
Received 16 February 2024, accepted 1 March 2024, date of publication 5 March 2024, date of current version 13 March 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3374105

Dual Dynamic Consistency Regularization for
Semi-Supervised Domain Adaptation
BA HUNG NGO 1, BA THINH LAM 2, THANH HUY NGUYEN3, QUANG VINH DINH 4,
AND TAE JONG CHOI 1
1Graduate School of Data Science, Chonnam National University, Gwangju 61186, Republic of Korea
2Faculty of Information Technology, University of Science, Ho Chi Minh City 700000, Vietnam
3Department of Biomedical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
4School of Electrical Engineering and Computer Science, Vietnamese–German University, Ho Chi Minh City 72000, Vietnam

Corresponding author: Tae Jong Choi (ctj17@jnu.ac.kr)

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea Government (MSIT) (No.
RS-2023-00214326 and No. RS-2023-00242528).

ABSTRACT The Vision Transformer (ViT) model serves as a powerful model to capture and comprehend
global information, particularly when trained on extensive datasets. Conversely, the Convolutional Neural
Network (CNN) model is beneficial to training with small datasets for retaining essential local information.
Inspired by these properties of ViT and CNN models, we introduce a hybrid framework that smoothly
increases the cross-domain generalization in Semi-supervised Domain Adaptation (SSDA). To achieve this
goal, we first train the ViT model on abundant labeled source data, while the CNN model is trained on
a few labeled target samples. Then, these models dynamically exchange their knowledge for potential
generalization to unlabeled target data via the proposed method, named Dual Dynamic Consistency
Regularization (D2CR). Specifically, the ViT model provides its pseudo labels to update the global
perspective for the CNN model. Similarly, the CNN model offers pseudo labels to complement the local
perspective for the ViT model. The previous methods use a fixed threshold algorithm for the pseudo-labeling
process. However, we utilize the dynamic threshold strategy to create pseudo labels for the bi-directional
consistency regularization learning between the ViT and CNNmodels.We verify our approach across several
SSDA benchmark datasets. The outstanding experimental results provide strong evidence of the effectiveness
and superiority of our approach over previous state-of-the-art SSDA methods.

INDEX TERMS Domain adaptation, semi-supervised learning, vision transformer (ViT), convolutional
neural network (CNN).

I. INTRODUCTION
Domain adaptation is a crucial aspect of machine learning,
focused on enhancing model efficacy in a target domain by
exploiting knowledge insights from a related source domain.
Various practical applications, including classification [1],
[2], object detection [3], [4] and semantic segmentation [5],
[6] have demonstrated success through domain adaptation
techniques. Recent studies [7], [8] successfully employed
domain adaptation for recommendation systems. These
studies involvedmapping user-side and item-side information
into a shared space for improving the model performance.

The associate editor coordinating the review of this manuscript and

approving it for publication was Kumaradevan Punithakumar .

Based on the number of labeled target data available
during training, domain adaptation can be divided into two
groups: semi-supervised domain adaptation (SSDA) and
unsupervised domain adaptation (UDA).

The semi-supervised domain adaptation scenario, as
depicted in [9], [10], [11], [12], [13], [14], [15], [16], [17],
and [18], is extensively employed to yield remarkable
classification accuracy compared to the unsupervised domain
adaptation setting [19], [20], [21], [22], [23]. This is
because a model trained under UDA is only accessed to
labeled source data, while a model trained with the SSDA
setting benefits from the extra target information with a
few labeled target samples besides labeled source data.
However, the amount of label information available from
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FIGURE 1. Illustration of the proposed hybrid network architecture that
leverages the strengths of ViT and CNN models.

the source data is relatively significant compared to the
label information from the target data. As a result, the
model often prioritizes the abundant label information from
source data, potentially paying less attention to target label
information and introducing bias in learning. To address this
problem, [9] and [14] divide SSDA into two different tasks,
such as UDA [24], [25]–(labeled source+unlabeled target)
and semi-supervised learning (SSL) [27], [28]–(labeled
target+unlabeled target). Each task consists of the different
labeled sets used to train the different models. Then, they
exchange their knowledge through the co-training strategy to
make consistency on the unlabeled target data. Many SSDA
methods [9], [10], [11], [12], [13], [15], [17], [18] follow a
similar methodology in designing network architecture for
data representation extraction. They employ convolutional
neural networks (CNNs) as encoders, followed by multilayer
perceptrons (MLPs) as classifiers. However, the CNN model
only benefits training with a small dataset [36].
Furthermore, SSDA [9], [11], [33] methods show out-

standing classification results by exploiting the unlabeled
target information. The core technique of these methods
is to combine consistency regularization [28] and pseudo-
labeling [38]. In addition, these approaches share the same
point using a fixed threshold value to retain reliable samples
with a high confidence prediction and simultaneously discard
unreliable samples under the pre-defined threshold value.
However, we recognize that each method provides distinct
fixed threshold values. This is because their frameworks
are designed in diverse manners; thus, they require different
quantity and quality pseudo labels. As a result, it is not easy to
reuse the threshold values of previous works for continuous
potential research. Furthermore, due to the difference in
characteristics of variant domain adaptation (DA) benchmark
datasets, applying the optimal threshold value on a specific
DA dataset for other DA datasets is challenging.

