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ABSTRACT This paper presents a fault estimation technique based on the decentralized fuzzy observer
for nonlinear large-scale systems, which are considered to be consisted of fuzzy subsystems and uncertain
interconnections. Based on a Takagi–Sugeno fuzzy model for the subsystems of the large-scale system and
the decentralized fuzzy observer, the H∞ performance of the fault estimation problem is established by
using the estimation error model. By using H∞ performance inequalities to address the fault estimation
problem, the decentralized fuzzy observer design techniques are proposed to guarantee the fault estimation
conditions. Also, sufficient conditions of observer design are converted into the linear matrix inequality
formats. Finally, an example is provided to verify the effectiveness of the proposed decentralized fuzzy
observer design techniques for fault estimation.

INDEX TERMS Decentralized control, estimation error, fault detection, fuzzy systems, large-scale systems,
linear matrix inequalities, observers, stability analysis, sufficient conditions, Takagi–Sugeno model.

I. INTRODUCTION
Nowadays, most of the systems considered in various modern
industries have very complex structures to represent the char-
acteristics of the systems. Among the various characteristics,
nonlinearities and interconnections cause greater difficulties
in controlling and observing the systems, and thus these
characteristics are recognized as problems to be solved in
the control field [1], [2]. In particular, the interconnection
problem is known as a very important problem in large-
scale systems [3], [4], [5], [6], [7], which are composed of
multiple subsystems, because the structural connection and
the interaction of information between subsystems have a
large effect on the entire large-scale system.Also, in the large-
scale systems, the actuator faults or errors can pose many
risks to control and operation of the system due to the large
and complex system structure. Thus, detecting or estimating
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the fault signal is essential to ensure the safety and reliability
of the large-scale systems [8], [9], [10], [11].

Apart from the large-scale system issue, the fault esti-
mation is one of the technique for Fault Detection and
Diagnosis (FDD), and has an advantage to be possible to
directly estimate the fault signal. Accordingly, research on
the fault estimation technique has received a lot of attention
so far, and in particular, many studies on fault estimation
techniques for nonlinear systems have been presented by
using Takagi–Sugeno (T–S) fuzzy model approach [12].
In [13] and [14], the fault estimation techniques have been
represented for nonlinear systems based on fuzzy model
with continuous-time and discrete-time cases, respectively.
As with [13] and [14], the fuzzy fault estimation studies
have been developed to solve various problems, such as
time-delay [15], [16], non-measurable premise variable [17],
and quantization error [18], [19]. Also, recently, studies
on fuzzy fault estimation have been presented: In [20]
and [21], the fault estimation problems have been addressed
for nonlinear fractional-order systems with unknown inputs
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and discrete-time fuzzy systems, respectively. The above
studies have proposed improved fault estimation techniques
than existing ones through novel observer structures and
design approaches. In [22], the fault estimation observer
has been developed for switched fuzzy stochastic systems,
which have Brownianmotion noise and switched subsystems.
The fuzzy fault-tolerant control and fault detection based on
the fault estimation have been proposed in [23] and [24],
respectively.

One of the recent key research issues in FDD is to
address the sampled-data problem. A robust sampled-data
fault detecting filter has been developed for linear systems
in [25], and a sampled-data fuzzy fault estimation tech-
nique has been developed for nonlinear systems in [26],
respectively. Furthermore, expanding the research field to
sampled-data observation techniques, an observer-based
controller is designed for networked control systems to solve
the network attack problem based on a interval type-2 fuzzy
model in [27], and the sampled-data disturbance and fault
diagnosis observers have been developed for interconnected
semi-Markovian systems in [28].
Despite the many fuzzy fault estimation studies described

above, research on fault estimation for large-scale systems
is still very lacking. The reason is that fault estimation
studies to date have been mostly applicable to cases
where system information is accurately known, but in
the large-scale system, it is difficult to know all system
information accurately due to the unknown or uncertain
interconnection problem. In fact, recent studies for fault
estimation of large-scale systems have considered that all
system information of interconnection is known, and have
applied all system information about interconnection to the
fault estimation observer [29], [30], [31], [32]. It means that
the unknown or uncertain interconnection problem cannot
be solved in [29], [30], [31], [32]. In addition, the above
studies [29], [30], [31], [32] have the limitation of dealing
the fault estimation for linear large-scale systems. In [33],
the fuzzy fault estimation technique has been proposed for
large-scale systems, but it has assumed that the system
information of all interconnections is still known. Although
the various approaches, such as fuzzy observer [34], fuzzy
filter [35], [36], fuzzy isolation [37], and fuzzy detection [38],
[39], have been presented for nonlinear large-scale systems
with uncertain interconnection, the fault estimation technique
has not been addressed yet. Especially, to the best of the
author’s knowledge, the decentralized fuzzy observer-based
fault estimation has not been studied for nonlinear large-scale
systems with uncertain interconnections so far.

Motivated by the above analysis for the previous tech-
niques, the decentralized fuzzy observer design techniques
are proposed for fault estimation of nonlinear large-scale
systems with uncertain interconnections in this paper. The
subsystems of nonlinear large-scale system are represented
to T–S fuzzy model, and the decentralized fuzzy observer
is considered based on the fuzzy subsystems. The fault
estimation problem is addressed by using the estimation

error model between the fuzzy subsystems of the large-scale
system and the decentralized fuzzy observer. By using
Lyapunov functional approach, some sufficient conditions are
developed to design the decentralized fuzzy observer for fault
estimation with satisfying both the stability condition and
the H∞ performance condition. In addition, in order to solve
easily by a convex optimization tool, the proposed sufficient
conditions are converted into various linear matrix inequality
(LMI) formats. Finally, a simulation example is provided
to prove the validity of the proposed ideas, techniques and
procedures by result analysis and comparison.

