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ABSTRACT The Gaussian noise assumption is usually made for slowly time-varying underwater acoustic
communication (UWAC) systems, which is entirely adequate for most cases. However, certain human
activities such as geophysical surveys, multi-beam echosounders and iceberg breakup generate impulsive
noise. Consequently, the impulsive noise degrades the designed receiver based on the Gaussian noise model
significantly. An optimization formulation which takes the slowly time-varying channel impulse response
(CIR), the group-sparse impulsive noise and the encoder structure of the data symbol into account is
proposed. To tackle the optimization problem, we propose a joint channel estimation, data decoding and
impulsive noise estimation (JCDI) algorithm consisting of two modules named module A and module B,
where module A performs the joint channel estimation, data estimation and impulsive noise estimation,
while module B uses the low density parity check (LDPC) decoder to decode the encoded data symbols.
In particular, the block coordinate descent (BCD) algorithm is proposed, and a smoothed fast iterative
threshold soft algorithm (FISTA) is proposed to estimate the group-sparse impulsive noise. Substantial
numerical simulations and real experiments are conducted to show the effectiveness of JCDI under impulsive
noise, i.e., JCDI achieves lower coded BER than conventional receivers.

INDEX TERMS Block coordinate descent, group sparse, underwater acoustic communications, impulsive
noise.

I. INTRODUCTION
Underwater acoustic (UWA) communications is vital to var-
ious commercial and scientific research activities in oceans
and has many applications such as military, oceanographic,
commercial shipping, offshore oil and gas industry and
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underwater vehicles [1]. However, due to the propagation
characteristics, underwater acoustic channels are considered
to be one of the most challenging communication channels.
In particular, the low propagation speed and the reflection
of acoustic wave from surface and bottom of the ocean,
along with the refraction caused by nonuniformity of sound
speed in the water, result in significant multipath delay
spread, which leads to severe inter-symbol-interference (ISI)
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especially in high symbol rate single-carrier system. Besides,
due to the low speed of sound, coupled with the motion of
transceiver platforms as well as the fluctuation of propagation
medium, Doppler effect [2] is almost inevitable in UWA
communication, which results in time-varying channel. There
are different modulation techniques for underwater acoustic
communications including direct sequence spread spectrum
(DSSS), frquency shift keying (FSK), phase shift keying
(PSK) and so on. They all have pros and cons. For exam-
ple, DSSS and FSK are suitable for low date rate and high
reliable communications and coherent modulation like PSK
and orthogonal frequency division multiplexing (OFDM) [3]
is suitable for high date rate communications. In this paper,
we focus on the single carrier PSK modulation which faces
the challenge of ISI.

To address the challenge of ISI, there are mainly
two categories of approaches, i.e., channel estimation
(CE)-based approaches and direct adaptive (DA) approaches.
The CE-based approaches such as the minimummean square
error (MMSE) decision feedback equalizer (DFE) [4], the
iterative block DFE in the frequency domain (IB-DFE) [5]
and the frequency domain generalized approximate message
passing (FD-GAMP) [6] need to acquire channel informa-
tion first. To get precise channel information, complicated
algorithms are usually involved. The DA approaches are
more computationally efficient. The mostly widely used DA
approaches include the least mean square (LMS) equalizer [7]
and the recursive least squares (RLS) [10] equalizer. There are
various variants of the LMS equalizer such as the normalized
LMS (NLMS) equalizer [8] and the sparsity-aware improved
proportionate NLMS (IPNLMS) equalizer [9]. They only
require linear time complexity. Compared with the LMS
equalizer, the RLS equalizer has faster convergence but
requires more complexity. To address the Doppler, multiple
methods such as direct resampling, phase locked loop (PLL)
[7] and joint carrier frequency offset, gridless channel estima-
tion and data detection (JCCED-VALSE) [11] are proposed.
In [12] and [13], GaussianMarkovmodel is used to model the
time-varying characteristic of channel in two adjacent sub-
blocks. In [14], the RLS predictor is adopted to track the
delay-Doppler spreading function block by block.

The underwater ambient noise also has great effects on
communication systems. The approaches mentioned above
all assume that the noise obeys Gaussian distribution. How-
ever, such an assumption is not always hold inUWAchannels.
Many UWA environments have impulsive noise sources [15],
including human industrial activities, marine life noise, heavy
rain, strong winds [16]. In such a scenario, many assump-
tions held in the above approaches are no longer true, thus
leading to performance degradation. The impulse noise is
typically modeled by the following model: (1) student t dis-
tribution [17], (2) symmetric alpha-Stable distribution [16],
[18], (3) Gaussian mixture model (GMM) [19], (4) sparse
vector [20], [21], [22], (5) Bernoulli-Gaussian hiddenMarkov
model (BGHMM) [23]. With respect to these noise models,