A. MOTIVATION
In this study, we further introduce a methodology to
design a novel framework for SSDA that finds solutions
to the following questions: can we bridge the different
network architectures to build a framework that smoothly
increases cross-domain generalization? and how to design a
flexible consistency regularization strategy with the dynamic
threshold?. For handling the first inquiry, we build a hybrid
framework that leverages the properties of the ViT and CNN
models, as illustrated in Figure 1. To be specific, we train the
ViT model using the rich labeled source data, leveraging its

strong generalization for global representations. Conversely,
the CNN model is trained on scarce labeled target data,
preserving crucial local details. Subsequently, these models
share their knowledge to enhance potential generalization and
achieve consistency in the target domain. To achieve this
goal, we leverage the dynamic threshold approach [37] to
propose a novel dynamic consistency regularization method
called Dual Dynamic Consistency Regularization (D2CR).
In D2CR, the ViTmodel updates the global information to the
CNN model using pseudo labels. Similarly, the CNN model
offers its pseudo labels to provide the local information for
the ViT model. The dynamic threshold algorithm determines
both pseudo labels created by the ViT and CNN models.
By doing so, we can find a solution to the second question
by leveraging the dynamic threshold to enhance consistency
between CNN and ViT models.

B. CONTRIBUTIONS
The contributions of our method can be listed as follows:

• In this work, we provide a new perspective that
smoothly combines the learning behaviors of ViT and
CNN backbone networks to improve cross-domain
generalization.

• We point out that the consistency regularization process
in previous SSDA methods still has much room for
improvement with the fixed threshold values. To address
this problem, we introduce a novel consistency reg-
ularization learning utilizing the dynamic threshold
algorithm.

• The experimental results demonstrate that the pro-
posed D2CR method effectively handles bias learning
in SSDA.

• The proposed D2CR method surpasses the prior works
to achieve a new SoTA method on several challenging
SSDA benchmark datasets.

C. ORGANISATION
The remainder of the paper is structured in the following
manner. Section II discusses related work, highlighting
various concepts for designing semi-supervised domain
adaptation (SSDA) frameworks. It also provides an overview
of consistency regularization methods commonly used in
SSDA. Section III delves into the details of the proposed
dual dynamic consistency regularization method. Section IV
presents descriptions of the datasets used in the experiments,
the settings employed for implementation, and the evaluation
metrics utilized. Section V provides results comparing the
proposed method with previous SSDA approaches to demon-
strate its effectiveness. Section VI includes ablation studies
and analyses that evaluate the impact of each component
in the proposed method and the influence of the dynamic
threshold algorithm. Section VII offers visualization results
to illustrate how the proposed method operates intrinsically.
Finally, Section VIII summarizes remarkable points and
suggests potential directions for future research.
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TABLE 1. Comparison of our method with the previous methods in terms
of components in training and testing phases.

II. RELATED WORK
This section discusses various concepts for designing
the SSDA frameworks and the consistency regularization
technique.

A. METHODOLOGY DESIGN THE SSDA FRAMEWORK
To efficiently delve into training data representations and
mitigate empirical risk, distinct SSDA methods introduce
varied frameworks. For instance, earlier approaches like
MME [29], STar [39], and APE [30] adopt the conventional
approach of constructing deep learning frameworks. These
frameworks comprise a feature extractor coupled with a
classifier. UODA [32] and ASDA [12] demonstrate the
effectiveness of dual classifiers in improving classification
ability. Specifically, ASDA [12] uses two classifiers for
alleviating confirmation bias to select the hard pseudo label.
These methods use a single feature extractor to train on
both labeled source and target datasets. Nevertheless, the
larger number of labeled source samples compared to a
few labeled target samples causes the feature extractor to
primarily focus on representations from the source data,
leading to a bias in learning that favors the source data.
To solve this problem, DeCoTa [14] propose a novel network
architecture by unifying two differentmodels, each consisting
of a feature extractor and a single classifier. One model
is trained on labeled source data, while the other focuses
on labeled target domain data. The aforementioned SSDA
approaches differ only in the number of components within
their frameworks. However, the fundamental elements remain
consistent and still follow the rule: employing the CNNmodel
for the feature extractor and the MLP for the classifier.

B. VARIANTS OF SSDA FRAMEWORKS
Table 1 illustrated the comparison between our method and
the previous methods in terms of components operating in
the training and testing phases. Specifically, [1], [11], [13],
[15], [29], [30], [31], [33], and [39] utilized a combination
of a CNN encoder followed by the MLP classifier in both

stages. To alleviate bias confirmation, [9] and [12] introduced
a new framework by adding one more MLP classifier,
which consists of a single CNN encoder and two MLP
classifiers. Reference [14] was the first SSDA approach
that used two CNN encoders and two MLP classifiers
with the co-training strategy to boost the classification
accuracy. However, these above-mentioned SSDA methods
utilized the different components in their frameworks, but
the methodology in designing still followed the same rule,
where the CNN model was selected as the encoder, and MLP
was assigned as the classifier. We proposed an approach
that leverages the strengths of ViT [34] and CNN [36]
architectures to build a novel hybrid framework for the SSDA
setting.

