another due to a limited pattern dissimilarity. Therefore,
combining more than one sensor (multi-sensor fusion) and
sensors that capture the body’s internal activity during a task
is necessary to obtain more accurate information [129], [130].

Monitoring tasks would be more accurate if data were
recorded for extended periods. As in the conventional
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TABLE 2. (Continued.) A comprehensive review of existing stroke rehabilitation approaches using wearable devices.

Year Aim Sensors  Device Device Subjects Context Placement ML Model  Results Limitations
Type
2018  ADL IMU Analog Wireless 20 Lab Wrist k-NN, RF, Intrasubject classifi- Limited to only 4
[103] Devices SVM cation accuracy of ADLs and may need
96% (on controls) additional sensors to
and 94% (stroke) and monitor other tasks.
intersubject accuracy of
90% (controls) and
83% (stroke) with
SVM-RBF
2018 ADL ACC, Shimmer Wireless 30 Lab Wrists LR, RF Detected goal-directed Did not consider
[32] GYR (GD) movements movements that were
with 87% area under both GD and non-
the curve (AUC) and GD; requires different
also detects whether algorithms for task
exercise requires detection and quality
feedback (F1 score: assessment.
84.3%)
2020  Clinical IMU MTw Wireless 23 Lab Ankles, SVR Estimates the FMA Requires large,
[108]  scores Awinda, Wrists score using random continuous movements,
XSens movements with which can tire patients
Technolo- the coefficient of and does not assess
gies determination (R2 = the correctness of the
0.7), RMSE of 18.2% movements.
2020 Clinical ACC Shimmer Wireless 37 Lab Arm, chest, RF Estimates FMA Requires expertise in
[111]  Scores fingers, (impairment severity) deriving clinical scores
wrist scores with R2 of from wearable sensor
0.86 and FAS scores data.
(movement quality)
with R2 of 0.79
2021 ADL IMU Apple Wireless 11 Lab Wrists, DT, RF, Accuracy 82% on It uses artificial data
[105] Watch upper arms,  SVM, 10 ADLs and 90% synthesis to handle data
(series 3) hip XGBoost accuracy on 7 ADLs imbalance, which may
with XGBoost not be appropriate in all

cases. Restricted study
to mild stroke patients.

approach, regular monitoring poses a challenge; however,
long-term monitoring by wearable devices offers a solution.
During specific exercise practice, patients are required
to wear the device, and information is gained on the
improvement or deterioration of motor function by tracking
changes in patterns from time to time. A single exercise
is generally of short duration, and efficient features can be
extracted from these temporary signals.

H. TIME-SERIES DATA MODELING AND ANALYSIS

The analysis of sensor data signals is carried out primarily
based on the characteristics of the time domain. Time-
frequency analysis may prove advantageous due to the
non-stationary nature of sensor data. Furthermore, the feature
extraction process can be further enhanced by incorporating
characteristics of the frequency domain, the distribution of
sensor data, and the fractal nature of the sensor data. Recent
advances in deep learning, such as LSTM models, have
successfully extracted time-series features from wearable
sensors [123], [131]. However, LSTM models are more
complex and require much more data to learn than traditional
models. Hence, implementing LSTM in stroke motor recov-
ery necessitates further investigation, as data accessibility is
frequently constrained.
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Most studies use and analyze individual databases, mak-
ing comparing different studies difficult. Furthermore, the
limited collection of a large amount of data to determine
the degree of variability between subjects from stroke
patients is difficult, making the analysis process inefficient.
Therefore, future studies should include large cohorts and,
where possible, make these databases available to researchers
outside organizations with due ethics considerations.

I. ACCELERATING ML WORKLOADS

Using IoT and deep learning to process wearable sensor data
collected from stroke patients in the cloud requires significant
power consumption. Graphics Processing Units (GPUs) are
commonly utilized as the standard equipment for training
deep learning networks, including but not limited to CNN,
RNN, LSTM, and other large models. Images, speech, and
sensor data can be introduced in milliseconds. However,
the power consumption for training a deep learning model
is not less than 100 W when using a high-performance
GPU system [132]. According to [133], the power budget
for devices such as smartphones, tablets, or watches is
approximately 1.5 W, significantly lower than the power
requirements for the cloud-based deep learning model.
Therefore, it is recommended to use cloud-based services
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TABLE 2. (Continued.) A comprehensive review of existing stroke rehabilitation approaches using wearable devices.