This paper is organized as follows: Section II describes the
fuzzy models of large-scale systems and the decentralized
observer and fault estimation problem. The LMI conditions
to design the decentralized fuzzy observer for fault estimation
are proposed by using Lyapunov functional in Section III. The
simulation example is given for illustration and comparison
in Section IV. Finally, the conclusions are given in Section V.
Notation: The notations (·)T , He{·}, and ∗ denote the

transpose of the argument, the summation of the element
and its transposed element, and the transposed element in
symmetric positions, respectively. The subscripts k and l
denote the subsystem indices, and subscripts i and j denote
fuzzy rule indices. Also, IN is a set of integers with
{1, 2, · · · , n}.

II. PRELIMINARIES
Consider a large-scale system composed of n nonlinear
subsystems, which can be described as the T–S fuzzy model
with the following fuzzy IF–THEN rules:

Fuzzy Rule i of kth subsystem: :

IF zk1(t) is 0ki1, · · · , and zkq(t) is 0kiq,

THEN

{
ẋk (t) = Akixk (t) + Bkiωk (t)+Ekifk (t)+hk (x(t))
yk (t) = Ckixk (t) + Dkiωk (t)

(1)

where zkp(t), k ∈ Ikq, is the premise variable, 0kip, (k, i, p) ∈

In × Ir × Iq, is a fuzzy set for zkp(t), xk (t) ∈ Rnk , ωk (t) ∈

Rmk , and yk (t) ∈ Rlk are the state variable, disturbance,
and measurement output of kth subsystem, respectively,
x(t) = col{x1(t), x2(t), . . . , xn(t)} is the whole state variable
of the large-scale system, and fk (t) ∈ Rsk is the actuator
fault input, which is assumed that the derivative of fk (t)
is norm bounded. Also, Aki, Bki, Eki, Cki and Dki denote
nominal system matrices with appropriate dimensions for
the ith fuzzy rule of the kth subsystem, and hk (x(t)) is a
nonlinear vector function for representing the interconnection
of large-scale system and is assumed to satisfy the following
Assumption:
Assumption 1: The vector function hk (x(t)) is unknown,

but satisfies the following quadratic inequality:(
hk (x(t))

)T hk (x(t)) ≤ α2
kx(t)

THT
k Hkx(t) (2)

where αk > 0 is a bound scalar of the interconnection term,
andHk is a given constant matrix with appropriate dimension.

VOLUME 12, 2024 35379



G. B. Koo: Decentralized Fuzzy Observer-Based Fault Estimation for Nonlinear Large-Scale Systems

Remark 1: In Assumption 1, it is assumed that the
unknown interconnection function consists of αk and Hk .
Here, αk means the maximum bound of the interconnections,
and Hk represents the structure of the interconnection.
In other words, the higher the value of αk is, the stronger
the degree of interconnections is. Also, when the value of
αk is determined, it indicates that Assumption 1 is always
satisfied in the smaller interconnection bound than the value
of αk . In general, there is a need to obtain the maximum
interconnection bound αk with guaranteeing the stability
condition or observing performance. However, in the fault
estimation case, since the purpose is to optimize the fault
estimation performance, it is hard to optimize the maximum
interconnection bound αk . Thus, in this paper, we assume
that the maximum interconnection bound αk is a given
scalar, which is often assumed in the decentralized filtering
techniques [36], [40].

Using center-average defuzzification, product inference
and singleton fuzzifier, IT–THEN rule (1) can be inferred as
the following fuzzy subsystem:

ẋk (t) =

r∑
i=1

µki(zk (t))
(
Akixk (t) + Bkiωk (t) + Ekifk (t)

)
+ hk (x(t))

yk (t) =

r∑
i=1

µki(zk (t))
(
Ckix(t) + Dkiωk (t)

)
(3)

where

µki(zk (t)) = ηki(zk (t))
/ r∑

i=1

ηki(zk (t)),

ηki(zk (t)) =

q∏
p=1

0kip(zkp(t))

in which 0kip = Uzkp(t) ⊂ R → R[0,1] is the membership
function of zkp(t) on compact set Uzkp(t).

To design the fuzzy observer for fault estimation, some
mathematical assumptions have to be considered as follows:
Assumption 2: In kth subsystem, the state variable xk (t) is

not measurable, but the premise variable zk (t) and the output
variable yk (t) are measurable.
Assumption 3: Each pair of (Aki,Cki) is observable for

(k, i) ∈ In × Ir . Also, matrices Eki are a full column rank,
and matrices Cki are a full row rank for (k, i) ∈ In × Ir .