C. CONSISTENCY REGULARIZATION FOR SSDA
Prior SSDA methods [1], [9], [10], [11], [12], [13], [14],
[15], [16], [17], [18] successfully combine consistency
regularization [28] and pseudo labeling [38] to leverage
unlabeled target data, yielding impressive classification
outcomes. A common feature of these above-mentioned
methods is that they use the fixed threshold to filter out the
high confidence score for generating pseudo labels. However,
we found that each method provides different threshold
values. For instance, DeCoTa [14] and ECACL [13] set
the threshold τ = 0.5 and τ = 0.8, respectively, for
selecting their pseudo labels. Besides, CDAC [1], MVCL [9],
and ASDA [12] choose τ = 0.95 for all experiments
over various DA datasets. In contrast, Con2DA [33] offers
τ = 0.9 and τ = 0.8 associated with AlexNet [44] and
ResNet [45] to deploy on the DomainNet [42] dataset, while
τ = 0.95 is set to implement on the Office-Home [41] and
Office-31 [40] datasets. Variability of fixed threshold values
arises due to divergent optimization processes in different
approaches, requiring distinct quantities and qualities of
pseudo labels. Consequently, prior threshold values can not
be readily reproduced for continuous potential research.
Moreover, dissimilar characteristics among diverse domain
adaptation benchmark datasets make applying an optimal
threshold value from one dataset to another challenging.

III. METHODOLOGY
In this section, we first introduce the problem setting in
SSDA. We then present the proposed method Dual Dynamic
Consistency Regularization (D2CR) approach. We explicitly
divide the training procedure of the proposed method
into three steps: supervised learning on the labeled set,
dual dynamic consistency regularization on the unlabeled
target data, and minimizing divergence across domains,
respectively.

A. PROBLEM DEFINITION OF SSDA
In the image classification task under the SSDA setting,
we are provided the labeled set consisting of the rich
labeled source samples DS = {(xSi , ySi )}

nS
i=1 with additional
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TABLE 2. Notations and descriptions.

information of a few labeled data DTl = {(x
Tl
i , yTli )}

nTl
i=1 from

the target domain. The source and target samples, xSi and
xTli , are attached with their ground-truth labels corresponding
to ySi and yTli , respectively. nS and nTl are the size of
labeled samples in source and target domains, respectively.
LetDTu = {(x

Tu
i )}

nTu
i=1 denotes the unlabeled target set without

ground-truth class information during training, where nTu is
the number of unlabeled target samples. In this research,
we only consider the closed-set domain adaptation setting,
where the yS , yTl , and yTu share the same label space with K
categories, where yTu is the label of the unlabeled target data,
which only is used in the testing phase. Besides, the number
of labeled target samples nTl is less than the number of labeled
source nS and unlabeled target samples nTu , respectively.
Notations frequently used in this paper are listed in Table 2.

Our final objective is to optimize a model on datasets
DS , DTl , and DTu , and demonstrates effective performance
on DTu .
To achieve this goal, we proposed a novel framework

including three components: a ViT encoder E1(·; θE1 ),
a CNN encoder E2(·; θE2 ) and a shared classifier F(·; θF ).
As illustrated in Figure 2, the proposed framework is divided
into two branches such as ViT and CNN branches. The ViT
branch consists of E1 and F , while the CNN branch is built
from E2 and F .

B. MODEL-BASED REPRESENTATION LEARNING
We train the ViT branch on the labeled source data by using
the standard cross-entropy loss, which is defined as follows:

Lsrcvit = −
1
nS

nS∑
i=1

C∑
c=1

ySi,c log(σ (F(E1(x
S
i,c)))), (1)

where (xSi,c, y
S
i,c) is a pair of the input image corresponding to

its ground-truth in the class c ∈ [1, 2, . . . ,C]. E1 maps the
i-th source sample into the feature space having dimension
d as E1(xSi ) ∈ Rd , and σ is the softmax function.
Then, the shared classifier F categorizes the input feature
E1(xSi ) into the K -way classification. Finally, we minimize
the distributions between the source probability predicted by
F(E1(xSi )), and the given source ground-truth label, y

S
i , using

the cross-entropy loss.
The process to train the CNN branch is conducted similarly

but on the labeled target samples as follows:

Ltarcnn = −
1
nTl

nTl∑
i=1

C∑
c=1

yTli,c log(σ (F(E2(x
Tl
i,c)))), (2)

where E2(x
Tl
i ) is the representations of the i-th target

sample extracted the CNN encoder. F(E2(x
Tl
i )) is the output

prediction of the CNN branch driven by the labeled target
ground-truth label, yTli .