Year Aim Sensors  Device Device Subjects Context Placement ML Model  Results Limitations
Type
2019 ADL ACC Shimmer, Wireless 14 Lab, Arm, wrist, CNN Classifies movements Trained on individual
[90] Physilog Remote  elbow, chest with an accuracy of subjects, hence lacks
97.89% on semi- generalizability.
naturalistic data and
with 88.87% accuracy
on naturalistic data; It
is an optimized model
for real-time hardware
implementation
2020 ADL IMU Noraxon Wireless 48 Lab Neck, Back, LTSM with Classify five functional =~ The study included
[123] pelvis, CNN (FMA) primitives with  only subjects with
arms, 70% accuracy dominant right and
forearms, classification perfor-
hands mance deteriorates
significantly in severely
impaired patients
2020  Exercises ACC, LG Wireless 32 Lab, Wrist CNN Classify five exer- Some participant
[124] GYR Smartwatch Remote cises with 99.80% exercises were not
accuracy (when both captured. The actual
accelerometer and precision of the training
gyroscope included) at home was not
versus 98.13% (with evaluated.
only accelerometer
data) and 96.07%
(gyroscope)
2023 Exercises ACC Custom (ST ~ Wireless 5 Lab Hand, CNN Classify 12 exercises (6 Converting time series
[91] Microelec- forearm wrists, four forearms, data into images for
tronics) two shoulders) with feeding to CNN is not

98.61% accuracys; efficient practically.
outperforms DT, SVM,
LDA and Naive Bayes

models

ACC: accelerometer; BP: barometric pressure; FSR: force sensing resistor; GYR: gyroscope; IMU: inertial measurement unit; SEMG: surface electromyography. ANN:
artificial neural network; DT: decision tree; ELM: extreme learning machine; FAS: functional ability scale; FMA: Fugl-Meyer assessment; HMM: hidden Markov model;
LDA: linear discriminant analysis; LR: logistic regression; MLP: multi-layer perceptron; RBF: radial basis function; RF: random forest; RMSE: root-mean-square error;
SVM: support vector machine; SVR: support vector regression; XGBoost extreme gradient boosting.

to train deep learning models and perform inference using
wearable sensors.

Google has addressed this issue via the Tensor Processing
Unit (TPU) [134]. TPUs were explicitly designed for deep
learning networks, and they require a smaller number of
resources and are much faster than GPUs. Google introduced
an Edge TPU into a custom system-on-chip (SoC) named
Google Tensor, and it was released in 2021 with the Pixel
6 line of smartphones. Its advantage is that it can achieve
more excellent performance with lower power consumption.
Suppose TPU is integrated into stroke watches or wearable
sensors; in that case, the desired scores of stroke patients’
progression can be obtained immediately, potentially opening
up a new avenue for the future of monitoring stroke
rehabilitation systems.

J. DATA AND ML MODELS

Most current rehabilitation methodologies are limited to
controlled environments (laboratory settings). Furthermore,
the rehabilitation tasks and exercises are predetermined
and must be adhered to by the subjects. These restric-
tions limit user mobility and hinder the free movement
of individuals. Therefore, newer approaches are needed,

36046

considering uncontrolled environments (laboratory and home
settings) and protocols that are not scripted. Using such
techniques to identify, classify, and categorize tasks would
benefit stroke survivors.

Current approaches develop ML/DL models, considering
limited data (refer to Table 2). Increasing the number of
samples and diversifying the dataset with varying tasks and
scenarios is necessary to make the models robust to different
scenarios. Researchers need to share datasets and models to
collaborate and develop strong models.

Although ML models are trained using diverse variables,
they often cannot be transferred from one environment
to another. For example, we cannot guarantee that the
performance of models developed specifically for laboratory
settings will be the same when used on data collected at home.
Models created in laboratories are typically not tailored to the
needs of individuals at home (local or personalized models).
We currently do not possess models that can be tailored to
individual requirements.

The literature indicates that most researchers use super-
vised or unsupervised learning to address their issues. Semi-
supervised learning is also a promising direction to explore
when there are many unlabeled samples. Furthermore, the
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TABLE 3. A high-level summary of the features used in stroke rehabilitation using wearable sensor devices is provided. The first column of the table
categorizes the literature into five categories: (1) time domain, (2) frequency domain, (3) statistical, (4) morphological, and (5) data specific. The second
column identifies the types of features. The last two columns provide an overview of the advantages and disadvantages of five categories of feature

groups.