various approaches have been proposed. One is to use a
simple threshold test, usually used in OFDM system, since
the time-domain OFDM samples can be modeled as i.i.d
Gaussian. This approach pre-processes the received signal via
clipping or blanking techniques [24]. In [25], recursive least
sign algorithm (RLSA) using the l1-norm of the estimated
error is applied to construct a robust estimator in impulsive
environment. However, it only considers the channel esti-
mation. Thus, it is expected that their method is effective
for data decoding only when the impulsive noise is absent.
Besides, there are approaches that can perform joint symbol
detection and impulsive-noise estimation, usually based on
Bayesian algorithms. In [26], sparse Bayesian learning is
used to estimate and subtract the noise impulses in powerline
communications. In [23], a near-optimal yet computationally
tractable approach combing generalized approximate mes-
sage passing (GAMP) with soft-input soft-output decoding
is proposed for OFDM transmissions in impulsive noise
environments. For deep-sea vertical underwater acoustic
communications, an enhanced iterative receiver based on
vector approximate message passing is proposed to suppress
the loud impulsive noise [19].

This paper utilizes the sparse and group sparse property of
the impulsive noise and proposes a receiver which aims to
maximize a posteriori probability of symbols, channel and
impulsive noise. The contributions of this paper are listed
as follows: Firstly, a joint channel estimation, data decoding
and impulsive noise estimation receiver (JCDI) is proposed.
The joint optimization problem is approximately solved
by alternatively optimizing symbols, channel and impul-
sive noise. Secondly, for the impulsive noise, an efficient
smoothing fast iterative soft threshold algorithm (S-FISTA)
is proposed exploiting the sparse and group sparse property
of the impulsive noise. In addition, we adopt the efficient
majorization-minimization (MM) algorithm to estimate the
symbol with constraint. Finally, numerical simulations and
experiments are conducted to demonstrate the effective-
ness of the proposed receiver. Compared with conventional
receivers, the proposed receiver achieves lower coded bit
error rate (BER) under impulsive noise.

The following notations are adopted. The superscript T and
H indicate transpose and conjugate transpose, respectively.
∥x∥ and ∥x∥1 indicate l2-norm and l1-norm of the vector x,
respectively. ∥X∥ indicates spectral norm of the matrix X . Ca

and Ca×b denote a a × 1 dimensional complex vector space
and a a× b dimensional complex vector space, respectively.
Ra×b denote a a × b dimensional real vector space. x (a)
indicates the a-th element of the vector x. x (a : b) indicates a
new vector whose elements take values from the a-th element
to the b-th element of the vector x. X(:, a : b) indicates a
new matrix which takes column vector from the a-th column
vector to the b-th column vector of the matrix X . ̸ x denotes
the phase angle of the complex variable x. sign {·} is a sign
function. min {a, b} returns the minimum value of a and b.
ℜ {x} and ℑ {x} output the real and imaginary part of x,
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FIGURE 1. The received data block divided into several sub-blocks.

respectively. Italics denotes variable and bold denotes vectors
or matrices. j denotes

√
−1. ∇ denotes the gradient operator.

{a1, a2, · · · , aM }
N denotes aN dimensional vector space, the

element of which takes the value from a1, a2, · · · , aM . a ≜ b
denotes that a is defined as b. CN (µ, 6) denotes complex
Gaussian distribution with expectation of µ and covariance
matrix of 6.

II. SYSTEM MODEL
Let the vector b ∈ {0, 1}Nb be the transmitted (equi-probable)
information bits. These bits are coded by a rate-R encoder to
get the length-Nb/R vector c = C(b), where C : {0, 1}Nb →

{0, 1}Nb/R is a coding function which is a low density parity
check (LDPC) code in this paper. Let M : {0, 1}Q → A
denote the 2Q-ary mapping, where A is the quadrature phase
shift keying (QPSK) alphabet in this paper. The data block
contains Np training symbols denoted by xp and Nd data
symbols denoted by x.

In the following, we establish the systemmodel and present
the problem formulation. We divide Nd data symbols into I
sub-blocks. There is an overlap between adjacent sub-blocks.
The length of the overlap is Lb −Li, where Lb is the length of
each sub-block and Li is the interval between adjacent sub-
blocks, see Fig. 1 for an illustration.

The channel is assumed to be slowly time-varying. Define
hi = [hi(0), hi(1), · · · , hi(Lc − 1)]T where hi (l) denotes
the l-th tap of the channel impulsive response (CIR) of the
i-th sub-block and Lc is the length of the channel.1 We assume
that the channels between the adjacent sub-blocks follow the
Gaussian-Markov chain assumption, i.e.,

hi = αihi−1 + wi, i = 1, 2, · · · ,Nsb, (1)

where Nsb is the number of sub-blocks and hi ∈ CLc is
the CIR within the i-th sub-block, which is assumed time-
invariant. αi is the first-order autoregressive (AR) coefficient,
wi is the white Gaussian noise and h0 is the channel esti-
mate using the training symbols. The received signal of the
i-th sub-block under the time-invariant channel is modeled as

yi(n) =

Lc−1∑
l=0

hi (l) xi(n− l) + v((i− 1)Li + n)