C. BACKGROUND
This section provides the background and analyses the
difference between fixed and dynamic threshold algorithms.

1) FIXED THRESHOLD
Existing SSDA methods [1], [9], [12], [13], [17] successfully
leverage the unlabeled target information by using the pseudo
labels [38] with the fixed threshold for the consistency
regularization loss [28], which is defined as follows:

Lunlfix = −
1
nTu

nTu∑
i=1

1
[
max(qi) ≥ τ

]
· ŷi log(pi), (3)

where qi = p(α(xTui )) is the prediction vector of ‘‘weak’’
augmentation image with the weak perturbation function,
α, that simply translates or flips an input image without
changing its appearance; then, the highest probability value
of qi that overs a fixed threshold τ is converted by a one-hot
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FIGURE 2. Illustration of dual dynamic consistency regularization (D2CR) framework. We use ViT to build E1 that can effectively exploit the global
information in rich labeled source data. On the contrary, we select CNN for the second encoder E2 to extract the local information on a few labeled
target samples. These encoders share a common classifier F .

encoder into a hard label, ŷi = argmax(qi), where ŷi is called
‘‘pseudo-label’’. Finally, the consistency regularization loss
is formulated by using the cross-entropy loss to drive the
prediction pi = p(β(xui )) of a heavily perturbed image
to be closed to the pseudo-label ŷi, where β is the strong
perturbation function [46].

2) DYNAMIC THRESHOLD
As shown in [37], the dynamic threshold ρ at step t is defined
by:

ρt = Cγ−(t−1)ρ̂, (4)

where C = 1.0001, γ = {1.01, 1.1, 1.2, 1.3}, t is the training
step, and ρ̂ is the averaged loss from the labeled training
set Dl . ρ̂ is approximated as follows:

ρ̂ ≈
1
|Dl |

∑
ξi∈Dl

f (θ, ξi), (5)

where θ are the learned parameters of the deep learningmodel
trained on ξi = (xi, yi) ∈ Dl , where f is the cross-entropy
loss. As represented in Equation (4), the variation of the
dynamic threshold ρt depends on the training time t and
averaged loss of the trained model on the labeled dataset, ρ̂.

3) DIFFERENCE BETWEEN FIXED AND DYNAMIC
THRESHOLDS
As presented in Equations (3), (4), and (5), we recognize
that there are two critical points to distinguish the fixed
threshold [28] and dynamic threshold [37] algorithms.
• The first is the difference in flexibility between the
fixed and dynamic threshold. Specifically, the fixed
threshold is set manually and unchanged throughout
the whole training process. Furthermore, the various
datasets can require different fixed threshold values [33];
thus, it introduces additional processes. In contrast, the
dynamic threshold can be automatically updated during
training progress based on the behavior of the trained
model.
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• The second is the mechanism for assigning pseudo
labels of the fixed and dynamic threshold algorithms.
In the fixed threshold algorithm, an unlabeled target
sample is assigned a pseudo label based on the output
prediction of the trainedmodel. Specifically, xTui directly
receives ŷi = argmax(p(xTui )) as its pseudo label when
max(p(xTui )) ≥ τ . Conversely, the dynamic threshold
algorithm relies on the cross-entropy loss to determine
pseudo labels. To be specific, ŷi = argmax(p(xTui ))
is recognized the reliable pseudo label of xTui if and
only if the cross-entropy loss f (θ, ξTui ) ≤ ρt , where
ξ
Tu
i = (xTui , ŷi), and ρt is a dynamic threshold at step
t computed as in Equation (4).

D. DUAL DYNAMIC CONSISTENCY REGULARIZATION
In Figure 2, the proposed method consists of ViT and CNN
branches. The ViT branch is trained on the labeled source
domain, while the CNN branch is trained on the labeled target
domain. Therefore, they should be followed by different
threshold values. To be specific, the dynamic threshold value
for the ViT branch is defined as follows:

ρvitt = Cγ−(t−1)ρ̂vit , (6)

where ρ̂vit is the averaged loss of the ViT branch on the
labeled source data, which is computed as follows:

ρ̂vit ≈
1
|DS |

∑
ξSi ∈DS

f (θvit , ξSi ), (7)

with ξSi = (xSi , ySi ) ∈ DS , and θvit = (θF , θE1 ).
Similarly, the dynamic threshold for the CNN branch is

defined as follows:

ρcnnt = Cγ−(t−1)ρ̂cnn, (8)

where ρ̂cnn is the averaged loss of the CNN branch on the
labeled target data, calculated as follows:

ρ̂cnn ≈
1
|DTl |

∑
ξ
Tl
i ∈DTl

f (θcnn, ξ
Tl
i ), (9)

with ξ
Tl
i = (xTli , yTli ) ∈ DTl , and θcnn = (θF , θE2 ).