Domain

Features

Advantages

Disadvantages

Time domain

Amplitude: Minimum and maximum values: [16], [32], [100],
[109], [111], [112], [121]; Amplitude or sum of amplitude: [107],
[114], [117]; Range [17], [32], [102], [121], Root Mean Square
(RMS): [16], [17], [32], [100], [107], [111], [112], [122] ; Wilson
amplitude [100]

Temporal dynamics: Short time segment [46], [115], [116],
[118], [121]

Complexity or structure: Correlation coefficient [16], [100],
[102], [105], [111]; Entropy [16], [32], [111], [112]; Approximate
entropy [107], [121]; Linear prediction coefficients [118];
Energy: [37], [100], [103], [111]

Capture temporal trends and dynamics within the
data

Easy to interpret

Computationally less intensive

Suitable for real-time analysis using small
segments

o Limited frequency information (does not
consider frequency information of the underlying
signal, specific frequency events)

Insufficient for complex signals

o Less robust to noise and outliers

Frequency domain

Frequency dominance: Dominant frequency component [17],
[37], [111]

Power and energy: Power spectral density [37]; mean power [37],
[102]; energy ratio (dominant frequency to signal energy) [16]

Captures spectral information (fundamental
frequency and harmonics)

Provides compact representation

Less vulnerable to noise (ways to separate signal
and noise components)

Need expertise to understand complexity in
understanding the physical or meaningful
implications

Needs careful windowing techniques to handle
non-stationary signals

Computationally pricier than time domain

Central tendency: Mean [16], [32], [37], [102], [103], [105],
[107], [109], [111], [112], [122]; Harmonic mean [100]; offset

Interpretable (provide meaningful insights of

Representation may be inadequate (due to the

position of maxima [108]
Task specific: Task duration [111], [121]

shapes)

Statistical from the mean [121] signal behavior and patterns) absence of intricate details)
o Quantify key characteristics of the signal (such as | e Sensitive to scaling of data (may alter data

Dispersion: Skewness [32], [100], [102], [108], [111]; kurtosis central tendency, spread, and distribution shape) distribution, affects statistics)

[32], [100], [102], [108]; standard deviation or variance [32], o Comparatively robust (such as measures central o Depends on the quality of data

[100], [102], [103], [105], [117], [122]; interquartile range [102] tendency, less affected by random noise or

temporary fluctuations)

Signal characteristics: Mean crossing number [117], zero

crossing number [32], [100], [122], slope sign change [100], [121] o Captures shape information o Large time complexity and computationally
Morphological Shape and peak: Waveform length [122], number of peaks [108], | ® Visually interpretable (specific to patterns and expensive

Sensitivity to data processing techniques

Data specific

Posture and movement: Axial angle of posture [125], co-
activation interval between muscle pairs [17], cumulative length
[100]

Angle: Angular position [37]

Direct relevance to the problem
Contextually understandable (identification of
relevant patterns to form specific decisions)

Limited to specific data (may not apply to other
available data in general)
Subjective factors or data bias may affect the

Temporal dynamics: Jerk [16], [32], [111], [112]; start and stop
time duration [121], elevation change during the transition of
movement [121], velocity data sequence [37]

Distribution: Histogram bin counts [102]

Regression and trend: Slope of linear regression [102]
Demography: Different demographic features [109]

outcomes
Data-specific processing (requires complex
analysis and is time-intensive)

study of sequential decision-making has not been conducted
in stroke rehabilitation research. To this end, integrating deep
learning techniques with reinforcement learning may provide
promising solutions.

K. NEUROMORPHIC EDGE COMPUTING

Wearable computing units frequently necessitate additional
energy for novel applications that rely on numerous sensors
and possess high learning capacities. However, with current
portable battery technology, the power supply to wearable
devices is insufficient to provide long-term monitoring
capabilities. This limitation must be addressed to improve the
longevity of wearable devices for continuous monitoring in
stroke rehabilitation [135].

The intricacy of utilizing a wireless module, its substantial
power consumption, considerable data volume, spatial limi-
tations arising from wireless transmission range, and privacy
concerns arising from signal broadcasting. Non-negligible
time latency from communication channels renders this solu-
tion less than optimal [136]. These limitations in technology
severely limit the applicability of wearable sensors.

