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ABSTRACT Permanent magnet synchronous motor (PMSM) is a vital component of modern industry
which is widely used in transport, aecrospace and intelligent machinery. In the light of its relatively high
frequency of inter-turn short circuit (ITSC) fault, it is valuable to detect the fault accurately and efficiently.
Due to the convenience of motor vibration signal measurement, more attention has been paid to fault
detection methods based on vibration signal. As a nonstationary, nonlinear signal, vibration signal is highly
susceptible to external noise interference. Variational mode decomposition (VMD) has a wide range of
applications in the field of nonlinear signal analysis, but the processing ability to the signal is affected
by the parameter setting. Hence, a Bayesian optimized adaptive parameter selection variational mode
decomposition (BOAPS-VMD) signal processing method is proposed and applied to detect the ITSC in
PMSM. Firstly, the motor vibration signal is decomposed through BOAPS-VMD, and the intrinsic mode
functions (IMFs) are obtained. Secondly, the cumulative variance contribution rate (C-VCR) is applied
to identify the IMFs that contain fault signature information. Finally, using Hilbert transform (HT) to
further analyze the IMFs that are identified. The results are output in 3D time-frequency diagrams to
enhance the representation of fault signatures. The effectiveness and accuracy of the BOAPS-VMD were
validated through the finite element simulation and experiment. The study shows that the BOAPS-VMD
effectively improves the modal mixing phenomenon, has better noise robustness, improves the accuracy of
fault detection, and has better engineering applicability.

INDEX TERMS Permanent magnet synchronous motor (PMSM), fault detection, variational mode decom-

position (VMD), Bayesian optimization, Hilbert transform (HT).

I. INTRODUCTION

Permanent magnet synchronous motors (PMSMs) are typi-
cally used in a variety of industrial applications where the
operating environment is relatively severe. The severe oper-
ating conditions could shorten their service life or lead to
premature damage. Statistics show that short circuit faults
are more likely to occur among the motor faults [1], [2], [3],
[4], [5]. PMSMs usually operate with high loads for long
periods, and the body temperature is usually high, which tend

The associate editor coordinating the review of this manuscript and

approving it for publication was Mehrdad Saif

to reduce the insulation in the stator winding coils. After
that, the inter-turn short circuit (ITSC) occurs. It is worth
noting that this fault could further lead to the ground short
circuit in the PMSM, causing the motor temperature to rise
continuously. In the end, the motor is burnt out, causing
serious financial losses. Therefore, to ensure reliable system
operation, the study of corresponding short circuit fault detec-
tion techniques is of irreplaceable value.

The comprehensive reviews of motor fault detection tech-
niques are given in [6], [7], [8], [9], and [10]. In recent years,
fault detection techniques based on signal processing have
been increasingly used, such as frequency domain analysis,
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time domain analysis, and frequency-time analysis [11], [12],
[13], [14], [15]. Reference [16] detected the motor fault
using wavelet packet transform (WPT) and modified Hilbert
transform (HT). However, it did not discuss the accuracy of
fault detection under complex operating conditions. Refer-
ence [17] obtained the motor phase voltage spectrums using
the fast Fourier transform (FFT). Finally, the fault was iden-
tified by linear discriminant analysis. All of the above fault
detection techniques have some engineering reference value.

A PMSM with an ITSC will show a significant change
in its vibration intensity. Therefore, by analyzing the sig-
natures of the vibration signal, it is possible to detect the
motor fault. The vibration signal of the PMSM has non-
stationary, nonlinear characteristics [18]. In recent years,
signal processing methods based on nonlinear dynamics
have been widely used in rotating machinery fault detec-
tion. Reference [19] introduced the sea-horse optimizer into
the threshold adjustment of slope entropy and further pro-
posed an optimized multivariate multiscale slope entropy.
Reference [20] proposed a refined composite variable-step
multiscale multimapping dispersion entropy, which exhibits
better information extraction ability for time series. Refer-
ence [21] proposed a variable-step multiscale single threshold
slope entropy and introduced the snake optimizer into the
threshold adjustment of the slope entropy.

In the field of fault detection, the accuracy of fault feature
extraction is of great importance. HT transforms a signal
from the time domain to the frequency domain. It provides
a detailed analysis of how the signal changes in time and
frequency. In addition, HT has the advantages of multi-
scale, high resolution, and high sensitivity. It is now used
in a large number of applications for fault detection [22],
[23], [24]. Therefore, HT can be used to analyze the motor
vibration signal and detect the ITSC in PMSM. However,
HT is sensitive to noise and also has disadvantages such as
endpoint effects. As a result, the fault signatures obtained
from direct analysis of the vibration signal using HT are
often less accurate. To achieve a better analysis of the
signal, researchers have proposed the Hilbert Huang trans-
form (HHT), which combines empirical mode decomposition
(EMD) with HT [25]. The EMD algorithm is the core of the
HHT algorithm, which can adaptively decompose the sig-
nals. However, the EMD algorithm is not suitable for signals
with high-frequency content, which tends to lead to modal
mixing [26]. Later, related researchers proposed ensem-
ble empirical mode decomposition (EEMD), complementary
ensemble empirical mode decomposition (CEEMD), com-
plete ensemble empirical mode decomposition with adaptive
noise (CEEMDAN), and other algorithms [27], [28], [29].
These algorithms perform a finite number of overall aver-
ages to the intrinsic mode functions (IMFs) to eliminate the
interference of Gaussian white noise. However, this kind of
method could make the interference elimination incomplete
and affect the reconstructed signals. Furthermore, the decom-
position results of these algorithms depend on the distribution
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of signal extremum points. In conclusion, these algorithms
still tend to lead to modal mixing in the signal decomposition
results.

Variational mode decomposition (VMD), as a new signal
decomposition algorithm, can also be used to decompose the
input signal into multiple IMFs [30]. From the mathematical
derivation of the VMD, the VMD can be regarded as a
group of adaptive optimal Wiener filters. The VMD algorithm
is better in overcoming endpoint effects and modal mixing
than recursive modal decomposition algorithms such as EMD
and local mean decomposition (LMD). Therefore, the IMFs
obtained from decomposing the motor vibration signal using
the VMD algorithm are more suitable for HT. However,
when applying the VMD algorithm for signal decomposi-
tion, it is crucial to appropriately configure the number of
decomposition modes and the quadratic penalty factor. For-
tunately, various optimization algorithms have been proposed
by researchers to solve the above problem, such as the parti-
cle swarm optimization (PSO), the genetic algorithm (GA),
the whale optimization algorithm (WOA), and other algo-
rithms [31], [32], [33], [34], [35]. In general, these algorithms
can find the optimal parameter combination for the VMD
algorithm. However, these optimization algorithms can easily
fall into local optimality.