+ o((i− 1)Li + n), n = 1, 2, · · · ,Lb (2)

1A more detailed modeling of the channel can be done using physical
underwater acoustics theory. However, the channel modeling based on phys-
ical underwater acoustics theory is out of the scope of the paper. Since this
paper focuses on the impulsive noise, further research which includes under-
water environment and underwater propagation models will be investigated
in the future.

where the subscript i denotes the i-th sub-block, n denotes
instant, xi(n) denotes the n-th transmitted symbol in the
i-th sub-block, v denotes the additive white Gaussian noise
(AWGN) and o denotes the impulsive noise. The impulsive
noise often has the sparsity and group sparsity [25], i.e., most
elements of the impulsive noise and the elements of the first
order difference of the impulsive noise are nearly zero. The
heavy tails of the Laplace distribution make it well-suited
for modeling sparse distributions, as it allows for a higher
probability of small values and occasional large values. Here
we exploit the sparsity of signals by assuming a Laplacian
prior on the signal coefficients, similar to the least absolute
shrinkage and selection operator (LASSO) or basis pursuit
does. By imposing an additional Laplacian distribution on the
first order difference of the impulsive noise, the sparsity both
at the individual level and group level is promoted, and finer
control over the sparsity pattern is allowed. In this way, the
distribution of the impulsive noise is supposed to follow

p(o) ∝ e−λ1∥o∥1−λ2∥Do∥1 , (3)

where λ1 and λ2 are the known parameters of the distribution
and D ∈ R(Nd+Lc−2)×(Nd+Lc−1) is defined as

D =


−1 1 0 · · · 0 0
0 −1 1 · · · 0 0
...

...
...

...
...

0 0 0 · · · −1 1

 . (4)

It is worth noting that the distribution (3) also generalize the
sparse impulsive noise case by setting λ2 = 0.

Define

xi−1,tail =


xi−1 (Li − Lc + 2)
xi−1 (Li − Lc + 3)

...

xi−1 (Li)

 ∈ CLc−1. (5)

Note that in order to cancel the ISI between adjacent sub-
blocks, xi−1,tail is assumed known when we detect the
i-th sub-block.

Define

yi = [yi (1) , yi (2) , · · · , yi (Lb)]T ∈ CLb , (6)

xi = [xi (1) , xi (2) , · · · , xi (Lb)]T ∈ CLb , (7)

oi =


o ((i− 1)Li + 1)
o ((i− 1)Li + 2)

...

o ((i− 1)Li + Lb)

 ∈ CLb , (8)

x =

[
xT1 , xT2 , · · · , xTNsb

]T
∈ CNd , (9)

α =
[
α1, α2, · · · , αNsb

]T
∈ CNsb , (10)

xi,e =

[
xTi−1,tail, x

T
i

]T
∈ CLb+Lc−1, (11)

Given the above system model, the posterior probability
density function (PDF) of the data symbol, the channel and
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the impulsive noise is

p
(
x,h1,h2, · · · ,hNsb , o | y; α

)
∝ p

(
x,h1,h2, · · · ,hNsb , o, y; α

)
a
= p

(
y | x,h1,h2, · · · ,hNsb , o

)
p (x)

× p
(
h1,h2, · · · ,hNsb; α

)
p (o)

b
= p

(
y | x,h1,h2, · · · ,hNsb , o

)
p (x)

×

Nsb∏
i=1

p (hi | hi−1; αi) p (o)

c
=

Nsb∏
i=1

p
(
yi | xi,e,hi, oi

)
p (x)

Nsb∏
i=1

p (hi | hi−1; αi) p (o) ,

(12)

where a
= is due to the independence of the symbol x,

the channel h and the impulsive noise o, b
= is due to

the Gaussian-Markov chain assumption of the channel in
all the sub-blocks shown in (1) and c

= approximately holds as
the overlap length of each sub-block Lb − Li (in our setting,
Lb − Li = 9) is small.

Define h = [h1,h2, · · · ,hNsb ]. Consequently, taking the
logarithm of (12), the maximum a posteriori (MAP) estima-
tion of the data symbol, the channel and the impulsive noise
can be formulated as

max
x,h,α,o

Nsb∑
i=1

ln p
(
yi | xi,e,hi, o

)
+ ln p (x)

+

Nsb∑
i=1

ln p (hi | hi−1; αi) + ln p (o) . (13)

The above optimization problem (13) is difficult to solve due
to the non-convex structure. In fact, the explicit expression of
the priori distribution p(x) is hard to obtain due to the encod-
ing structure of the data symbols. This also increases the
difficulty of solving the optimization problem. In the ensuing
section, we propose a tractable scheme to jointly perform
the channel estimation, symbol detection and impulsive noise
estimation.