In contrast to traditional methods that rely on a binary
digital system, brain-inspired neuromorphic hardware is a
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promising solution. Still, it needs to be improved regarding
data removal, storage, and transmission across various
units [136]. From this angle, the front-end processor may be
a neuromorphic semiconductor with an intelligent algorithm
integrated right next to the sensor.

Compared to traditional methods that rely on a binary
digital system, brain-inspired neuromorphic hardware is a
promising solution. However, it still needs to be improved
regarding data removal, storage, and transmission across
various units [136]. From this perspective, the front-end
processor may be a neuromorphic semiconductor with an
intelligent algorithm integrated right next to the sensor.

Spike-Timing Dependent Plasticity (STDP), a biologically
inspired learning rule, has been the focus of many neuromor-
phic realizations of on-chip learning. Since synaptic weight
changes only occur if presynaptic spikes reach the synapse,
this model is highly suitable for event-based algorithms [137],
[138]. These developments are encouraging researchers to
adapt neuromorphic chips for stroke rehabilitation.

L. GENERATIVE MODELING

The current wave of Al is driven by success in data availabil-
ity, generative modeling, and process-intensive computing
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FIGURE 7. The future of wearable devices in stroke rehabilitation. The figure depicts the vision for wearable devices and ML algorithms for
rehabilitation after a stroke. ML algorithms can be applied to wearable devices to make predictions (local model) and have a central database
(global model) to predict outcomes and advise people, doctors, and health workers. The figure also shows privacy-enabled communication
between data collection devices and third-party servers. It also highlights neuromorphic edge computing capabilities for providing efficient (near

real-time) ML inferences on portable devices such as a smartwatch.

infrastructure. Recent developments have propelled several
natural language applications to enable human-like conver-
sations, such as OpenAI's ChatGPT.? These models are built
using large Generative Pretrained Transformer (GPT) models
in combination with supervised and reinforcement learning.

Large language models (LLMs) have recently been used in
medicine [139]. LLMs use transformer architecture internally
to build robust models. They can process human language
(i.e., our written or verbal communication) to drive Al
algorithms to develop specific models and augment medical
competencies in patient care. ChatGPT is an excellent
example of an LLM. Since ChatGPT is a chatbot, it can
process user queries and return results in the desired
style, format, and language. ChatGPT can also write code,
process images, and perform machine-learning tasks. It is
an emerging area of research with great potential that needs
further exploration.

Furthermore, generative modeling provides many options
for generating new data from existing data distributions.
Health professionals and researchers often encounter imbal-
anced datasets and limited samples. Generative modeling can
supply new data samples to address imbalanced datasets and
increase the sample numbers. Nonetheless, it is imperative
to conduct additional research to guarantee that the newly
generated data samples adhere to medical conditions and
do not infringe upon patient privacy while generating new
samples.

M. DATA SECURITY AND PRIVACY

Health data is highly susceptible and necessitates the utmost
protection against security threats. Lately, the number of
data breaches has increased significantly. Data from wearable
sensors must be exchanged with third-party applications,

2https://ope:nai.com/resealrch/ ept-4
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including smartphone apps and web servers, to provide
information to patients, caregivers, and health professionals.

Many deep learning algorithms run on the cloud, and some
lightweight algorithms run on wearable devices. These signal
processing, ML, deep learning algorithms, and visualization
tools require data transfer from wearable devices (edge
devices) to a centralized cloud server. This presents a
significant risk of leakage of sensitive health data and jeop-
ardizes data privacy. For innovative healthcare, it is possible
to achieve secure communication using wearable devices
by employing identity-based systems and biometrics that
authenticate user identity and blockchain-based immutable
data security [140], [141].

The differential privacy technique [142] involves the
transfer of patterns in wearable device data to cloud
services. A global algorithm updates the appropriate ML
model without utilizing individuals’ raw data. Nevertheless,
numerous financial, societal, and technological obstacles
remain when assessing the proper degree of privacy for
wearable devices, notably in medical settings.