Based on the fuzzy subsystem (3) and assumptions,
we suppose a decentralized fuzzy observer model as follows:

˙̂xk (t) =

r∑
i=1

µki(zk (t))
(
Akix̂k (t) + Eki f̂k (t)

+ Lki(yk (t) − ŷk (t))
)

ŷk (t) =

r∑
i=1

µki(zk (t))Ckix̂k (t)

˙̂fk (t) =

r∑
i=1

µki(zk (t))Fki(yk (t) − ŷk (t)) (4)

where x̂(t) ∈ Rnk , ŷk (t) ∈ Rlk and f̂ (t) ∈ Rsk are the state,
output and fault to be estimated, respectively, and Lki and
Fki are the decentralized fuzzy observer gain matrices with
appropriate dimensions.
Remark 2: The dynamic equation of the fault estimation

observer (4) for the actuator fault input is presented only
using the error of the output, because the output variable
is only available for the system (3) and the information
about the actuator fault input can be not obtained at all. The
structural limitations of the fault estimation observer impose
some constraints and conservatism, such as the derivative of
fk (t) has to be norm bounded and the fault estimation error
is minimized relative to the derivative of the actuator fault
input [13], [15], [16], [29].

Then, substituting (4) into (3) and defining the state
observer error exk (t) = xk (t) − x̂k (t) and the fault estimation
error efk (t) = fk (t) − f̂k (t), the error model is obtained as
follows:

ėk (t) =
(
Ãk (t) − L̃k (t)C̃k (t)

)
ek (t)

+
(
B̃k (t) − L̃k (t)D̃k (t)

)
vk (t) + h̃k (x(t)) (5)

where

Ãk (t) =

r∑
i=1

µki(zk (t))
[
Aki Eki
0 0

]
,

L̃k (t) =

r∑
i=1

µki(zk (t))
[
Lki
Fki

]
,

C̃k (t) =

r∑
i=1

µki(zk (t))
[
Cki 0

]
,

B̃k (t) =

r∑
i=1

µki(zk (t))
[
Bki 0
0 I

]
,

D̃k (t) =

r∑
i=1

µki(zk (t))
[
Dki 0

]
,

and ek (t) = col{exk (t), efk (t)}, vk (t) = col{ωk (t), ḟk (t)}, and
h̃k (x(t)) = col{hk (x(t)), 0}.

From the error model (5), the objective of fault estimation
problem can be stated as follows:
Problem 1: Find the observer gain matrices Lki and Fki

and minimize a scalar γ > 0 such that the following H∞

performance is guaranteed:
1) The equilibrium point of the large-scale system based

on error subsystem (5) is asymptotically stable when
vk (t) = 0 and hk (x(t)) = 0.

2) The following inequality is satisfied for a scalar γ

under zero initial condition:
n∑

k=1

∫
∞

0
∥ek (t)∥2dt

≤ γ 2
n∑

k=1

∫
∞

0

(
∥vk (t)∥2 + ∥xk (t)∥2

)
dt. (6)
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Remark 3: Unlike the previous fault estimation studies,
the term of xk (t) is included in the inequality for H∞

performance of fault estimation in the second condition
of Problem 1. The term of xk (t) is required, because the
information of the uncertain interconnection is not possible
to be considered in the decentralized fuzzy observer (4), so
the error model (5) still has an uncertain interconnection
function hk (x(t)). In papers [34], [36] for designing the fuzzy
observer or a filter for large-scale systems with uncertain
interconnections, an inequality for H∞ performance as the
form of the inequality (6) has been used. Thus, it is reasonable
to use inequality (6) for fault estimation technique. In addi-
tion, in this paper, a decentralized fuzzy observer design
technique for fault estimation based on an inequality without
the term of xk (t) is also introduced in Corollary 1, and the fault
estimation performance of the proposed decentralized fuzzy
observers based two inequalities are compared and verified
in Section IV.

III. MAIN RESULTS
In this section, the decentralized fuzzy observer design
techniques for fault estimation have been proposed for
nonlinear large-scale system (3) based on errormodel (5) with
considering Problem 1. Before presenting the main results,
following lemma has to be considered for the proof of main
results.
Lemma 1 ( [41]): Consider the following inequality:

r∑
i=1

r∑
j=1

µi(z(t))µj(z(t))Λij < 0

where µi(z(t)) ≥ 0 and
∑r

i=1 µi(z(t)) = 1 and Λij is a
real symmetric matrix for (i, j) ∈ Ir × Ir . Then, the above
inequality is fulfilled by the following conditions:

Λii < 0, i ∈ Ir ,
1

r − 1
Λii +

1
2

(
Λij + Λji

)
< 0, (i, j) ∈ Ir × Iw,

where Ir × Iw denotes for all pairs (i, j) ∈ Ir × Ir such that
1 ≤ i ̸= j ≤ r .
Now, based on the above lemma, the sufficient condition of

the decentralized fuzzy observer design for fault estimation of
the error model (5) is addressed in the following theorem.
Theorem 1: If there exist some matrices Pk = PTk > 0 and

Nki and some scalars ρ > 0, σk > 0 and γ̂ such that the
following LMIs are satisfied:

min γ̂ subject to

9kii < 0, (k, i) ∈ In × Ir (7)
1

r − 1
9kii +

1
2

(
9kij + 9kji

)
< 0, (k, i, j) ∈ In × Ir × Iw

(8)