III. THE JOINT CHANNEL ESTIMATION, DATA DECODING,
AND IMPULSIVE NOISE ESTIMATION ALGORITHM
In this section, we propose an algorithm named JCDI which
solves (13) approximately. The algorithm consists of two
modules named module A and module B as shown in Fig.2,
where module A performs the joint channel estimation, sym-
bol estimation and impulsive noise estimation, and outputs
the soft information, i.e., the log-likelihood ratio (LLR) of
the data symbols to feed into the module B. The module B
is a LDPC decoder which performs symbol decoding and the
decoded symbol is fed into the module A. The two modules
iterate until the decoded symbol is error-free or the number
of the maximum iterations is reached.

For module A, we drop the prior distribution ln p(x)
in (13) but incorporating the constraint of the symbol x,

FIGURE 2. The block diagram of the proposed iterative JCDI receiver.

i.e., xi (n) ∈ A, 1 ≤ n ≤ Lb, where A is a convex
set. Consequently, a relaxed optimization problem can be
formulated as

max
x,h,α,o

Nsb∑
i=1

ln p
(
yi | xi,e,hi, o

)
+

Nsb∑
i=1

ln p (hi | hi−1; αi) + ln p (o)

s.t. xi (n) ∈ A, 1 ≤ n ≤ Lb, 1 ≤ i ≤ Nsb. (14)

The specific form of A can be designed according to the
constellation. For example,A can be designed as |xi (n)| ≤ A
for PSK constellation, |ℜ{xi (n)}| ≤ A, |ℑ{xi (n)}| ≤ A for
square-shaped QPSK constellation, or

|ℜ{xi (n)} + ℑ{xi (n)}| ≤ A, |ℜ{xi (n)} − ℑ{xi (n)}| ≤ A

(15)

for diamond-shaped QPSK constellation where A is the
amplitude constraint.

Define H i,e ∈ CLb×(Lb+Lc−1) as

H i,e =
hi(Lc − 1) · · · hi (0) 0 · · · 0 0

0 · · · hi (1) hi (0) · · · 0 0
...

...
...

...
...

0 · · · 0 0 · · · hi (1) hi (0)

 . (16)

Consequently, based on the received signal model (2), the
Gaussian-Markov chain channel model (1) and the impulsive
noise distribution (3), the optimization problem (14) can be
equivalently simplified as

min
x,h,α,o

Nsb∑
i=1

σ−2
v ∥yi −H i,exi,e − oi∥2︸ ︷︷ ︸

the first term

+

Nsb∑
i=1

σ−2
w ∥hi − αihi−1∥

2

︸ ︷︷ ︸
the second term

+ λ1∥o∥1︸ ︷︷ ︸
the third term

+ λ2∥Do∥1︸ ︷︷ ︸
the fourth term

s.t. xi (n) ∈ A, 1 ≤ n ≤ Lb, 1 ≤ i ≤ Nsb. (17)

The optimization problem (17) is separable with respect
to some variables which can be utilized to design effi-
cient algorithms. The first term is separable w.r.t. the
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symbol, the channel and the impulsive noise at different sub-
blocks, i.e., {x1,h1, o1} , {x2,h2, o2} , · · · ,

{
xNsb ,hNsb , oNsb

}
.

The third term of the objective function is separable
w.r.t. the impulsive noise o (1) , o (2) , · · · , o (Nd + Lc − 1),
while the fourth term is non-separable. For every sub-block,
with the channel hi and the impulsive noise oi being fixed,
the objective function is non-separable w.r.t. the symbol
xi (1) , xi (2) , · · · , xi (Lb). Fixing all the variables except hi,
the first term and the second term is a quadratic function
of hi. Besides, the second term is a quadratic function of
αi. Thus both hi and αi can be optimized via the least
squares method. We adopt block coordinate descent (BCD)
algorithm to optimize the impulsive noise, the symbol, the
channel. In addition, the idea of the successive interference
cancellation (SIC) scheme is also utilized and we perform the
symbol estimation sub-block-by-sub-block. In the following,
we present these details.

A. ESTIMATION OVER THE IMPULSIVE NOISE
In this subsection, we perform the estimation over the impul-
sive noise and propose a S-FISTA to solve the subproblem,
i.e., estimate the impulsive noise.

As we fix all the variables except the impulsive noise o,
the second term in (17) is irrelevant and can be dropped. The
impulsive noise o is optimized over the whole block. Then,
we have a simplified optimization problem

min
o

σ−2
v ∥yin − o∥2︸ ︷︷ ︸
the first term

+ λ2∥Do∥1︸ ︷︷ ︸
the second term

+ λ1∥o∥1︸ ︷︷ ︸
the third term

≜ q(o)

(18)

where σ 2
v is the variance of the additive noise and yin ∈

CNd+Lc−1 defined as

yin = y−Hx (19)

is the residual received signal. The channel convolution
matrix H is construted based on the channel estimate of the
last iteration between module A and B shown in Fig. 2. The
symbol x adopts the hard decision of the symbol estimate
from the decoder.