We first use the pseudo labels extracted by the ViT branch
to teach the CNN branch by using the dynamic threshold ρvitt
in Equation (6) as follows:

Lunlvit→cnn = −
1
nTu

nTu∑
i=1

1
[
f (θvit , ξ

Tu
i,vit ) ≤ ρvitt

]
· ŷviti log(pcnni ),

(10)

where 1[·] is the indicator function, which returns 1 when
[·] is true and 0 otherwise. ξ

Tu
i,vit = (xTui , ŷviti ) with

ŷviti = argmax(qviti ) is the pseudo label of the unlabeled
target sample xTui generated by the ViT branch, where
qviti = σ (F(E1(α(x

Tu
i )))) is the prediction vector of the

ViT branch on the weakly augmented version of the

unlabeled target sample with the weak perturbation function,
α—(random horizontal flip and random crop). Then, the
highest prediction that has cross-entropy loss under ρvitt in
Equation (6) to be converted to a one-hot label.
Finally, the output prediction pcnni = σ (F(E2(β(x

Tu
i ))))

of the CNN branch on the strongly augmented target data is
pushed to nearby the pseudo label ŷviti using the cross-entropy
loss, where β is the strong perturbation function [46].

Similarly, we use the generated pseudo labels of the CNN
branch to train the ViT branch as follows:

Lunlcnn→vit = −
1
nTu

nTu∑
i=1

1
[
f (θcnn, ξ

Tu
i,cnn) ≤ ρcnnt

]
· ŷcnni log(pviti ),

(11)

where ξ
Tu
i,cnn = (xTui , ŷcnni ), and ŷcnni = argmax(qcnni ) is the

pseudo label of xTui created by the CNN branch with qcnni =

σ (F(E2(α(x
Tu
i )))). Then, ŷcnni is converted to a one-hot label

if and only if its cross-entropy loss is less than the dynamic
threshold ρcnnt in Equation (8). pviti = σ (F(E1(β(x

Tu
i ))))

is the output prediction of the ViT branch on the strongly
augmented target image.

Equations (10) and (11) represent the mutual and dynamic
consistency regularization that operates in both directions
between the CNN and ViT branches. These regularization
terms promote the exchange of local and global repre-
sentations between these two branches for teaching each
other. The ultimate objective is to enable them to generate
similar predictions for the same unlabeled target sample. The
computation of the dual dynamic consistency regularization
loss is as follows:

LD2CR = Lunlvit→cnn + L
unl
cnn→vit . (12)

E. MINIMIZING DISTRIBUTION DIVERGENCE
1) A QUICK RECAP OF THE MINIMAX ENTROPY STRATEGY
The classification function to predict the unlabeled target
sample in [29] is presented as follows:

p(yi|x
Tu
i ) = σ

[
1
T
·
W⊤E(xTui )

||E(xTui )||

]
, (13)

where p(yi|x
Tu
i ) ∈ RK is the probability of the i-th unlabeled

target sample, which is the softmax values of the cosine
similarity between W and E(xTui ). E(xTui ) ∈ Rd denotes the
representations of the i-th unlabeled target sample extracted
by the feature extractor E . d is the embedding feature
dimension, which varies following the different backbone
networks selected as the encoders. W = [w1, . . . ,wK ]
consists of K weight vectors corresponding to K columns
in the classifier F , where W ∈ Rd×K , K is the number of
classes, and T is the temperature.

In our framework, the ViT branch is proposed to operate on
the labeled source and unlabeled target data, which exists the
inter-domain discrepancy [9]. In contrast, the CNN branch
works with the labeled and unlabeled target data, which
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Algorithm 1 Dual Dynamic Consistency Regularization

1: Require: The labeled source data DS = {xS , yS}, ξSi =

(xSi , ySi ); the labeled target data DTl = {x
Tl , yTl }, ξ

Tl
i =

(xTli , yTli ); the unlabeled target data DTu = {x
Tu}. Dl =

DS ∪DTl .

2: Require: The number of training step N . Two hyper-

parameters C = 1.0001 and γ = 1.1 to compute

dynamic thresholds.

3: Require: Network components E1, E2 and F with

parameters θE1 , θE2 and θF , respectively.

4: for t = 1, 2, . . . ,N do

5: # Model-based Representation Learning

6: ▷ Use the standard cross-entropy

7: Update θE1 by minimizing Lsrcvit as in Equation (1).

8: Update θE2 by minimizing Ltarcnn as in Equation (2).

9: Update θF by minimizing Lsrcvit + Ltarcnn.

10: # D2CR: Dual Dynamic Consistency Regularization

11: ρ̂vit ←
1
|DS |

∑
ξSi ∈DS

f (θvit , ξSi ).

12: ρ̂cnn←
1
|DTl |

∑
ξ
Tl
i ∈DTl

f (θcnn, ξ
Tl
i ).

13: ρvitt ← Cγ−(t−1)ρ̂vit .

14: ρcnnt ← Cγ−(t−1)ρ̂cnn.

15: ▷ The ViT branch teaches the CNN branch

16: Update θE2 and θF by minimizing Lunlvit→cnn as in

Equation (10).