The effectiveness of the VMD algorithm in decomposing
the signal is mainly performed on whether there is modal
mixing or over-decomposition in the obtained results. The
relationship between its model parameter combination and
the accuracy of the solution cannot be described by a spe-
cific expression, which exhibits black-box characteristics.
Therefore, the only way to obtain the optimal parameter
combination is to traverse all the discrete variable values.
Finally, the parameter combination when there is almost no
modal mixing and endpoint effects is regarded as the optimal
parameter combination. Bayesian optimization is an efficient
global optimization algorithm with high time efficiency and
small evaluation cost, which has been widely used in deep
learning hyperparameter tuning [36], [37]. Compared to other
optimization algorithms, Bayesian optimization has a wider
range of applications. Therefore, this study proposes to use
Bayesian optimization to find the optimal parameter com-
bination for the VMD algorithm, which further proposes an
adaptive signal decomposition algorithm and applies it to the
detection of ITSC in PMSM.

The main contributions of this study are as follows:

1) By introducing Bayesian optimization into the VMD,

a Bayesian optimized adaptive parameter selection
variational mode decomposition (BOAPS-VMD) non-
linear signal processing method is proposed, which
overcomes the parameter selection problem of the
VMD algorithm.

2) Combining the BOAPS-VMD with HT and applying it

to the detection of ITSC in PMSM.

3) The cumulative variance contribution rate (C-VCR) is

proposed to identify the fault signature components,
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which further enhances the accuracy of fault detec-
tion. In addition, the presentation of results through 3D
time-frequency diagrams enhances the representation
of fault signatures.

4) The ability of BOAPS-VMD in different aspects is
illustrated through simulation. In addition, real engi-
neering case is applied to verify the effectiveness and
engineering applicability of the proposed method.

The rest of this study is arranged as follows: In Section II,
the basic principles of the BOAPS-VMD are introduced;
Section III describes how to combine BOAPS-VMD with
HT and apply it to the detection of ITSC in PMSM;
Section IV analyzes the performance of the proposed
BOAPS-VMD from different aspects through simulated sig-
nals; in Section V, an experimental platform for PMSM fault
is established. The effectiveness and engineering applicabil-
ity of the BOAPS-VMD are further verified with a practical
engineering case. Section VI concludes the whole study.

Il. ADAPTIVE PARAMETER SELECTION VARIATIONAL
MODE DECOMPOSITION

A. VMD ALGORITHM

Decomposition of the signal using the VMD algorithm can
obtain a series of mode functions that are described as
amplitude-modulated-frequency-modulated (AM-FM) sig-
nals. The signals are described in detail in the [30]. The
decomposition process of the VMD algorithm is mainly
described as follows:

Assuming that the real-valued input signal is f(f). ug ()
is the mode obtained by decomposition, each mode contains
frequency components around the central frequency wy. The
HT is performed for the following mode:

. 1
up(t) = ug(r) * — (D
Tt
further, the resolved signal i (¢) is obtained:

(1) = u (1) + jite (1) @

After this, the resolved signal is multiplied by the exponen-
tial term /™! to obtain the baseband signal Sy (¢):

Sk(t) = dig(t)e ™! )

To estimate the bandwidth of the signal, the squared
parametrization of the gradient is used. Meanwhile,
to achieve separation of the signal, the following constrained
variational problem is given:

MmN, ), ) {Z I [Sk(f)]”%}
k
k
s.t. Z u, =f
k=1

where k is the set number of decomposition modes. u; =
{ur, ua, ..., ux},wr = {wi,wy,---, wi} are the IMFs and
central frequencies obtained after decomposition of the input
signal f'(¢), respectively.

“
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To find the optimal solution of the above equation (4),
the quadratic penalty factor o and the Lagrange multiplier A
are introduced to construct the extended Lagrange equation,
which transforms the above variational problem into an
unconstrained variational problem:

L ({I/lk} ) {Wk} ) )\')
=a > 113 [Se0113
k

2
+

F() =D u(t)
k

+ <A(t),f(t) - Z uk(t)> (5
k

In this case, the alternating direction method of multipli-
ers (ADMM) combined with Perceval’s theorem is used to
optimize the modes uy(z), the central frequency wy, and the
Lagrange multiplier A. In this process, u(t), wg, and A are
updated with the following equations:

2

Fow) = 3 du(w) + 252
i#k
14+ 20 (w—wg)?
wrt_ Jo wliw)Pdw

T laow)2aw

Wy =2 w) + 7 (f(w) -> ﬁ;’“(w)) ®)
k

~n+1
uZ"_ w) =

(6)

(N

where t is the time step and » is the number of iterations.
The ADMM algorithm converges when the following con-
dition is met:

2
it =i /gl < ©)

2 | - i
k
where £ is the convergence error and usually takes the value
1x 1077
According to the above theory, setting different parameter
combination [k, o] will give different computational results.

B. BAYESIAN OPTIMIZATION

Bayesian optimization is primarily based on Bayes’ theorem,
which fits the true objective function with a probabilistic
iterative model. Finally, the most likely subsequent points are
evaluated based on the results of the fit [38]. In this process,
Bayesian optimization uses existing information to reduce
the number of evaluations and improve the efficiency of the
calculation. When using Bayesian optimization, a reasonable
probabilistic agent model and acquisition function should be
chosen to obtain better optimization results.

1) PROBABILISTIC AGENT MODEL

The Gaussian process in the non-parametric model is more
widely used, more flexible, and less prone to ‘““over-fitting”.
This study uses the Gaussian process as a probabilistic
agent model in Bayesian optimization. The mathematical
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expressions are as follows:

9(x) ~ GP [m(x), k (x,x)]
m(x) = E[p(x)] (10)
k (x,x') = E {lpx) = m()] [ (') = m (x')]}

In the above equations, ¢ is the unknown function, m(x) is
the mean function, and k (x, x’) is the positive semi-definite
covariance function. In the Gaussian process, a finite number
of random variables all satisfy a Gaussian joint distribution.
Suppose there exists a prior distribution with a mean of 0:

p(y [ X,0)=N(Q, %) (1D

where X represents the training set; y represents the set of
function values of the unknown function ¢; X represents the
covariance matrix composed of k (x, x ) ; and 6 represents the
hyperparameters.