− γ̂ I + nσlα2
l H

T
lkHlk < 0 (k, l) ∈ In × In (9)

where

9kij =

He{Pk Ãki − NkiC̃kj} + ρI Pk B̃ki − NkiD̃kj Pk
∗ −γ̂ I 0
∗ ∗ −σk I

 ,

Ãki =

[
Aki Eki
0 0

]
, B̃ki =

[
Bki 0
0 I

]
,

C̃ki =
[
Cki 0

]
, D̃ki =

[
Dki 0

]
and αl is a given positive scaler for interconnection bound,
and Hlk is the submatrix having nk columns of Hl from the
νk th column vector for νk = n1 + n2 + · · · + nk−1 + 1, then
the decentralized fuzzy observer (4) guarantees the H∞ fault
estimation performance for a large-scale system based on the
fuzzy subsystem (3), and γ is a minimum H∞ performance
value of fault estimation. In addition, the decentralized fuzzy
filter gain matrices are given by col{Lki,Fki} = P−1

k Nki, and
γ =

√
γ̂ /ρ is a minimum H∞ performance value of fault

estimation.
Proof: First, to obtain the sufficient condition for

satisfying the first condition of Problem 1, we consider a
Lyapunov function candidate with vk (t) = 0 and hk (x(t)) =

0 as follows:

V (t) =

n∑
k=1

Vk (ek (t)) =

n∑
k=1

ek (t)TPkek (t)

where Pk = PTk > 0. Then, the first time derivative of the
Lyapunov functional candidate becomes

V̇ (t) =

n∑
k=1

(
ėk (t)TPkek (t) + ek (t)TPk ėk (t)

)
. (10)

Due to vk (t) = 0 and hk (x(t)) = 0, the following equation
can be obtained by substituting (3) and (5) into (10):

V̇ (t) =

n∑
k=1

(((
Ãk (t) − L̃k (t)C̃k (t)

)
ek (t)

)T
Pkek (t)

+ ek (t)TPk
((
Ãk (t) − L̃k (t)C̃k (t)

)
ek (t)

))
. (11)

Thus, if the inequality He{Pk (Ãk (t) − L̃k (t)C̃k (t))} < 0,
which is guaranteed by LMIs (7) and (8), is satisfied, then
the first time derivative of V (t) is majorized by V̇ (t) < 0.
Now, we establish theH∞ performance criteria to solve the

second condition of Problem 1 based on the error system (5)
with a zero initial condition by using the following inequality:

J = V̇ (t) + ρ

n∑
k=1

(
ek (t)T ek (t) − γ 2vk (t)T vk (t)

− γ 2xk (t)T xk (t)
)

(12)

where ρ is a positive scalar.
Then, by substituting (5) into (12), we have

J =

n∑
k=1

(((
Ãk (t) − L̃k (t)C̃k (t)

)
ek (t)

+
(
B̃k (t) − L̃k (t)D̃k (t)

)
vk (t) + h̃k (x(t))

)T
Pkek (t)
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+ ek (t)TPk
((
Ãk (t) − L̃k (t)C̃k (t)

)
ek (t)

+
(
B̃k (t) − L̃k (t)D̃k (t)

)
vk (t) + h̃k (x(t))

))
+ ρ

n∑
k=1

(
ek (t)T ek (t) − γ 2vk (t)T vk (t) − γ 2xk (t)T xk (t)

)
≤

n∑
k=1

(((
Ãk (t) − L̃k (t)C̃k (t)

)
ek (t)

+
(
B̃k (t) − L̃k (t)D̃k (t)

)
vk (t)

)T
Pkek (t)

+ ek (t)TPk
((
Ãk (t) − L̃k (t)C̃k (t)

)
ek (t)

+
(
B̃k (t) − L̃k (t)D̃k (t)

)
vk (t)

))
+ h̃k (x(t))TPkek (t) + ek (t)TPk h̃k (x(t))

+ ρ

n∑
k=1

(
ek (t)T ek (t) − γ 2vk (t)T vk (t) − γ 2xk (t)T xk (t)

)
≤

n∑
k=1

(((
Ãk (t) − L̃k (t)C̃k (t)

)
ek (t)

+
(
B̃k (t) − L̃k (t)D̃k (t)

)
vk (t)

)T
Pkek (t)

+ ek (t)TPk
((
Ãk (t) − L̃k (t)C̃k (t)

)
ek (t)

+
(
B̃k (t) − L̃k (t)D̃k (t)

)
vk (t)

)
+ σ−1

k ek (t)TP2kek (t) + ρek (t)T ek (t) − ργ 2vk (t)T vk (t)
)

+

n∑
k=1

(
− ργ 2xk (t)T xk (t) + σk h̃k (x(t))T h̃k (x(t))

)
(13)

where σk is a positive scalar. Also, from (2) of Assumption 1,
the following inequality is satisfied:

n∑
k=1

h̃k (x(t))T h̃k (x(t)) ≤

n∑
k=1

α2
kx(t)

THT
k Hkx(t)

=

n∑
k=1

n∑
l=1

α2
kxl(t)

THT
klHklxl(t)

=

n∑
k=1

n∑
l=1

α2
l xk (t)

THT
lkHlkxk (t) (14)

where Hk = [Hk1 Hk2 · · · Hkn] and Hkl has nl columns.
Applying the inequality (14) into (13) yields

J ≤

n∑
k=1

(((
Ãk (t) − L̃k (t)C̃k (t)

)
ek (t)

+
(
B̃k (t) − L̃k (t)D̃k (t)

)
vk (t)

)T
Pkek (t)

+ ek (t)TPk
((
Ãk (t) − L̃k (t)C̃k (t)

)
ek (t)

+
(
B̃k (t) − L̃k (t)D̃k (t)

)
vk (t)

)
+ σ−1

k ek (t)TP2kek (t) + ρek (t)T ek (t) − ργ 2vk (t)T vk (t)
)