17: ▷ The CNN branch teaches the ViT branch

18: Update θE1 and θF by minimizing Lunlcnn→vit as in

Equation (11).

19: # Minimizing Distribution Divergence

20: ▷ Use the minimax entropy strategy

21: Compute entropy losses for ViT and CNN branches:

22: Hvit ← Equation (14).

23: Hcnn← Equation (15).

24: Update θE1 by minimizing λHvit on DTu .

25: Update θE2 by minimizing λHcnn on DTu .

26: Update θF by maximizing λ(Hvit + Hcnn) on DTu .

27: end for; convergence or maximum training iterations are

reached.

remains the intra-domain discrepancy [30]. We are motivated
by [29] to reduce the inter- and intra-domain discrepancies
to improve the generalization of the ViT and CNN branches
on the target domain. In particular, we define the entropy
calculated by the ViT branch as follows:

Hvit = −
1
nTu

nTu∑
i=1

[
pvit (y|x

Tu
i ) log(pvit (y|x

Tu
i ))

]
, (14)

where pvit (y|x
Tu
i ) is the probability of the i-th unlabeled target

sample predicted by the ViT branch. Then, we train E1 to
minimize Hvit , while F is trained to maximize Hvit . By doing
so, the ViT branch can simultaneously discriminate unlabeled
target representations and minimize the distributions between
source and target domains.

Similarly, the entropy calculated by the CNN branch is
defined as follows:

Hcnn = −
1
nTu

nTu∑
i=1

[
pcnn(y|x

Tu
i ) log(pcnn(y|x

Tu
i ))

]
, (15)

with pcnn(y|x
Tu
i ) is the prediction of the i-th unlabeled target

sample to be categorized by the CNN branch.
The overall objective loss to update the parameters of ViT

encoder E1 can be written as follows:

θ̂E1 = argmin
θE1

Lsrcvit + L
unl
cnn→vit + λHvit , (16)

where λ is a hyper-parameter that enables us to control
a trade-off of the model’s behavior influenced by the
classification loss with labeled samples and the minimax
entropy loss with unlabeled target samples. The CNN encoder
E2 is trained with the loss function as follows:

θ̂E2 = argmin
θE2

Ltarcnn + Lunlvit→cnn + λHcnn. (17)

The cost function used to train the shared classifier F is
computed as follows:

θ̂F = argmin
θF

Lsrcvit + L
tar
cnn + LD2CR − λ(Hvit + Hcnn).

(18)

The training procedure of the proposed dual dynamic
consistency regularization is summarized in Algorithm 1.

IV. EXPERIMENTS
In this section, we first describe the semi-supervised
domain adaptation benchmark datasets. Then, we provide
the implementation settings in detail. Finally, we introduce
the evaluation metrics used to assess the effectiveness of our
method.

A. EXPERIMENT SETUP
1) DATASETS
We evaluated the proposed D2CRmethod on two challenging
SSDA benchmark datasets, including DomainNet [42],
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TABLE 3. Statistics of datasets used in the experiments.

Office-Home [41], and Office-31 [40]. Following previous
SSDA works [1], [9], [29], [30], we selected 4 domains
in DomainNet, including Real (rel), Painting (pnt), Clipart
(clp), and Sketch (skt) with 126 classes in each domain.
Office-Home is a challenging SSDA benchmark, which
contains 4 domains: Art (A), Clipart (C), Product (P), and
Real (R); each domain has 65 categories. We implemented
all experiments on these datasets under 1-shot and 3-shot
settings. Office-31 is a small dataset that includes 3 domains
DSLR (D), Webcam (W), and Amazon (A) with 31 classes.
The details of these datasets are described in Table 3.

2) IMPLEMENTATION DETAILS
We used the PyTorch [48] framework running on a single
NVIDIA RTX 4090 GPU for all experiments. We selected
ViT [34] and ResNet34 [45] as the encoders for the ViT and
CNN branches, which were pre-trained on the ImageNet-
1K [43] dataset, respectively. We followed the settings of the
recent SSDAworks [1], [9], [29], [30] for our implementation
environments. For the classifier, we followed [29], in which
the classifier consists of two fully connected layers followed
by the softmax function. ViT and CNN branches used
the same optimizer, Stochastic Gradient Descent (SGD)—
with a momentum of 0.9 and weight decay of 0.0005.
The ViT and CNN branches shared the same batch size
(B = 24), scheduler, weight-decay, and optimizer (SGD).
However, the initial learning rates were 0.001 and 0.01 for
ViT and ResNet34 encoders, respectively. [37] demonstrated
that the dynamic threshold was not sensitive with γ in
the certain range γ = {1.01, 1.1, 1.2, 1.3}. Therefore,
we randomly chose γ = 1.1 for all our experiments.
Similar to [29], the temperature in Equation (13) was set
to 0.05.

B. EVALUATION METRICS
1) ACCURACY
The classification accuracy extracted by the ViT and CNN
branches on DTu was defined as follows:

Accvit =
1
nTu

nTu∑
i=1

1(argmax(F(E1(x
Tu
i ))) = yTui ), (19)

Acccnn =
1
nTu

nTu∑
i=1

1(argmax(F(E2(x
Tu
i ))) = yTui ), (20)

respectively, where yTu only is used in the testing phase.