Assuming that there exists noise ¢ satisfying an inde-
pendent identically distributed Gaussian distribution p(g) =
N (O, 02), the likelihood distribution is obtained:

(Y [9) =N (v.0I) (12)
The joint distribution exists:
Y T +o0l K,
G ) ow
KD =k (1, X  k(2, Xa) o -k (4, X)) (14)
K** =k (X*» X*) (15)

where v, represents the prediction function value and X,
is the prediction input. Finally, the prediction distribution is
obtained as follows:

pWs | X, Y, Xe) =N ((;/&) , cov (V)

W =K! [S+0] ¥ (16)
-1

cov () = Ky — KT [2 + 021] K,

where (1) represents the predicted mean; cov () repre-
sents the predicted covariance.

2) ACQUISITION FUNCTION

In the Bayesian optimization, the expected improvement (EI)
strategy has the advantage of fewer parameters. Therefore,
this study uses the EI strategy as the acquisition function for
Bayesian optimization:

y = ¢ <M) (17)
oy (x)
(e %3 (x; Dl:t) — [ [V B Mt(x)] 4 + Ut(x)l/, Ut(x) >0
0, o1(x) =0
(18)

where v* represents the current optimal objective function
value; ¢ represents the standard normal distribution cumu-
lative density function.
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C. BAYESIAN OPTIMIZED VARIATIONAL MODE
DECOMPOSITION

This study uses Bayesian optimization to find the optimal
parameter combination for the VMD algorithm and pro-
poses a Bayesian optimized adaptive parameter selection
variational mode decomposition (BOAPS-VMD) nonlinear
signal processing method. When using Bayesian optimization
to find the optimal parameter combination, the evaluation
function needs to be given. The selection of the evaluation
function determines the effectiveness of the Bayesian opti-
mization and the accuracy of the final decomposition of the
signal. In response, the following analysis is carried out:

When the PMSM is in actual operation, the vibration
signal is more susceptible to interference from external fac-
tors. Therefore, after the vibration signal of the PMSM is
decomposed by the VMD algorithm, the resulting IMFs con-
tain more concentrated frequency components and are more
prone to modal mixing. From the previous theory, it is clear
that after decomposing the real-valued input signal, each
IMF contains different central frequencies. If modal mixing
occurs, the frequencies of different IMFs will be superim-
posed on each other. The Hilbert envelope spectrum can better
characterize the spectrum of the nonlinear signal compared
to the FFT. It is now widely used for fault detection [39].
In addition, the information entropy can describe the infor-
mation content of the signal. Therefore, this study proposes
to use envelope entropy to describe the frequency components
contained in each IMF and uses it to construct the evaluation
function for Bayesian optimization.

Assume that u;(n) is the ith IMF obtained after the VMD
decomposition of the input signal, which is transformed by
the HT to obtain the resolved signal i;(n). After this, Hilbert
demodulation is performed to obtain the envelope signal
sequence Z;(n):

Zi(n) = Vui(n)> + ij(n)? (19)

where n is the signal sampling point. The probability distri-
bution p; of the signal sequence is calculated:

N
pi =Zin)/ D Zin) (20)

n=1

where N is the total number of sampling points of the signal.
Finally, the envelope entropy E; is obtained according to the
definition of Shannon’s entropy:

N
E; == pilogypi @1)
i=1

In practical engineering applications, the single use of
envelope entropy as the evaluation function for Bayesian
optimization can easily lead to over-decomposition in the
VMD algorithm, making the decomposed mode a simple har-
monic. Kurtosis is a dimensionless parameter that describes
the steepness of the waveform distribution and is proportional
to the number of shock components in the signal [40]. It also
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reflects the energy of the signal. Therefore, to better charac-
terize the vibration signal of PMSM, the kurtosis is further
introduced into the construction of the evaluation function.
The method for calculating the kurtosis value K of the IMF
obtained from the VMD decomposition is as follows:

N

1
K=+ > umy? (22)
n=1
Combining the above analysis, the resulting Bayesian opti-

mization evaluation function EvaF is constructed as:

k
1 1
EvaF = A E ()» “Eg+y - Z) (23)

i=1

where k is the number of IMFs obtained from the decomposi-
tion, A is the weight factor of envelope entropy, y is the weight
factor of kurtosis, A + y = 1. In this study, the sensitivity of
the envelope entropy and the kurtosis to the decomposition
results of the vibration signal is relatively close, therefore, set
A =y = 0.5. Finally, using Bayesian optimization to find the
optimal parameter combination for the VMD algorithm can
be equated to solving the following equation:

x* = argmin EvaF(x), xe€X (24)

where x denotes a set of parameter combination; X is the
parameter combination space; x* is a set x in the combination
space that the objective function achieves an optimal solution.

This study uses the Gaussian process to proxy the
black-box objective function relationship between different
parameter combinations and the VMD model. Afterwards,
the posterior distribution is obtained from the observed
dataset. At the same time, the next evaluation point is selected
using the EI acquisition function to iteratively correct the
prior information and continuously improve the accuracy of
the agent model. Finally, the optimal parameter combination
is obtained. The main optimization process for the VMD
algorithm is given in Fig. 1.

Ill. PMSM FAULT DETECTION TECHNIQUE
To detect the ITSC in PMSM, the proposed BOAPS-VMD
signal processing method is combined with HT. The detailed
steps for fault detection are as follows:
1) The motor vibration signal is collected using the vibra-
tion sensor.
2) The collected 1D time series are input into the VMD.
3) Parameter combination optimization is implemented
for VMD by using Bayesian optimization according
to Fig. 1. The evaluation function in the optimization
process is a real functional relationship between the
performance of the VMD model and the parameter
combination. In this process, the acquisition function
is used at each iteration to obtain the parameter com-
bination for VMD to decompose the input signal. The
parameter combination that makes the convergence
accuracy as high as possible will be selected. Firstly, the
parameters to be optimized are specified, such as the
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FIGURE 1. Optimization process for the VMD algorithm using Bayesian
optimization.

number of decomposition modes k and the quadratic
penalty factor o of the VMD. Secondly, the optimiza-
tion ranges are set for each parameter. After that, the
Bayesian optimization loop is performed according to
the evaluation function of Eq. (23). In this process,
the Gaussian process is utilized to model the func-
tional relationship between VMD performance and the
parameter combination. Furthermore, the EI acquisi-
tion function is used to guide the subsequent sampling.
Finally, the optimal parameter combination [k, ] for
the VMD is obtained.

4) The optimal parameter combination [k, ] is combined
with VMD to decompose the input signal to obtain k
IMFs.