+

n∑
k=1

n∑
l=1

(
−

1
n
ργ 2xk (t)T xk (t)

+ σlα
2
l xk (t)

THT
lkHlkxk (t)

)
=

n∑
k=1

[
ek (t)
vk (t)

]T [
911
k (t) 912

k (t)
∗ −ργ 2I

] [
ek (t)
vk (t)

]

+
1
n

n∑
k=1

n∑
l=1

xk (t)T
(
− ργ 2I + nσlα2

l H
T
lkHlk

)
xk (t)

(15)

where 911
k (t) = He{Pk (Ãk (t) − L̃k (t)C̃k (t))} + σ−1

k P2k + ρI
and 912

k (t) = Pk (B̃k (t) − L̃k (t)D̃k (t)).
Thus, if the following inequalities are satisfied[

911
k (t) 912

k (t)
∗ −ργ 2I

]
< 0, (16)

−ργ 2I + nσlα2
l H

T
lkHlk < 0, (17)

then J < 0 is satisfied. Furthermore, by using Schur
complement to inequality (16), applying Lemma 1 and
denoting Pk×col{Lki,Fki} = Nki and ργ 2

= γ̂ , the condition
of J < 0 is majorized as LMIs (7), (8) and (9).

Also, by integrating (12) from 0 to ∞, we obtain∫
∞

0
J dt

= V (∞) − V (0) + ρ

( n∑
k=1

∫
∞

0
eTk (t)ek (t)dt

− γ 2
n∑

k=1

∫
∞

0

(
vk (t)T (t)vk (t) + xk (t)T xk (t)

)
dt

< 0. (18)

Finally, from V (0) = 0 by zero initial condition
and V (∞) ≥ 0, if LMIs (7), (8) and (9) are satis-
fied, then H∞ performance (6) is guaranteed from the
result of (18). Thus, by inequalities (7), (8) and (9), we
can guarantee both the stability condition of large-scale
system without fault, disturbance and interconnection and
H∞ performance of the estimation error model based
on (5).
Remark 4: In Theorem 1, the LMIs have to be satis-

fied with a given maximum interconnection bound αk .
It means that the proposed decentralized fuzzy observer
designed by Theorem 1 guarantees the H∞ fault estimation
performance for (5), even if the interconnection bound
has any value below the given maximum interconnection
bound αk .
Remark 5: In Problem 1, γ has to be minimized for H∞

performance of the fault estimation, but the objective of LMIs
of Theorem 1 is that γ̂ is minimized. Here, γ̂ = ργ 2 is
defined by two variable γ and ρ, Thus, minimizing γ̂ in
LMIs (7), (8) and (9) may not minimize γ , because the value
of ρ can be also changed by LMIs. To solve this problem,
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a value of ρ is given in advance. Then, γ is possible to be
minimized by minimizing γ̂ .

Theorem 1 shows the decentralized fuzzy observer
design technique for fault estimation of large-scale sys-
tems. Also, the LMIs of Theorem 1 are converged the
sufficient conditions of fault estimation fuzzy observer
design for the fuzzy system without considering the inter-
connections. This convergence is shown in the following
theorem:

Theorem 2: The LMIs (7), (8) and (9) of Theorem 1
can be the sufficient conditions for fault estimation fuzzy
observer design of the general fuzzy system such as
followings:

ẋ(t) =

r∑
i=1

µi(z(t))
(
Aix(t) + Biω(t) + Eif (t)

)
y(t) =

r∑
i=1

µi(z(t))
(
Cix(t) + Diω(t)

)
(19)

Proof: When hk (t) = 0, we can suppose αk = 0 in
Assumption 1. Thus, the LMI (9) is always satisfied for any
γ̂ > 0. Next, considering ρ = 1 and a sufficiently large value
of σk > 0, the LMIs (7) and (8) are fulfilled by the following
inequality:

r∑
i=1

r∑
j=1

µki(zk (t))µkj(zk (t))

×

[
He{Pk Ãki + PkLkiC̃kj} + ρI Pk D̃ki

∗ −γ 2I

]
< 0 (20)

Here, with ignoring the subscripts k and l, the inequal-
ity (20) is the sufficient condition to guarantee the H∞ fault
estimation of the fuzzy system (19) via Lyapunov functional
V (e(t)) = e(t)TPe(t) and J = V̇ (e(t)) + e(t)T e(t) −

γ 2v(t)T v(t)). Thus, when considering hk (t) = 0, LMIs (7),
(8) and (9) can be converged the sufficient conditions of
the fault estimation fuzzy observer design for general fuzzy
systems.
Remark 6: Theorem 2 shows that the proposed decentral-

ized fuzzy observer for fault estimation converges the fault
estimation fuzzy observer for general fuzzy systems. It means
that the H∞ fault estimation performance of Theorem 1
can be improved as the value of the interconnection bound
αk is decreased. The change of the H∞ fault estimation
performance according to the value of αk is verified in
Section IV.
To conquer the limitation of including the term of

xk (t) in the inequality (6) for H∞ performance of Prob-
lem 1, a novel decentralized fuzzy observer design tech-
nique for fault estimation is introduced in the following
corollary:
Corollary 1: If there exist some matrices Pk = PTk >