Notice that the second and the third term of (18) are non-
differentiable. Although subgradient methods can be adopted
to solve such a problem, their convergence speed is not satis-
factory. We seek to use fast first-order methods to efficiently
solve the optimization problem (18). However, the fast meth-
ods cannot be directly applied to the optimization problem
because of the nondifferentiable terms, i.e., the second and the
third term. Therefore, we first smooth the objective function.

Also, we notice that the first term and the third term of (18)
are separable w.r.t. to the impulsive noise o (1) , o (2) , · · · ,
o (Nd + Lc − 1), while the second term is not separable. The
above properties of the objective function q (o) can be utilized
when solving the optimization problem (18).
Before solving the optimization problem (18), some con-

cepts are introduced in Appendix VI to make the paper
self-contained. The definition of smoothness and smoothable

functions are introduced in Definition 1 and 2, respectively.
Then, two theorems of calculating the smooth approximation
according to the structure of the function are presented in
Theorem 1 and Theorem 2.

To solve optimization problem (18), we draw on the
principles of smoothing first-order gradient descent meth-
ods. We first smooth the second term in (18) with the
Moreau envelope. Then, the proximal operator is adopted to
solve the smoothed optimization problem. Besides, the Nes-
terov momentum is adopted to accelarate the convergence.
It should be noted that the variable of the optimization prob-
lem (18) is complex-valued. Therefore, before optimizing the
impulsive noise o, we transform the optimization problem
with variables being complex-valued into that with variables
being real-valued. Next, we present the details of the steps of
the algorithm.

1) TRANSFORMING THE OPTIMIZATION PROBLEM WITH
VARIABLES BEING COMPLEX-VALUED INTO THAT WITH
VARIABLES BEING REAL-VALUED
For ease of representation, define

Ly = Nd + Lc − 1. (20)

Define y̌in ∈ C2Ly and ǒ ∈ C2Ly where

y̌in (2n− 1 : 2n) =
[
ℜ

{
yin (n)

}
, ℑ

{
yin (n)

}]T
∈ C2, (21)

ǒ (2n− 1 : 2n) = [ℜ{o (n)}, ℑ{o (n)}]T ∈ C2. (22)

Define

B =

[
−1 0 1 0
0 −1 0 1

]
∈ R2×4, (23)

Cn =

[
04×2(n−2) I4×4 04×(2Ly−2n)

]
∈ R4×2Ly , (24)

andAn = BCn. By using the structure ofD defined in (4), it is
not hard to know that the l1-norm in the second term of (18)
can be formulated as

∥Do∥1 =

Ly−1∑
n=1

|D (n, :) o| =

Ly∑
n=2

∥Anǒ∥. (25)

Substituting (21), (22), (23), (24) and (25) into the
complex-valued optimization problem (18) leads to a new
optimization problem with real-valued variables

min
ǒ

σ−2
v

∥∥y̌in − ǒ
∥∥2︸ ︷︷ ︸

the first term

+ λ2

Ly∑
n=2

∥∥Anǒ∥∥︸ ︷︷ ︸
the second term

+ λ1

Ly∑
n=1

∥∥ǒ (2n− 1 : 2n)
∥∥

︸ ︷︷ ︸
the third term

. (26)
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2) SMOOTHING THE SECOND TERM OF THE OBJECTIVE
FUNCTION IN (26)
For ease of representation, define the second term of (26) as
h

(
ǒ
)
. We adopt the Moreau envelop to obtain the smoothed

function of h
(
ǒ
)
. The Moreau envelope of the l2-norm ∥ǒ∥ is

the Huber function Hµ(ǒ) which is a 1
µ
-smooth approxima-

tion of ∥ǒ∥ with parameters
(
1, 1

2

)
[27, Chapter 10, p. 309].

Hµ(ǒ) is defined as

Hµ

(
ǒ
)

=


1
2µ

∥∥ǒ∥∥2 ,
∥∥ǒ∥∥ ≤ µ∥∥ǒ∥∥ −

µ

2
,
∥∥ǒ∥∥ > µ

. (27)

According to Theorem 2, the Moreau envelope of ∥Anǒ∥ is
Hµ

(
Anǒ

)
with parameters (∥An∥2, 12 ). According to Theo-

rem 1, the Moreau envelope of λ2
∑Ly

n=2

∥∥Anǒ∥∥ is

hµ(ǒ) = λ2

Ly∑
n=2

Hµ

(
Anǒ

)
(28)

with parameters (λ2
∑Ly

n=2 ∥An∥2, λ2
Ly−1
2 ). It can be easily

proved that the maximum singular value of An is
√
2 for

arbitrary n. Therefore, the smooth parameters are simplified
to

(√
2λ2

(
Ly − 1

)
, λ2

(
Ly − 1

)
/2

)
.