5) The IMFs are further analyzed using C-VCR and HT
to complete the fault detection.

Assuming that the ith IMF obtained from the decomposi-

tion is u;(¢). Calculating its variance contribution rate (VCR),
which is marked as Contr;:

k
Contr; = {D [ui(t)]/ZD[u,'(t)]] x 100% (25)
i=1
where D[] represents the variance of the signal. The VCRs
for each IMF are then sorted from largest to smallest. For the
firstj[j = 1,2,---, 1 (I < k)] VCRs after sorting, C-VCR can
be obtained by adding them up, denoted as Cvcr; [41]. The

expression is:

j
Cvcrj = Z Contr; (26)
i=1
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Finally, a threshold CL is set such that when Eq. (27) is
satisfied, the number of IMFs containing fault signature infor-
mation can be identified. That is, the first / IMFs with VCRs
sorted from largest to smallest. In this study, the threshold CL
for C-VCR is set to 90%.

Cvcrj > CL (27)
Suppose 7(¢) is an IMF identified by the C-VCR:
o L[+ (o)
i) = Hinn = - [ i)
T) oo t—T

where H|[-] denotes the Hilbert function transformation of
n(t). Construct the resolved signal 7(¢):

() = n(t) +jin) (29)
a(t) = \/n?(1) + 7%(1)
[ﬁ(t)} (30)
0(t) = arctan | —
n(r)

where a(t) is the instantaneous amplitude function, 6(¢) is the
instantaneous phase function. The instantaneous frequency
function &(¢) of the signal is further obtained:

1 1 do)

where 4(¢) is the instantaneous angular frequency. The Hilbert
spectrum is obtained as follows:

HS, 1) = Re [a(t)ef f‘“’””] (32)

Define E(6, t) as the distribution of signal energy in the
frequency and time planes, which in turn defines the 3D time-
frequency diagram:

EG, 1) = {Re [a(r)e/ W”d’] }2 (33)

The main implementation process for fault detection is
shown in Fig. 2.

IV. SIMULATION AND RESULTS ANALYSIS

A. SIMULATION MODEL BUILDING

A two-dimensional finite element simulation model for ITSC
in PMSM is established in ANSYS Electronics Desktop soft-
ware. The theory of finite element modeling is described in
detail in [42]. The basic parameters of the PMSM are shown
in TABLE 1, its power supply is inverter powered and the
control of the inverter is SPWM.

To analyze the ITSC in PMSM, a simulation circuit for a
short circuit is given in Fig. 3, with switch S1 initially in the
open position. This study assumes that the motor starts at the
moment t = 0. After a while, the motor enters a stable oper-
ation state. Then, S1 is closed, at which point there is a part
of the faulty winding (W_Asc) is short-circuited out of phase
A. W_B and W_C represent the B and C phase windings,
while W_An denotes the remaining normal winding in phase
A. Raz, Ras, Rpy, and Ry, represent the winding resistances,
while L4, Lp,,, and L¢,, denote the winding inductances. The
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FIGURE 2. Implementation process for fault detection in PMSM.

TABLE 1. Basic parameters of the finite element model.

Parameter Numerical value

Rated power (kW) 1.33

Frequency (Hz) 50
Rated voltage (V) 330
Rated speed (rpm) 200

Polar logarithm 15
Stator O.D. (mm) 247
Rotor O.D. (mm) 160.7

Number of stator slots 27

normal winding and the faulty winding are in series before the
short circuit. After the short circuit occurs, both ends of the
faulty winding are shorted. R,y is the contact resistance.

Fig. 4 shows the finite element solution model combining
the basic parameters and the equivalent circuit. The stator and
rotor cores of the motor are specified as DW465-50 material,
and the stator winding is made of pure copper with a con-
ductivity of 58,000,000 S/m. The material of the permanent
magnet is set as NdFe35 [43], [44]. For the rest of the solution
area, the eddy current losses are ignored, and the permeability
and conductivity are set to vacuum.

B. GRID SECTIONING

To analyze the spatial variation of the field with high accu-
racy, the finite element grid must be sufficiently detailed.
However, the problem is that the solution time increases and
the memory consumption increases. Considering the small
rotating air gap of the PMSM, the magnetic field changes
in the rotating air gap and stator tooth slot part are more
complicated [45]. To improve the accuracy of the solution as
much as possible, this study uses small grids for this part.
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Inverter circuit

Stator

Winding

Rotor

FIGURE 4. Two-dimensional finite element simulation model for ITSC in
PMSM.

At the same time, to save solution time, large grids are used
for the more regularly shaped parts such as the stator and
rotor. Fig. 5 shows the results of the grid sectioning.

C. FINITE ELEMENT SOLUTION PARAMETER SETTING

The model of the motor is solved using the field-circuit
coupled time-domain finite element method [46], [47]. As the
motor takes time to transition from start-up to stable run-
ning condition. The solution time and step should be set
appropriately. After analysis, 0.02s is one cycle time of the
rated frequency 5S0Hz. To guarantee the solution accuracy, the
solver is configured to solve at t =0s, with a solution step of
0.0002s. The moment of short circuit is 0.1s, and the total
solution time is 0.2s.

D. SIMULATION RESULTS

After solving, Fig. 6 shows the solved motor torque signal
and the three-phase current signal. It can be seen from Fig. 6
that after the motor is started from t =0s, the torque and
three-phase current are initially unstable. After a while, the
two signals gradually stabilize, with the torque signal show-
ing fluctuating characteristics. In addition, the torque and
three-phase currents change abruptly after the motor fault, the
torque fluctuation increases in intensity and the three-phase
currents are no longer balanced. The results verify the validity
of the simulation model and the accuracy of the solution
parameter setting.

E. ANALYSIS OF SIMULATION RESULTS
The torque signal in the finite element simulation is sam-
pled at 160 kHz. Torque fluctuation is a constant instability
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FIGURE 6. Finite element simulation results.

characteristic of the PMSM and can lead to negative effects
such as motor vibration and noise. The torque fluctuation
signal of the PMSM is similar to the vibration signal in that
both are nonlinear signals. In this section, a nonlinear signal
(torque fluctuation signal) during motor operation is analyzed
using the proposed BOAPS-VMD.

Firstly, to observe the frequency changes in the torque
fluctuation signal after the motor fault, the torque fluctuation
signal from 0.05s to 0.1s before the motor fault and the torque
fluctuation signal from 0.15s to 0.2s after the motor fault
is analyzed using FFT respectively. Fig. 7 shows the torque
fluctuation signals obtained after amplitude normalization
for the two time periods. Fig. 8 shows the spectrograms
corresponding to the two signals.