0, Qk = QTk > 0 and Nki and some scalars
ρ > 0 and γ̂ such that the following inequalities are

satisfied:

min γ̂ subject to

8klii < 0, (k, l, i) ∈ In × In × Ir , (21)
1

r − 1
8klii +

1
2

(
8klij + 8klji

)
< 0,

(k, l, i, j) ∈ In × In × Ir × Iq,
(22)

where

8klij =


811
kij 812

kij Pk H̃T
lk

∗ −γ̂ I 0 0
∗ ∗ −σk I 0
∗ ∗ ∗ −

1
2nα2

l
σ−1
k I

 ,

811
kij = diag{He{QkAki},He{Pk Ãki − NkiC̃kj} + ρI },

812
kij =

[
Qk B̂ki QkEki

Pk B̃ki − NkiC̃kj 0

]
,

Pk = diag{Qk ,Pk},

H̃T
lk = col{HT

lk , 0},

B̂ki =
[
Bki 0

]
and σk andαl are given positive scalars, then the decentralized
fuzzy observer (4) guarantees the H∞ fault estimation
performance for a large-scale system based on the fuzzy
subsystem (3). In addition, the decentralized fuzzy observer
gain matrices are given by col{Lki,Fki} = P−1

k Nki, and
γ =

√
γ̂ /ρ is a minimum H∞ performance value of fault

estimation.
Proof: From fuzzy systems based on (3) and error

model (5), we consider

χ̇k (t) = 4k (t)χk (t) +Mk (t)υk (t) + ĥk (x(t)) (23)

where

4k (t) =

[
Ak (t) 0
0 Ãk (t) − L̃k (t)C̃k (t)

]
,

Mk (t) =

[
B̂k (t) Ek (t)

B̃k (t) − L̃k (t)D̃k (t) 0

]
,

Ak (t) =

r∑
i=1

µki(zk (t))Aki,

B̂k (t) =

r∑
i=1

µki(zk (t))B̂ki,

Ek (t) =

r∑
i=1

µki(zk (t))Eki

and χk (t) = col{xk (t), ek (t)}, υk (t) = col{vk (t), fk (t)}, and
ĥk (x(t)) = col{hk (x(t)), h̃k (x(t))}.
Then, based on the model (23), we firstly consider a

Lyapunov function candidate with υk (t) = 0 and hk (x(t)) =

0 as follows:

V (t) =

n∑
k=1

Vk (χk (t)) =

n∑
k=1

χk (t)TPkχk (t)
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where Pk = PT
k > 0. Then, the first time derivative of the

Lyapunov functional candidate becomes

V̇ (t)

=

n∑
k=1

(
χ̇k (t)TPkχk (t) + χk (t)TPk χ̇k (t)

)
=

n∑
k=1

((
4k (t)χk (t)

)TPkχk (t) + χk (t)TPk
(
4k (t)χk (t))

))
(24)

Thus, if the inequality He{Pk4k (t)} < 0, which is
guaranteed by LMIs (21) and (22) by defining Pk =

diag{Qk ,Pk} with Qk = QTk > 0 and Pk = PTk > 0 without
the loss of generality, is satisfied, then the first time derivative
of V (t) is majorized by V̇ (t) < 0.
Also, we establish theH∞ performance criteria with a zero

initial condition by using the following inequality:

J = V̇ (t) + ρ

n∑
k=1

(
ek (t)T ek (t) − γ 2υk (t)Tυk (t)

)
(25)

where ρ is a positive scalar. Now, through a similar procedure
of Theorem 1, we obtain the following inequality:

J ≤

n∑
k=1

((
4k (t)χk (t) +Mk (t)υk (t)

)TPkχk (t)
+ χk (t)TPk

(
4k (t)χk (t) +Mk (t)υk (t)

)
+ σ−1

k χk (t)TP2kχk (t) + ρek (t)T ek (t) − ργ 2vk (t)T vk (t)
)

+

n∑
k=1

n∑
l=1

2σlα2
l χk (t)

T ĤT
lk Ĥlkχk (t)

=
1
n

n∑
k=1

n∑
l=1

[
χk (t)
υk (t)

]T [
8kl(t) PkMk (t)

∗ −ργ 2I

] [
χk (t)
υk (t)

]
where 8kl(t) = He{Pk4k (t)}+σ−1

k P2k +ρ Î +2nσlα2
l Ĥ

T
lk Ĥlk

and Ĥlk =
[
Hlk 0

]
and Î = diag{0, I }.

Thus, if the following inequalities are satisfied[
He{Pk4k (t)} + σ−1

k P2k + ρ Î + 2nσlα2
l Ĥ

T
lk Ĥlk PkMk (t)

∗ −ργ 2I

]
< 0 (26)

then J < 0 is satisfied. In addition, by defining Pk =

diag{Qk ,Pk}, using Schur complement to inequality (26),
applying Lemma 1 and denoting Pk × col{Lki,Fki} = Nki
and ργ 2

= γ̂ , the condition of J < 0 is majorized as
inequalities (7) and (8).

Finally, by integrating (25) from 0 to ∞, we obtain the
following condition from zero initial condition

n∑
k=1

∫
∞

0
eTk (t)ek (t)dt ≤ γ 2

n∑
k=1

∫
∞

0
υk (t)Tυk (t)dt. (27)

Thus, we can guarantee both the stability condition of
large-scale system without fault, disturbance and intercon-
nection and H∞ performance for fault estimation.