VI. KEY FINDINGS

Figure 8 summarizes the objectives, sensors, types of feature
extraction, classification models, and various performance
metrics used in the literature. The main findings of this
review are:

o Even though there have been several training inter-
ventions for stroke rehabilitation, patients still need
to practice helping them get back to their pre-stroke
mobility. In addition to regular care at home or in a
rehabilitation center, patients must perform prescribed
exercises and other possible daily activities without a
physiotherapist. Remote monitoring of stroke patients’
movements is necessary to ensure patients perform the
recommended tasks correctly.
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FIGURE 8. A summary of the articles presented in Table 2 including the research objectives, sensors, types of feature extraction,
ML models (mostly classification models), and performance metrics used in the literature.

o The extent of remote assessment utilizing wearable
sensors is contingent upon the training intervention pro-
vided. Specific training interventions, such as functional
electrical stimulation (FES), are not feasible for patients
to execute at home or in rehabilitation centers without
the aid of professionals. Therefore, recovery from these
interventions may not be remotely monitored. However,
virtual reality (VR) can be employed in home-based
monitoring systems without manual assistance.

o The use of motor imagery (MI) is suitable for those
who lack residual movement in their affected limbs.
Still, it is incompatible with general motion-based
wearable sensors, as no measurable movement occurs.
The brain-computer interface (BCI), where electrodes
are attached to the scalp, is not user-friendly, limiting
its usability for patients alone, as they require additional
assistance. Moreover, it is imperative to ascertain
whether the brain rhythms observed during the MI
process are attributed to MI.

o Accelerometers were the most frequently used sensors
for evaluating body movement compared to other
sensors. Nonetheless, combining data from diverse
sensors enhances the monitoring quality capabilities
and the prediction outcomes. Gyroscopes are better at
measuring the quality of movement than accelerome-
ters are. Additional sensors are often combined with
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accelerometers to obtain activity information from
different modalities, enhancing the detection outcomes.
Collecting and curating data from subjects and anno-
tating data appropriately for use with ML models is
a massive task. It is imperative to obtain training and
establish guidelines to gather and manage personal
health data while recognizing the privacy concerns of
patients and the advancements in technology.

Most methods generate window-based time-domain
features and a few employ feature selection techniques.
Nonetheless, the acquired knowledge derived from
incorporating data from diverse domains will likely
enhance ML models’ learning and prediction outcomes.
Therefore, it is essential to consider different aspects of
the problem, context, and understanding before selecting
valuable features. Identifying the optimal features and
selecting the most suitable ones is imperative, mainly
when dealing with hand-crafted features.

Deep learning methods are becoming increasingly
popular, reducing the need for expertise in hand-made
feature extraction. However, understanding the intrica-
cies of deep learning models and the availability of
computational resources to build new models require
human resources, time, and financial support. It also
requires qualified people with theoretical and empirical
domain knowledge.
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VIi. CONCLUSION

Recovery from stroke is a complex process that probably
occurs through spontaneous and learning-dependent pro-
cesses [143]. The stroke recovery process involves a series
of distinct stages, and the duration of recovery and degree
of distress varies according to the individual. Although we
have traditional systems and methods for capturing data at
high resolutions, they don’t permit continuous examination,
as they are heavy and unportable.

Wearable devices with embedded sensors are highly
appealing as they can capture high-resolution patient data
while being portable, mobile, and wireless. Furthermore,
wearable devices are practical for remote monitoring of
stroke patients’ daily activities and exercise schedules
without a physician. Moreover, the ability of wearable
devices to continuously collect patient data reduces missed
opportunities for diagnosis and treatment.

By utilizing the predictive capability of ML models
constructed using high-resolution wearable sensor data,
we can develop and build systems for the automatic,
remote, and precise monitoring of rehabilitation schedules,
which was previously unfeasible. Specifically, combining
high-resolution data from wearable devices and well-trained
ML models enhances the monitoring quality in training
intervention, assessment, and remote supervision.

This review has summarized the relevant research on stroke
rehabilitation from 2009 to 2023 and cataloged the literature
into six categories. These include (i) identifying ADL, (ii)
estimating clinical scores, (iii) monitoring exercises, (iv)
recognizing postures, (v) recognizing gestures, and (vi) deep
learning methods. Furthermore, the review has highlighted
the advantages and limitations of existing techniques and pro-
vided future research direction for adopting wearable devices
in stroke rehabilitation, especially for remote monitoring.

We expect this review to benefit interested researchers in
discovering the critical challenges of using wearable sensors
and machine-learning techniques for post-stroke movement
analysis. This review did not dig deep into individual features
found in the literature due to the vast nature of the topic.
We expect a future survey by the research community to
complement this article and give readers additional insights.
Lastly, we expect this review to provide directions and
encourage the research community to explore new avenues.
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