Analysis of Fig. 8 shows that the 100 Hz frequency
(2x rotation frequency) is the main frequency that appears
in the torque fluctuation signal after the motor fault. This
result shows that the 2x rotation frequency is the main
fault signature frequency in the motor torque fluctuation
signal. Following this, the BOAPS-VMD is used to analyze
the torque fluctuation signal from 0.15s to 0.2s shown in
Fig. 7(b).
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FIGURE 7. Torque fluctuation signals after amplitude normalization.
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(a) Spectrogram of torque fluctuation signal before the fault

FIGURE 8. Spectrograms of torque fluctuation signals.

It is worth noting that when using Bayesian optimiza-
tion to find the optimal parameter combination [k, «], the
optimization ranges for two parameters need to be speci-
fied in advance. From the above theory, it is clear that the
decomposition mode number k is related to the spectral
characteristics and decomposition accuracy of the signal.
The quadratic penalty factor « is related to the frequency
characteristics of the signal. Combining references and exper-
imental experience, this study suggests the following method
for determining the optimization ranges of the parameters:

1. To determine the optimization range of the decomposed
mode number k, the EMD algorithm is used to decompose the
signal, and the number of IMFs obtained is recorded as Kj.
Finally, the optimization range of k is chosen as [K(/2, 2Kp].

2. Set the value of the initial quadratic penalty factor « to
the Nyquist sampling frequency fy of the signal, and choose
the optimization range of the quadratic penalty factor « to be
[fo. 10/0].

Based on the above analysis, the signal is first decomposed
using the EMD algorithm to obtain 8 IMFs, thus the optimal
range for the decomposition mode number k is specified
as [4, 16]. In combination with the sampling frequency of
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(b) Spectrogram of torque fluctuation signal after the fault

the torque fluctuation signal, the optimization range for « is
specified as [80000, 800000].

After this, the Bayesian optimization is performed. Three
independent repeat tests are carried out and the parameters set
in each optimization are shown in TABLE 2. After several
iterations of the test, it is found that the minimum value of
the evaluation function converges to 1.49. The processes of
Bayesian optimization are shown in Fig. 9. The convergence
curves for Bayesian optimization are given in Fig. 10. The
results of the parameter combination [k, o] obtained from the
three optimizations are shown in TABLE 3.

The three optimization results are averaged to obtain the
optimal parameter combination. Finally, the optimal param-
eter combination obtained by Bayesian optimization is [10,
3.18947E+05]. The VMD algorithm is used to decom-
pose the torque fluctuation signal in combination with this
parameter combination. The 10 IMFs obtained from the
BOAPS-VMD decomposition and the corresponding spectro-
grams for each IMF are given in Fig. 11.

After this, the VCR and the C-VCR for each IMF are
calculated and the results are shown in Fig. 12. In this study,
the threshold of C-VCR is set to 90%, which means that

38601



IEEE Access

Y.-K. Xia et al.: Adaptive Parameter Selection Variational Mode Decomposition

TABLE 2. Bayesian optimization parameters setting.

Test MaxObjectiveEvaluations (Iterations) NumSeedPoints (Points)
1 100 10
2 100 20
3 100 30

®  Observed points
I Model mean value
® Next point
1.535 #+  Model minimum feasible point
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(a) Bayesian optimization process for the 1st test
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(b) Bayesian optimization process for the 2nd test
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(c) Bayesian optimization process for the 3rd test

FIGURE 9. The processes of Bayesian optimization for torque fluctuation signal.
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FIGURE 10. Bayesian optimization convergence curves for torque
fluctuation signal.

the first several IMFs with a C-VCR of 90% are selected as
the fault signature components. From Fig. 12, it can be seen
that a single IMF is sufficient to satisfy the requirement of
90% C-VCR. Therefore, the component which contains the
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fault signature information is IMF9. Afterwards, the IMF9 is
further analyzed. Meanwhile, to further analyze the adaptive
properties of the BOAPS-VMD algorithm, a comparison is
given. Two different parameter combinations are set up in the
comparison, the first one is k = 8, « = 3.18947E + 05; the
second one is k = 10, « = 100000. Afterwards, the torque
fluctuation signal is decomposed respectively using these
two sets of parameter combination combined with the VMD
algorithm. Finally, the spectrograms containing the fault sig-
nature frequency are given in Fig. 13. Through observation of
Fig. 13, there is an unavoidable phenomenon of modal mixing
in the results obtained from other parameter combinations.
A comprehensive analysis of Fig. 8 and Fig. 13 shows that
the C-VCR performs well in identifying the fault signature
frequency, which improves the accuracy of fault detection.
It is worth noting that, this comparison also shows that
unreasonable setting of parameter combination can affect the
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TABLE 3. The results of bayesian optimization.

Test K Alpha
1 10 3.1245E+05
2 10 3.1385E+05
3 10 3.3054E+05
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FIGURE 11. Results of BOAPS-VMD decomposition for torque fluctuation signal.
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FIGURE 12. Calculation results of VCR and C-VCR for each IMF (Left: VCR; Right: C-VCR).

effectiveness of signal decomposition, which further demon-
strates the adaptive properties of the BOAPS-VMD.

To further evaluate the effectiveness and accuracy of the
BOAPS-VMD, the torque fluctuation signal is decomposed
using the EEMD, CEEMD, CEEMDAN, and WPT algo-
rithms respectively.

When using the WPT algorithm to decompose the sig-
nal, the basis function is specified as the db8 wavelet, and
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the number of decomposition layers is set to 10. After the
algorithms are solved, both EEMD and CEEMD algorithms
obtain 12 IMFs. The CEEMDAN algorithm obtains 15 IMFs
and the WPT algorithm obtains 1024 wavelet packet coefti-
cients in layer 10. Fig. 14 gives the calculation results of VCR
and C-VCR for each component under different algorithms
(The CEEMDAN algorithm and the WPT algorithm only
show the calculation results for the first 12 components).
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FIGURE 14. Calculation results of VCR and C-VCR for each component under different algorithms.