2) EXPECTATION GAP
Alongside the classification results, we also introduced the
‘‘expectation gap’’ metric to evaluate the effectiveness of the
dual dynamic consistency regularization method in sharing
knowledge between the ViT and CNN branches, which was
defined as follows:

Gap(ViT ;CNN ) =|Accvit − Acccnn| . (21)

V. COMPARISON RESULTS
We evaluated the proposed D2CR method by comparing
it with previous SoTA methods, including MME [29],
APE [30], STar [39], PAC [17], MAP-F [16], S3D [11],
Con2DA [33], CLDA [15], CDAC [1], UODA [32],
ProML [26], MCL [10], DeCoTa [14], ECACL [13],
ASDA [12],MVCL [9], SLA [31]. Noticeably, to ensure a fair
evaluation compared to these SSDA methods, we utilized the
output classification results obtained from the CNN branch,
where ResNet34 was selected as the encoder. In contrast,
the output classification results extracted by the ViT branch
were only used for analysis. Therefore, our framework did
not introduce any complexity in the testing phase compared
with prior SSDA methods.

A. RESULTS ON DOMAINNET
As reported in Table 4, the classification accuracy of 14 DA
tasks on DomainNet under 1-shot and 3-shot settings. Our
D2CR surpassed the previous SSDA approaches in all DA
tasks, where ResNet34 was selected for the CNN encoder.
The mean accuracy was significantly boosted to 80.3%
and 82.6% for 1-shot and 3-shot settings, respectively. The
average classification results of our method achieved a gain
of 4.1% and 4.5% compared to the second-best MVCL [9]
under 1-shot and 3-shot settings, respectively.

B. RESULTS ON OFFICE-HOME
We listed the comparison results on Office-Home in Table 5.
As shown in this table, the proposed D2CR method
achieved the highest classification performance in all domain
adaptation tasks extracted by ResNet34, with 76.6% and
79.4% in averaging accuracy under 1-shot and 3-shot settings,
respectively. The proposed method also improved by 3.7%
and 3.1% on the average classification results compared to
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TABLE 4. Accuracy (%) on DomainNet under 1-shot and 3-shot settings. (To ensure fairness with prior studies, we utilize CNN-ResNet34 branch results
for comparison, and results extracted by the ViT branch are only used for analysis.)

TABLE 5. Accuracy (%) on Office-Home under 1-shot and 3-shot settings. (To ensure fairness with prior studies, we utilize CNN-ResNet34 branch results
for comparison, and results extracted by the ViT branch are only used for analysis.)

the second-best CDAC+SLA [31] with 1-shot and 3-shot
settings, respectively.

C. RESULTS ON OFFICE-31
We report the comparison with available baseline results
on Office-31 in Table 6, using AlexNet backbone as the
encoder of the CNN branch. Following [29], two adaptation
scenarios were compared (Webcam to Amazon, DSLR to
Amazon). Our D2CR approach consistently outperforms the
compared methods. The average classification results of our

method achieved a gain of 15.0% and 11.8% compared to
the second-best CLDA [15] under 1-shot and 3-shot settings,
respectively.

VI. ABLATION STUDIES AND ANALYSES
This section comprises a comparative analysis of the pro-
posed D2CR method. We employed extensive experiments
to evaluate the impact of each component in our approach.
Besides, we provided results to demonstrate the effectiveness
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TABLE 6. Accuracy (%) on Office-31 under 1-shot and 3-shot settings.
We utilize AlexNet as an encoder for the CNN branch.

of the dynamic threshold algorithm and the proposed hybrid
model.

A. EFFECTIVENESS OF EACH OBJECTIVE LOSS
We provided three scenarios to investigate the effectiveness
of each loss in the proposed method. The experiments were
conducted on DomainNet under the 3-shot setting, including
Lsrcvit+Ltarcnn for (scenario 1) under the supervised learning pro-
cess, Lunlvit→cnn+L

unl
cnn→vit for D

2CR (scenario 2), and Hvit +
Hcnn forminimizing the distribution divergences (scenario 3).
We implemented these scenarios on DomainNet under the 3-
shot setting. As shown in Table 7, the average classification
results of the ViT and CNN branches were 72.3% and 50.9%,
respectively. The gap in the classification accuracy of these
branches was significant by 21.4%. However, when we added
the D2CR strategy, the classification performance of ViT
and CNN extensively increased up to 10.6% and 31.5%,
respectively, and their gap dropped by 0.5%. The results
of scenario 2 indicated the success of D2CR, where ViT
and CNN branches mutually exchanged their knowledge to
improve the generalization on the target data. Moreover,
these results demonstrated that the proposed D2CR method
effectively alleviated the bias learning in SSDA when the
ViT and CNN branches could provide a similar classification.
Finally, the classification accuracy of ViT and CNN branches
slightly increased by 0.8% and 0.2% on average, respectively,
when the inter- and intra-domain discrepancies were reduced
using the minimax entropy strategy in scenario 3.