3) PROXIMAL MINIMIZATION
Define the first and third terms in (26) as f (ǒ) and g(ǒ),
respectively. Define the smoothing function

Fµ(ǒ) = f (ǒ) + hµ(ǒ). (29)

After smoothing, the optimization problem (26) is approxi-
mated by

min
Lo

Fµ(ǒ) + g(ǒ). (30)

This optimization problem can be solved by the proximal
gradient method. The solution at the k-th iteration is

ǒk+1
= prox 1

L̃
g

(
ǒk −

1

L̃
∇Fµ

(
ǒk

))
(31)

with L̃ = Lf +

√
2λ2(Ly−1)

µ
where Lf = 2σ−2

v
and Ly is defined in (20). The proximal operator

prox 1
L̃
g

(
ǒk −

1
L̃
∇Fµ

(
ǒk

))
is defined as

argmin
ǒk+1

{
1

L̃
g(ǒk+1) +

1
2
∥ǒk −

1

L̃
∇Fµ

(
ǒk

)
∥
2
}

. (32)

The superscript k denotes the k-th iteration. Based
on (28), (29) and (27), the gradient of Fµ(ǒ) is

∇Fµ

(
ǒ
)

= 2σ−2
v

(
ǒ− y̌in

)
+ λ2

Ly∑
n=2

∇Hµ

(
Anǒ

)
, (33)

where

∇Hµ

(
Anǒ

)
=


1
µ
AT
nAnǒ,

∥∥Anǒ∥∥ ≤ µ

AT
nAnǒ

∥Anǒ∥
,
∥∥Anǒ∥∥ > µ

. (34)

Furthermore, according to the definition of the proximal
operator, substituting the gradient of the smoothing function
∇Fµ(ǒ) into (31) yields

o(n) =


(

|a(n)| −
1

L̃
λ1

)
exp {̸ a (n)} , |a(n)| >

1

L̃
λ1

0, |a(n)| ≤
1

L̃
λ1

,

(35)

where a (n) = ǎ(2n− 1) + jǎ (2n) and

ǎ = ǒk −
1

L̃
∇Fµ

(
ǒk

)
∈ R2Ly . (36)

The steps of obtaining (35) is shown in Appendix VI.

4) THE NESTEROV MOMENTUM ACCELERATION
The Nesterov momentum is adopted to accelerate the conver-
gence of the proximal gradient method. At the k-th iteration,
the Nesterov momentum replaces the initial point ǒ in (31)
by zk , i.e.,

ǒk+1
= prox 1

L̃
g

(
zk −

1

L̃
∇Fµ

(
zk

))
, (37)

where the superscript k denotes the k-th iteration. zk+1 is
updated by

tk+1 =

1 +

√
1 + 4t2k
2

, (38)

zk+1
= ǒk+1

+
tk − 1
tk+1

(
ǒk+1

− ǒk
)

. (39)

Up to this point, we have presented a comprehensive
description of the proposed S-FISTA for estimating the
impulsive noise. The details of the S-FISTA are also sum-
marized in Table 1 where µ is selected so that an ε-optimal
solution will be achieved [27, p.314].
It should be noted that σ 2

v is estimated by maximum
likelihood (ML) estimator based on training symbols and
is assumed time-variant within the whole block. At the
0-th iteration when the symbol decision and channel is not
available, the impulsive noise estimation module outputs zero
impulsive noise to the next module.

B. ESTIMATION OVER THE SYMBOL
In this subsection, we fix the channel and the impulsive noise
and optimize the symbol. The symbol is estimated by theMM
algorithm.

When optimizing the symbol, all terms except the first
term in the joint optimization problem (17) are irrelevant
and are dropped. Notice that the first term is separable w.r.t.
the symbol in different sub-blocks. We estimate the symbol
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TABLE 1. The proposed complex S-FISTA algorithm for impulsive noise
estimation.

and the channel sub-block by sub-block sequentially. Define
H i−1,tail = H i,e(:, 1 : Lc − 1) and H i = H i,e(:,Lc :

Lb + Lc − 1) where H i,e is defined in (16). For the i-th sub-
block, the simplified optimization subproblem is

min
xi

σ−2
v ∥yi −H i−1,tailxi−1,tail −H i−1xi − oi∥2 ≜ q(xi)

s.t. xi (n) ∈ A, 1 ≤ n ≤ Lb. (40)

It should be noted that as the channel hi of the i-th sub-block
is not available, we replace the hi with hi−1 based on the
assumption of slowly time-varying channel.