As can be seen in Fig. 14, the EEMD, CEEMD, and WPT Fig. 14 shows that in the decomposition results of the EEMD
algorithms combined with C-VCR all require two compo- algorithm, the fault signature components are IMF8 and
nents to meet the 90% C-VCR requirement. In addition, IMF?9; in the decomposition results of the CEEMD algorithm,
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FIGURE 15. Decomposition results for the EEMD, CEEMD, CEEMDAN and WPT algorithms.

the fault signature components are IMF7 and IMF8; in the
decomposition results of the CEEMDAN algorithm, the fault
signature component is IMF11; and in the decomposition
results of the WPT algorithm, the fault signature components
are wavelet packet coefficients 1 and 2.

The first 12 IMFs from the EEMD, CEEMD, and CEEM-
DAN algorithm decomposition results and the first 12 wavelet
packet coefficients from layer 10 of the WPT algorithm
decomposition results are given in Fig. 15. In addition,
the spectrograms of each component are given in Fig. 15.
Through observation of Fig. 15, the EEMD, CEEMD, and
CEEMDAN algorithms all show significant modal mixing in
decomposition results, which causes strong interference in
the identification of the fault signature components. As can
be seen in Fig. 15(d), the WPT algorithm can analyze the
full frequency band of the signal compared to the EEMD,
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CEEMD, and CEEMDAN algorithms and can better separate
the fault signature components. However, the WPT algorithm
needs to consider the decomposition scale and the selection
of the basis function based on the input signal, which lacks
adaptive properties. It is worth noting that the decompo-
sition processes of the EEMD, CEEMD, and CEEMDAN
algorithms all introduce Gaussian white noise. The decom-
position results show that the white noise is not eliminated,
which also causes some interference in the identification of
the fault signature frequency. Compared to other algorithms,
it can be seen that the BOAPS-VMD can better separate the
fault signature component. Meanwhile, compared to other
algorithms, the BOAPS-VMD is more robust to noise, and
can further reduce interference from extraneous frequencies,
which is more accurate in the decomposition of the signal and
is more adaptive.
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F. NOISE ROBUSTNESS ANALYSIS

In order to verify the noise robustness of the proposed
BOAPS-VMD, a noise robustness test is conducted. In this
study, multiple Gaussian white noises are systematically
introduced to the torque fluctuation signal (original signal)
shown in Fig. 7(b). In order to evaluate the performance
of the BOAPS-VMD under different signal to noise ratio
(SNR) conditions, the noise-added signals are decomposed
using the BOAPS-VMD, EEMD, CEEMD, CEEMDAN, and
WPT respectively. After that, the components identified by
C-VCR (threshold set to 90%) are reconstructed to get the
reconstructed signal. In this study, three metrics are con-
sidered: signal to noise ratio (SNR), normalized correlation
coefficient (NCC), and mean square error (MSE). These
metrics are used to fully evaluate the processing performance
of the algorithms in noisy environments. Their mathematical
expressions are as follows:

N

>
SNR = 101g —=1—— (34)
[yi — xi]?
i=1
N
2 X Vi
NCC = — =1 (35)
N 2 N 2
‘a(in)-(Zy,')
i=1 i=1
1 N
MSE = — le Ixi — vil* (36)
=

where x; is the sample point of the original signal, y; is the
sample point of the reconstructed signal and N is the length
of the signal.

In presenting the computational results of SNR, NCC, and
MSE, the noise standard deviation is used as the horizontal
coordinate in order to more directly observe the performance
of each algorithm under different noise levels. The standard
deviation of the noise is a visual metric of the noise level,
with a larger standard deviation of the noise indicating a
greater intensity of the noise, and a smaller standard deviation
of the noise indicating a weaker noise. For example, if the
SNR of noise-added signal is —8dB, the standard deviation
of the noise is 13.2533. Fig. 16 gives the calculation results
of SNR, NCC, MSE for the original signal, reconstructed sig-
nals under different algorithms with different noise standard
deviation.

As can be seen in Fig. 16(a), the SNR of the signal usually
decreases as the standard deviation of the noise increases.
Compared to the other algorithms, the BOAPS-VMD shows
the best SNR performance, and the SNR is almost always
larger than 0. Fig. 16(b) shows the NCC results of each
algorithm under different noise standard deviations. NCC
is a metric used to measure the similarity of two signals.
The closer the NCC value is to 1, the more similar the
two signals are. From Fig. 16(b), it can be seen that the
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FIGURE 16. Results of SNR, NCC and MSE for each algorithm at different
noise levels.

BOAPS-VMD produces higher NCC values than the other
algorithms at different noise levels, which is better in preserv-
ing the signal signatures. Fig. 16(c) shows the MSE results for
each algorithm at different noise standard deviations. Smaller
MSE values indicate that the decomposed signal is closer
to the original signal and more accurate in retaining signal
details. It can be seen that when the maximum value of
the noise standard deviation is 13.2533, the maximum MSE
value of the original signal is 160.9914, whereas the MSE
value of the BOAPS-VMD is 57.3622, which shows that the
BOAPS-VMD can effectively reduce the error of the recon-
structed signal. Moreover, compared with other algorithms,
the MSE between the reconstructed signal and the original
signal obtained under the BOAPS-VMD is smaller at the
same noise level.
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In summary, the following primary conclusions can be
drawn from the above analysis:

1. Following the occurrence of ITSC in PMSM, the main
fault signature frequency that appears in one of the nonlinear
signals (torque fluctuation signal) during motor operation
is 100 Hz (2x the rotation frequency).

2. BOAPS-VMD shows better signal adaptive decom-
position capability, which improves the modal mixing
phenomenon. EEMD, CEEMD, CEEMDAN, and WPT
algorithms all show modal mixing in the results of the decom-
position, and the influence of noise is significant, which can
further affect the identification of fault signature. The C-VCR
performs well in identifying the fault signature frequency,
which improves the accuracy of fault detection.

3. The evaluation metrics of SNR, NCC, and MSE
show that the BOAPS-VMD exhibits better noise robustness
compared to the EEMD, CEEMD, CEEMDAN, and WPT
algorithms.

V. ENGINEERING CASE ANALYSIS

A. EXPERIMENTAL PLATFORM BUILDING

In this section, an experimental platform for ITSC in PMSM
is established. Based on this, this section will further val-
idate the effectiveness and engineering applicability of the
proposed BOAPS-VMD. In addition, the effectiveness and
accuracy of BOAPS-VMD applied to the detection of ITSC
in PMSM will be further validated. The basic parameters
of PMSM used in the experiment are given in Table 4. The
platform for ITSC in PMSM consists of a computer, three-
phase power supply, PMSM, data collector and vibration
sensor, which is shown in Fig. 17.