Remark 7: In Corollary 1, the decentralized fuzzy
observer for fault estimation is designed through the inequal-
ity

∑n
k=1

∫
∞

0 eTk (t)ek (t)dt ≤ γ 2 ∑n
k=1

∫
∞

0 υk (t)Tυk (t)dt ,
not the inequality (6). However, in order to satisfy the
LMIs (21) and (22) of Corollary 1, the satisfaction of
inequality AkiQk + QkAki is essential, which means that all
subsystems of the large-scale system has to be asymptotically
stable. Also, LMIs of Corollary 1 are more conservative than
LMIs of Theorem 1, because the value of σk has to be given
in Corollary 1. Thus, Theorem 1 is possible to have better
performance than Corollary 1. The performance difference
is confirmed in Section IV through a comparison of two
techniques.
Remark 8: The major contribution of this paper is

addressed as follows:
• The decentralized fuzzy observer is designed for fault
estimation of nonlinear large-scale systems with uncer-
tain interconnections, which has not been studied so far,
to the best of the author’s knowledge.

• The H∞ performance for fault estimation is guaranteed
by using two different inequalities, and two approaches
have been compared theoretically.

• It is shown that the proposed decentralized fuzzy
observer design technique converges to the fault esti-
mation fuzzy observer design of a general fuzzy system
as the maximum interconnection bound αk becomes
smaller.

IV. NUMERICAL EXAMPLE
In this section, we provide simulation results to demon-
strate the effectiveness of the proposed decentralized fuzzy
observer design techniques for fault estimation. We con-
sider the simulation example [35] as an interconnected
mass-spring-damper mechanical system composed of two
subsystems and connected by a spring. Also, the nonlinear
large-scale system dynamic equation is addressed as follows:

mk θ̈k (t) + dk (θ̇k (t))θ̇k (t) + κkθk (t) + hkl(θ (t))

= ωk (t) + fk (t)

yk (t) = θ̇k (t) + ωk (t)

where (k, l) ∈ I2 × I2. Also, θk (t) and θ̇k (t), which are the
state variables of mass-spring-damper mechanical system,
are the relative position and velocity of the mass in the kth
subsystem, respectively, θ(t) = [θ1(t)T θ2(t)T ]T and yk (t)
is the measured output. The parameter mk is the masses of
kth subsystem with m1 = m2 = 1kg, the parameter κk is the
stiffness of the springs of kth subsystem with κ1 = 0.2 N/m
and κ1 = 0.3 N/m, the function dk (θ̇k (t)) means the damping
coefficients of the nonlinear dampers as dk (θ̇k (t)) = dk1 +

dk2 θ̇k (t)
2 with d11 = 0.6 N · s/m, d12 = 0.8 N · s/m, d21 =

0.5 N · s/m and d22 = 0.7 N · s/m, the function hkl(θ (t)) =

κ(θk (t)−θl(t)), which is the interconnection function for two
subsystems connecting by uncertain spring constant κ . and
the functions ωk (t) and fk (t) means disturbance and actuator
fault input of kth subsystem, respectively.
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Then, by considering θ̇k (t) ∈ [−�k �k ] with �1 =

�2 = 1 and defining θk (t) = xk1 (t) and θ̇k (t) = xk2 (t), the
large-scale fuzzy system composed of two subsystems can be
represented as follows:

ẋk (t) =

2∑
i=1

µki(θ̇k (t))
(
Akixk (t) + Bkiωk (t) + Ekifk (t)

)
+ κHkx(t)

yk (t) =

2∑
i=1

µki(θ̇k (t))
(
Ckixk (t) + Dkiwk (t)

)
where

Ak1 =

[
0 1

−κk/mk −dk1/mk

]
,

Ak2 =

[
0 1

−κk/mk −dk1/mk − dk2(�k )2

]
,

Bki =

[
0

1/mk

]
, Eki =

[
0

1/mk

]
,

Cki =
[
0 1

]
, Dki = 1,

H1 =

[
0 0 0 0
0 −1/m1 0 1/m1

]
,

H2 =

[
0 0 0 0
0 1/m2 0 −1/m2

]
,

µk1(θ̇k (t)) = 1 −
(θ̇k (t))2

(�k )2
,

µk2(θ̇k (t)) = 1 − µk1(θ̇k (t))

for (k, i) ∈ I2 × I2 and the maximum interconnection bound
is considered as αk = κ = 0.02, which means that the
decentralized fuzzy observer satisfies the H∞ performance
for fault estimation, even if the interconnection bound has any
value below 0.02 N/m.
Now, by using the MATLAB LMI Control Toolbox with

FEASP and RK4 algorithm with sampling time T = 1 ×

10−4s, the decentralized fuzzy observer gains are obtained
from (7), (8) and (9) of Theorem 1 with supposing ρk =

0.001 as follows:

LThm.1
11 =

[
7.3725
17.2448

]
, LThm.1

12 =

[
7.3458
17.1516

]
,

LThm.1
21 =

[
7.5078
17.9646

]
, LThm.1

22 =

[
7.4871
17.8866

]
,

FThm.1
11 = 65.1269, FThm.1

12 = 64.8237,

FThm.1
21 = 65.6381, FThm.1

22 = 65.4073

and the minimum value of γ for H∞ performance is
0.002. Next, from LMIs (21) and (22) of Corollary 1, the
decentralized fuzzy observer gains of (4) is also obtained as
follows:

LCor .111 =

[
1.1959
10.1241

]
, LCor .112 =

[
2.0342
10.1789

]
,

LCor .121 =

[
11.4999
35.7307

]
, LCor .122 =

[
23.6586
62.5225

]
,

FIGURE 1. The time responses of first state variable for first subsystem:
x11

(t) (solid), x̂11
(t) of Theorem 1 (dashed) and x̂11

(t) of Corollary 1
(dotted).