The MM algorithm is adopted to solve (40). Since (40)
is a convex optimization problem, global minimization can
be guaranteed. The idea of the MM algorithm is described
as follows. First, an initial point xki is introduced where
the superscript denotes the k-th MM iteration. Construct a
surrogate upper bound of the objective function q(xi|xki )
which satisfies q(xi|xki ) ≥ q(xi) and q(xi|xki )|xi=xki =

q(xi)|xi=xki , where q(xi) is defined in (40). A simple approach
is to perform a second-order Taylor series expansion of
the objective function q(xi) around the point xki , and con-
struct a separable surrogate upper bound of the objective
function q(xi|xki ). As a consequence, we obtain a simple iter-
ative algorithm to perform symbol estimation summarized in
Table 2. For simplicity, the details are shown in Appendix VI.
It should be noted that the last Lb − Li estimated symbols
are abandoned because they are not reliable due to limited
observation information. But they will be estimated again in
the (i+ 1)-th sub-block thanks to the overlapping structure
of data sub-blocks.

Since soft decision decoder is adopted, the LLR of the
output of the symbol detection module is needed. With the
Gaussian distribution assumption, we model the optimized
symbols as

x̂ = gxx+ vx (41)

where gx is the gain coefficient and vx is assumed to follow
CN

(
0, σ 2

vx I
)
. Since the true symbol vector x is not available,

TABLE 2. The MM algorithm for symbol estimation of the i -th sub-block.

it is approximately replaced by hard decision of x̂, denoted
by x̃. The ML estimates of the gain and variance are

ĝx =
x̃Hx̂

x̃Hx̃
, (42)

σ̂ 2
vx =

1
Nd

∥x̂− ĝx x̃∥2. (43)

Therefore, the LLR can be calculated according to [4].

C. ESTIMATION OVER THE CHANNEL
In this subsection, we fix the impulsive noise o and the symbol
x and estimate the channel h.
Define

X i =


xi (1) 0 · · · 0
xi (2) xi (1) · · · 0

...
...

...

xi (Li) xi (Li − 1) · · · xi (Li − Lc + 1)


∈ CLi×Lc . (44)

Dropping the irrelevant terms of hi in the joint optimization
problem (17) leads to the optimization subproblem at the
i-th sub-block, i.e.,

min
hi,αi

σ−2
v ∥yi − X ihi − oi∥2 + σ−2

w ∥hi − αihi−1∥
2. (45)

To ease the computation complexity of the optimization prob-
lem, hi and αi are optimized alternatively. Obviously, the
optimization of hi and αi leads to least square solutions, i.e.,

hi =

(
σ−2
v XH

i X i + σ−2
w I

)−1

·

(
σ−2
v XH

i (yi − oi) + σ−2
w αihi−1

)
, (46)

αi =
hHi−1hi
∥hi−1∥2

. (47)

where αi in (46) is initialized by αi−1 when optimizing the
channel hi based on the assumption of slowly time-varying
channel.

It should be noted that the noise variance σ 2
v and σ 2

w are
assumed known for simplificity. σ 2

v can be estimated based on
training symbols. σ 2

w can be empirically determined based on
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FIGURE 3. The block diagram of module A.

historical experimental data or be refined on-line according
to the estimated channel.

Subsection III-A, III-B and III-C present the proposed
algorithm of the joint estimation of the impulsive noise, the
symbol and the channel, which correspond to module A in
Fig. 2. To better illustrate the algorithm, we summarize it
in Fig. 3. The impulsive noise estimation is performed with
received signal y and decided symbol x from the decoder.
The estimated impulsive noise o is feed to the symbol and
channel estimation module which is performed sub-block by
sub-block. The symbol estimation is performedwith y and the
estimated channel of the last sub-block hi−1. The estimate xi
is feed to the channel estimation module. When the whole
block of the estimation of the symbol is completed, the LLR
of the estimated symbol is calculated and feed to the soft
decision decoder module.

D. DECODER
The decoder receives the soft information from module A.
After soft decision decoding, the estimated symbols are
refined and feed to module A. The iteration between module
A and the decoder continues until error-free or the number of
iterations reaches the maximum.

It should be noted that in turbo equalization (TEQ) struc-
ture, the soft output of the decoder is feed back to the symbol
detection module as a prior to obtain better detection perfor-
mance. However, in this paper, this potential has not been
utilized and it will be further studied in the future.

IV. SIMULATION
In this section, the performance of the proposed JCDI
algorithm is demonstrated numerically. The real and imagi-
nary parts of the channel taps are drawn i.i.d. from Gaussian
distribution and the length of the channel taps is 10. The
QPSK signal undergoes the channel which is then corrupted
by the additive white Gaussian noise and the impulsive noise.
For comparison, the RLS-DFE receiver, the zero-forcing (ZF)
receiver, the linear minimum mean square error (LMMSE)
receiver and the joint channel estimation and data decoding
(JCD) receiver are also implemented. The details of these
algorithms are summarized as follows:

TABLE 3. Parameters setting of simulation.

1) RLS-DFE: The decision feedback equalization (DFE)
structure is adopted where the backward filter is used
to cancel the causal ISI. The length of the forward filter
and the backward filter are 10 and 9, respectively. The
decision delay is 9. The forward filter and the backward
filter are updated by the RLS algorithm. The forgetting
factor is 0.999. The forward filter, the backward filters
and the data symbol are updated symbol by symbol.
The soft information of the decided symbols output
by the RLS-DFE is feed to the LDPC decoder, whose
output is then feed into the RLS-DFE to achieve turbo
iteration.