In the experiment, the vibration sensor is attached to the
surface of the motor housing and collects the motor vibra-
tion data input to the computer. The vibration sensor is a
piezoelectric acceleration sensor, type INV9822, with the
following main parameters: range 50g, voltage sensitivity
100 mV/g, maximum lateral sensitivity less than 5%, fre-
quency response range 0.5-8kHz. The data collector used in
this study is a measurement amplifier, which type is Quan-
tumX MX1601B. This data collector also supplies power to
the sensor. In the experiment, the motor is already in stable
operation when the vibration signal is collected. After that,
the ITSC is set to the stator winding. Finally, the collected
data is analyzed using MATLAB.

B. ANALYSIS OF MEASURED VIBRATION SIGNAL
The accuracy of the BOAPS-VMD is further analyzed using
the nonlinear signal (vibration signal) collected in the exper-
iment. Fig. 18 shows the vibration signal collected in the
experiment. The sampling frequency of the signal is 1200 Hz.
Fig. 19 shows the vibration signals from Os to 5s before the
motor fault and 15s to 20s after the motor fault. Fig. 20 shows
the spectrograms corresponding to the two signals.

Analysis of Fig. 20 shows that the amplitude of even
rotational frequencies such as 100Hz, 200Hz, and 300Hz
increases in the vibration signal after the motor fault. The
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Artificial fault set on
the PMSM

Data collector

(b) Data collection platform

FIGURE 17. Experimental platform for ITSC in PMSM.

TABLE 4. Basic parameters of PMSM.

Parameter Numerical value
Rated power (W) 90
Frequency (Hz) 50
Rated voltage (V) 220
Rated speed (rpm) 1500
Rated current (A) 0.35

100Hz and 200Hz frequencies increase in amplitude most
significantly and are the main fault signature frequencies.
After this, the BOAPS-VMD is used to analyze the signal
from 15s to 20s.

Firstly, the EMD algorithm is applied to process the
vibration signal and 8 IMFs are obtained, thus assigning
an optimization range [4], [16] to the decomposition mode
number k. Taking into account the sampling frequency, the
optimization range for « is specified as [600, 6000]. Simi-
larly, three independent repeat tests are carried out and the
parameters set in each optimization are shown in Table 5.
After several iterations of the test, it is found that the min-
imum value of the evaluation function converges to 1.20.
It is worth noting that the convergence curves obtained from
the three tests are the same. The results of the parameter
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FIGURE 19. Vibration signals within 0s-5s and 15s-20s.

combination [k, o] obtained from the three tests are the same.
One of the convergence curves is given in the Fig. 21. The
processes of Bayesian optimization are shown in Fig. 22.

Finally, the optimal parameter combination obtained by
Bayesian optimization is [10, 1592]. The VMD algorithm is
used to decompose the vibration signal from 15s to 20s in
combination with this parameter combination. The 10 IMFs
obtained from the decomposition and the corresponding spec-
trograms for each IMF are given in Fig. 23. As can be seen in
Fig. 23, there is almost no modal mixing occurs in the results,
and no over-decomposition phenomenon occurs. In addition,
Fig. 23 shows that BOAPS-VMD can better separate the main
fault signature frequencies of vibration signal. These results
and simulation results all indicate that the BOAPS-VMD can
better decompose the signal adaptively, which has certain
engineering guidance significance.

Following this, the BOAPS-VMD is combined with HT
to detect the ITSC in PMSM. Fig. 24 gives the calculation
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FIGURE 20. Spectrograms of measured vibration signals.
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FIGURE 21. Bayesian optimization convergence curve for measured
vibration signal.

results of VCR and C-VCR for each IMF in Fig. 23. Simi-
larly, the threshold for C-VCR is set to 90%. According to
the results in Fig. 24, IMF6 and IMFS are fault signature
components. These results and simulation results all illustrate
that C-VCR shows better fault signature identifying capa-
bility. After that, the IMF6 and IMFS8 are further analyzed
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FIGURE 22. The processes of Bayesian optimization for measured
vibration signal.

with HT. The final results are obtained as shown in Fig. 25.
As can be seen from Fig. 25, there is almost no modal

VOLUME 12, 2024

IMF1
o o
o o
22
wl
IMF1
14
=1

: 16 17 18 19 20 0 100 200 300 400 500 600
o 0.01 ] 0003
g £ 1 |
= -0.01 L 1 = 0
15 16 17 18 19 20 0 100 200 300 400 500 600

IMF3
S o
o ¢
at o
IMF3

°

s
> 8

5 16 17 18 19 20 0 100 200 300 400 500 600
e °'°1l | 20.005
H L 1 H o -
= -0.01 = 0
15 16 17 18 19 20 0 100 200 300 400 500 600
w 0.01 w 0.01
w w
- | |
15 16 17 18 19 20 T) 100 200 300 400 500 600
1

100 200/ 300 400 500 600

IMF6

5 o
am o
m I
IMF6

°

IMF7
o o
2 8
2.2
IMF7
°
2
—

15 16 17 18 19 20 0 100 200 300 400 500 600

IMF8
5 o
2ol

IMF8

°
>
>, &

s 16 17 18 19 20 o 100/ 200 300 400 500 600

IMF9
s o
s 2
So8
IMF9
°
2
8
> ®

s 16 17 18 19 20 k) 100 200 300 400 500 600

IMF10
S o
2 8
-t o =
m]
IMF10

°

=3

16 17 18 19 20 0 100 200 300 400 500 600
Time(s) Frequency(Hz)

FIGURE 23. Results of BOAPS-VMD decomposition for measured
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TABLE 5. Bayesian optimization parameters setting.

Test MaxObjectivc?Evaluations NumSef:dPoints
(Iterations) (Points)
60 20
2 60 30
3 60 40

mixing phenomenon in the 3D time-frequency diagrams,
which can better reflect the fault signatures. However, there is
a slight endpoint effect phenomenon appears in the 3D time-
frequency diagrams.

The results validate the effectiveness of the proposed
BOAPS-VMD applied to detecting the ITSC in PMSM.
Similarly, a comparison is given. Two different parameter
combinations are set up in the comparison, the first one is
k = 6, = 1592; the second one is £k = 10, = 600.
Afterwards, the VMD algorithm is used to decompose the
vibration signal from 15s to 20s in combination with these
two sets of parameter combination respectively. Finally, the
3D time-frequency diagrams obtained are given in Fig. 26.
Through observation of Fig. 26, there is a slight modal mixing
phenomenon appears in the 3D time-frequency diagrams. It is
worth noting that, a certain amount of frequency distortion
appears in the 3D time-frequency diagrams and a more sig-
nificant endpoint effect appears in the 3D time-frequency
diagrams. These results and simulation results show that
BOAPS-VMD has better adaptive signal decomposition abil-
ity. Meanwhile, these results also illustrate the necessity of
optimizing the VMD algorithm.