FIGURE 2. The time responses of second state variable for first
subsystem: x12

(t) (solid), x̂12
(t) of Theorem 1 (dashed) and x̂12

(t) of
Corollary 1 (dotted).

FCor .111 = 10.5221, FCor .112 = 17.7412,

FCor .121 = 61.1944, FCor .122 = 125.4574.

and the minimum value of γ for H∞ performance is 0.12.
To show the performance of proposed fault estimation

observers, we consider the disturbance and the actuator fault
input, respectively:

ωk (t) = 0.05 sin(50t),

fk (t) =

{
0, t ≤ 1
0.5 sin(0.2(t − 1)), 1 < t

Then, the time responses of each state variable of subsystems
and estimated state variable of decentralized fuzzy observers
are shown in Figs. 1, 2, 3 and 4, and the time responses of
each actuator fault input and estimated fault are shown in
Figs. 5 and 6, respectively. As shown in figures, it can be seen
that both proposed decentralized fuzzy observers have well
estimated the state variables and fault inputs. In particular,
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FIGURE 3. The time responses of first state variable for second
subsystem: x21

(t) (solid), x̂21
(t) of Theorem 1 (dashed) and x̂21

(t) of
Corollary 1 (dotted).

FIGURE 4. The time responses of second state variable for second
subsystem: x22

(t) (solid), x̂22
(t) of Theorem 1 (dashed) and x̂22

(t) of
Corollary 1 (dotted).

it can be confirmed that the result of Theorem 1 is better
than the result of Corollary 1 in terms of the fault estimation
performance. The performance difference for fault estimation
of two techniques can be shown in more detail in Figs. 7
and 8. Also, to identify the performance differences according
to the maximum interconnection bound αk , we consider the
performance measure function as follows:

P =

√√√√ 2∑
k=1

∫ 50

0
ek (t)T ek (t)dt

/ 2∑
k=1

∫ 50

0
vk (t)T vk (t)dt

and the results of the performance measure function are
compared in Table 1. In addition, to emphasize the superiority
of the proposed techniques, the results of the performance
measure function for general fault estimation fuzzy observer
without considering the interconnection based on [13] is
added in Table 1.

As shown Table 1, the superiority of the performance of
the proposed decentralized fuzzy observer for fault estimation

FIGURE 5. The time responses of actuator fault input for first subsystem:
f1(t) (solid), f̂1(t) of Theorem 1 (dashed) and f̂1(t) of Corollary 1 (dotted).

FIGURE 6. The time responses of actuator fault input for second
subsystem: f2(t) (solid), f̂2(t) of Theorem 1 (dashed) and f̂2(t) of
Corollary 1 (dotted).

FIGURE 7. The time responses of estimation error of the actuator fault
input for first subsystem: ef1

(t) of Theorem 1 (dashed) and ef1
(t) of

Corollary 1 (dotted).

can be confirmed once again. Also, by the results of
Table 1, [13] has not presented the relationship between the
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FIGURE 8. The time responses of estimation error of the actuator fault
input for second subsystem: ef2

(t) of Theorem 1 (dashed) and ef2
(t) of

Corollary 1 (dotted).

TABLE 1. Performance comparison of the fuzzy fault estimation observer.

FIGURE 9. The time responses of estimation error of the state variables
by Theorem 1: ex11

(t) (solid), ex12
(t) (dashed), ex21

(t) (dash-dotted) and
ex22

(t) (dotted).

maximum interconnection bound and the fault estimation
performance, because the interconnection problem is not
considered in [13]. However, it can be known that Theorem 1
presents the better fault estimation performance when the
smaller maximum interconnection bound is considering.
Thus, we can guaranteed that the proposed technique is effec-
tive for large-scale systems with uncertain interconnections.

Finally, to show the asymptotic stability of error system (5)
with vk (t) = 0 and hk (x(t)) = 0, we consider initial condition
as x1(0) = [1 − 1]T and x2(0) = [2 − 2]T , and its
simulation results of Theorem 1 and Corollary 1 are shown
in Figs 9 and 10, respectively. As shown in the figures,

FIGURE 10. The time responses of estimation error of the state variables
by Corollary 1: ex11

(t) (solid), ex12
(t) (dashed), ex21

(t) (dash-dotted)
and ex22

(t) (dotted).

all estimation errors converge to zero when ωk (t) = 0,
fk (t) = 0 and hk (x(t)) = 0. Thus, we know that the proposed
decentralized fuzzy fault estimation observers satisfy the
objective of fault estimation problem of Problem 1.

V. CONCLUSION
This paper has established the decentralized fuzzy observer
design techniques for fault estimation of nonlinear large-scale
systems. The nonlinear large-scale system has been consid-
ered by fuzzy subsystems with uncertain interconnections.
By using the fuzzy subsystems and the decentralized fuzzy
observer, the estimation error model has been represented
and the fault estimation problem has been addressed. Based
on the Lyapunov functional and H∞ performance inequal-
ities, the decentralized fuzzy observer design techniques
for fault estimation have been derived into the sufficient
conditions to satisfy theH∞ performance, and its constructive
design conditions have been presented into LMI formats.
Finally, an example has been provided to demonstrate the
effectiveness of the proposed decentralized fuzzy observer
design techniques.
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