B. EFFECTIVENESS OF DUAL DYNAMIC CONSISTENCY
REGULARIZATION
Furthermore, as shown in Table 8, we could easily observe
the effectiveness of the proposed D2CR learning via two
important aspects. Firstly, even though the ViT branch
was trained on the unchanged labeled source data, the
classification accuracy in this branch still increased following
the rise of labeled target data used for the CNN branch.
Secondly, the gap between the ViT and CNN branches,
as computed in Equation (21), was reduced when we
increased the number of labeled target samples. The above

FIGURE 3. Visualization of different methodologies in designing
frameworks. (a) and (b) adopt the single branch approach, which consists
of a single classifier but utilizing distinct encoder models such as ViT and
CNN, respectively.

observations demonstrated that the ViT and CNN branches
of the proposed method were successful in exchanging their
knowledge to improve cross-domain generalization.

C. EFFECTIVENESS OF THE DYNAMIC THRESHOLD
ALGORITHM
DeCoTa [14], ECACL [13], and Con2DA [33] set the fixed
thresholds with τ = 0.5, τ = 0.8, and τ = 0.9 for
their implementations, respectively. Besides, CDAC [1],
MVCL [9], and ASDA [12] choose τ = 0.95 for all
experiments. Therefore, we selected τ = 0.5, 0.8, 0.9, and
0.95 to conduct experiments to demonstrate the effectiveness
of D2CR using the dynamic threshold. As shown in Table 9,
the comparison classification results of the proposed method
were conducted with fixed and dynamic threshold algorithms
over three domain adaptation tasks on DomainNet. The
classification accuracy extracted by the dynamic threshold
was significantly higher than that extracted by the fixed
threshold in all tasks, with 85.6% on ViT and 84.4% on CNN.

D. EFFECTIVENESS OF HYBRID MODEL-BASED
To demonstrate the effectiveness of the proposed hybrid
model-based framework, we made a full comparison with
two conventional architectures sharing the same conceptual
design with an encoder and a single classifier, as visualized
in Figure 3. However, in concept A, the ViT model [34]
is selected for an encoder, while the CNN (ResNet34)
[45] is used for concept B. As indicated in Table 10, the
average classification accuracy of the ViT branch in the
hybrid model further improved by 4.1% compared to the
average classification derived from concept A. Likewise,
the averaged outcomes of the CNN branch in the hybrid
model demonstrated a 7.0% increase compared to the average
classification extracted by concept B.

VII. VISUALIZATION
We used t-SNE [47] to visualize the representations of
the target data in the challenging DA scenario ‘‘rel→skt’’
on DomainNet with the 3-shot setting. The visualizations
depicted in Figure 4 were concordant with the ablation study
found from the ablation study, as presented in Table 7.
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TABLE 7. Ablation study on DomainNet to evaluate the impact of each object loss in our method under the 3-shot setting.

TABLE 8. Ablation study on DomainNet to evaluate the effectiveness of the D2CR learning.

FIGURE 4. We visualized the representations of 10 difference classes in the target sketch domain under the
‘‘rel→skt’’ task on DomainNet using t-SNE [47]. The target representations obtained by the ViT and CNN
branches with D2CR were well discriminative compared to those obtained without utilizing D2CR.

In particular, when D2CR was not employed, the ViT and
CNN branches failed to complement each other, resulting

in a lack of information. Consequently, they yielded low
classification accuracy as in scenario 1, along with poor
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TABLE 9. Ablation study on DomainNet to investigate the efficacy of the
dynamic and fixed thresholds with 1-shot.

TABLE 10. Ablation study (%) on DomainNet to analyze the performance
of various frameworks under the 3-shot settings.

representations, as shown in Figures 4a and 4b. In contrast,
the target representations extracted by the ViT and CNN
branches were well clustered within the same class and
clearly discriminated among the different categories under
the support of D2CR, as shown in Figures 4c and 4d. These
visualization results were robust evidence to demonstrate the
effectiveness of the proposed D2CR learning.

VIII. CONCLUSION
In this work, we successfully exploited the benefits of the ViT
and CNN encoders to enjoy global and local representations
for effectively alleviating the bias in learning issues in SSDA.
Besides, we leveraged the dynamic threshold to propose the
dual dynamic consistency regularization (D2CR), enabling
the ViT and CNN branches to exchange their knowledge
to support each other as well as address their weaknesses
effectively. Our method achieved outstanding classification
results. The ViT model works as the auxiliary model to
support the CNN model during training. Then, we only
employ the CNN model in the testing time. Therefore, the
proposed method did not require any additional complexity
compared with previous works in the testing phase. To the
best of our knowledge, the proposed method is the first SSDA
approach to achieve outstanding results through the dynamic
threshold algorithm. In future work, we intend to test our
proposed method in diverse settings, including unsupervised
domain adaptation and open-set domain adaptation setting.
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