After this, EEMD, CEEMD, CEEMDAN, and WPT are
combined with HT respectively to analyze the measured
vibration signal from 15s to 20s. Finally, the results shown
in Fig. 27 are obtained. Analyzing Fig. 27 shows that all of

38609



IEEE Access

Y.-K. Xia et al.: Adaptive Parameter Selection Variational Mode Decomposition

-
® © o
o © o

Variance contribution rate (%)

1 2 3 4 5 6 7 8 9 10
Intrinsic mode function

100 T T T - -0 —0—0—9
S 0
Y "'
S o5¢ .7
§ y
__g 1
£ g0 !
§ ]

8 1
e 1
S 85f 1
g 1
g 1
= 1
5 8o
3
E
3
o
75
1

3 4 5 6 7 8 9 10
Number of intrinsic mode functions

N E

FIGURE 24. Calculation results of VCR and C-VCR for each IMF (Left: VCR; Right: C-VCR).

0.1

0.08

0.1

0.06

Amplitude
o
o
&

0.04

20

0.02
400

ey, 17
e, 200

W (¢
iy < 0

(k=6,a=1592)

0.04

0.03

0.02 0.02

Amplitude

600 20

0.01
400

17

&
e, 200 o
"'/Iy(,} 16 <

(k =10, =600)

FIGURE 26. 3D time-frequency diagrams obtained from the VMD algorithm combined with HT under different parameter combinations.

these algorithms in combination with HT are able to detect the
ITSC in PMSM. However, the 3D time-frequency diagrams
show that the 100Hz and 200Hz fault signature frequencies
are almost swamped by other frequencies, which exhibits a
significant modal mixing phenomenon. It is worth noting that
the motor vibration signal analyzed in this study is measured
in the laboratory and the motor operating environment is rel-
atively stable. In practical engineering, the PMSM is usually
a component of a particular system.

The vibrations of other components in the system
are often included in the vibration signal of PMSM.
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Comparing Fig. 25, Fig. 26, and Fig. 27, it can be seen
that BOAPS-VMD combined with HT can more accu-
rately detect the ITSC in PMSM, and the endpoint effect
phenomenon is improved to some extent. This method
shows better noise robustness, which has better engineer-
ing guidance significance. It is worth noting that there
is always a certain endpoint effect phenomenon in the
results of HT. Although the BOAPS-VMD combined with
HT proposed in this study can improve the endpoint
effect phenomenon to some extent, it cannot eliminate it
completely.
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FIGURE 27. 3D time-frequency diagrams obtained by combining the EEMD, CEEMD, CEEMDAN and WPT with HT respectively.
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C. PERFORMANCE ANALYSIS OF OPTIMIZATION
ALGORITHMS

In this section, to further analyze the effectiveness and
engineering applicability of Bayesian optimization for
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BOAPS-VMD, the performance of several common opti-
mization algorithms such as PSO [31], GA [32] and
WOA [33] are compared. Taking the measured vibration
signal from 15s to 20s as an example, Bayesian optimization,
PSO, GA, and WOA are used to find the optimal parameter
combination for the VMD algorithm respectively. It is worth
noting that each optimization algorithm uses the evaluation
function proposed in this study, with the same parameter
settings for each optimization algorithm. The parameters for
Bayesian optimization are set as follows: the iteration number
is 60, the point number is 30. The parameters for other opti-
mization algorithms are set as follows: the iteration number is
60, the population number is 30. In addition, the optimization
range of k is set as [4] and [16]; the optimization range of «
is set as [600, 6000]. The convergence curve and normalized
running time for each optimization algorithm are given in
Fig. 28.

From Fig. 28(a), it can be seen that Bayesian optimization
and WOA exhibit similar convergence values. PSO and GA
exhibit similar convergence values. The convergence accu-
racy of PSO and GA is slightly higher compared to Bayesian
optimization and WOA. It is worth noting that Fig. 28(b)
shows that Bayesian optimization has the lowest running
time. The running time of PSO and GA is almost twice
as long as that of WOA. The above analysis shows that
the Bayesian optimization used in this study exhibits high
search speed with good global search capability in practical
application.

After that, the performance of different optimization algo-
rithms applied to the detection of ITSC is analyzed. The
optimal parameter combinations for the VMD algorithm
searched by Bayesian optimization, PSO, GA and WOA in
this study are shown in Table 6.
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TABLE 6. Optimization results for different algorithms.

Algorithm K Alpha
Bayesian optimization 10 1592
PSO 11 955
GA 11 957
WOA 10 1637

The different optimal parameter combinations are com-
bined with VMD to decompose the measured vibration signal
from 15s to 20s respectively. Finally, the results obtained
are shown in Fig. 29. As can be seen from Fig. 29, the
different optimization algorithms all show good performance
when applied to the detection of ITSC in PMSM. 1t is
worth noting that compared to other optimization algorithms,
Bayesian optimization demonstrates higher optimization effi-
ciency. Overall, the method proposed in this study requires
lower computational resources and shows good performance
in practical engineering application.

VI. CONCLUSION

In this study, the BOAPS-VMD signal processing method is
proposed and applied to detect the ITSC in PMSM. Mean-
while, the effectiveness and accuracy are verified through
simulation and experiment. There are some conclusions to be
drawn:

1. The simulation results indicate that BOAPS-VMD is
better able to adaptively decompose the signal compared to
EEMD, CEEMD, CEEMDAN and WPT algorithms, which
improves the modal mixing phenomenon.

2. Both simulation and experiment results indicate that
BOAPS-VMD shows better noise robustness compared to
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EEMD, CEEMD, CEEMDAN and WPT, which has better
engineering applicability. Meanwhile, the C-VCR performs
well in identifying the fault signature components.

3. The experiment results indicate that Bayesian optimiza-
tion exhibits high search speed with good global search
capability in practical application compared to PSO, GA and
WOA.

4. The experiment results indicate that BOAPS-VMD com-
bined with HT performs well in detecting the ITSC in PMSM.
In addition, the use of 3D time-frequency diagrams for the
presentation of results further improves the representation of
fault signatures.

It is worth noting that the vibration during operation of a
PMSM can be caused not only by an ITSC but also by many
other factors. In future work, more measured data would
be taken to verify the generalization ability of the method
proposed in this study.
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