2) ZF/LMMSE: The ZF/LMMSE is almost the same as
that of JCDI except that the symbol estimation submod-
ule of theMMalgorithm is replaced by the ZF/LMMSE
submodule. Note that the ZF/LMMSE has closed form
solution for symbol estimation and takes the impulsive
noise into consideration.

3) JCD: The JCD is similar to the JCDI except that
the impulsive noise estimation submodule is excluded.
Thus it could be expected that the JCD works more
poorly than the JCDI when there is the impulsive noise.

The parameters setting are shown in Table 3. The irregular
LDPC code is adopted whose check matrix is generated
by progressive edge growth algorithm. Belief propagation
algorithm is adopted for decoding. The size of parity check
matrix is 3840 × 7680. The spectral efficiency is

7680 − 3840
511 + 3840

= 0.883 b/s/Hz. (48)

Time-invariant channel is adopted in simulation.
The impulsive noise is generated based on mixture Gaus-

sian model [23]. To illustrate the impact of the impulsive
noise intuitively, an example of the received signal with and
without impulsive noise is given in Fig. 4 and 5, respectively,
where the signal-to-impulsive-noise ratio (SINR) is −15 dB.
Here the SINR is defined as the ratio of the signal variance to
the impulsive noise variance. The amplitude of the impulsive
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FIGURE 4. An example of the real part of the simulated received signal
without impulsive noise.

FIGURE 5. An example of the real part of the simulated received signal
with impulsive noise. The SINR is −15 dB.

noise is significantly larger than that of the communication
signals, and the performance of receivers degrades signif-
icantly without taking impulsive noise into account. The
impulsive noise is distributed in clusters, demonstrating the
group sparse property of the impulsive noise.

First, the convergence of the MM algorithm and the pro-
posed S-FISTA algorithm are evaluated by simulation. Fig. 6
and 7 give a typical realization of the error q(xki )− q(x⋆

i ) and
q(ok )− q(o⋆) versus the iteration k of the MM algorithm and
the proposed S-FISTA algorithm, where the optimal value
q(x⋆

i ) and q(o
⋆) are obtained via the CVX software [28]. The

S-FISTA converges faster than the S-ISTA. For the S-FISTA
algorithm, the convergence speed is controlled by adaptive
step size determined by convergence error ϵ. More conver-
gence error allowed leads to faster convergence.

The normalized mean square error (NMSE) of channel
estimation is evaluated. The SINR is set to 0 dB. The channel
is randomly generated and fixed for different Monte Carlo
(MC) trials. Fig. 8 shows the NMSE of the channel estimation

FIGURE 6. Error q
(
xk
i

)
− q

(
x⋆

)
versus iteration k of the MM algorithm for

symbol estimation. The optimal solution x⋆ is obtained by CVX software.

FIGURE 7. Error q
(
ok

)
− q

(
o⋆

)
versus iteration k of the S-FISTA and the

S-ISTA for impulsive noise estimation. The optimal solution o⋆ is obtained
by CVX software.

of the proposed JCDI and JCD receiver. It can be seen that
the NMSE of JCD decreases as SNR increases, and satu-
rates about −33 dB. The NMSE of JCDI decreases almost
linearly as SNR increases and achieves about −46 dB when
SNR = 24 dB. This demonstrates that incorporating the
impulsive noise estimation submodule significantly improves
the channel estimation performance.

The coded BER performance of the proposed JCDI is
evaluated and results are shown in Fig. 9. Let the SINR be
0 dB. All of the receivers listed are based on TEQ structure.
The proposed JCDI receiver has best BER performance, fol-
lowed by the JCD, LMMSE, RLS-DFE and ZF. Compared
to JCD, JCDI estimates the impulsive noise, and achieves the
lower coded BER by removing the impulsive noise. Although
ZF and LMMSE incorporates the impulsive noise estimation
submodule, their coded BERs are high, which are even higher
than that of the JCD receiver. The reason is that all these
receivers ignore the amplitude constraint of the symbol, lead-
ing to poor estimates of the symbols. The symbols are hard to
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FIGURE 8. The NMSE of channel estimation with the SINR of 0dB. The
blue line with cycles denotes the JCDI algorithm where the impulsive
noise is considered and the red line with stars denotes the JCD algorithm
where the impulsive noise is ignored.

FIGURE 9. The coded BER curve under impulsive noise with the SINR of
0 dB. The blue line with cycle represents the JCD receiver, the red line with
triagnle represents the JCDI receiver, yellow line with square represents
the LMMSE receiver, the purple line with star represents the RLS-DFE
receiver and the green line with plus sign represents the ZF receiver.

be correctly decoded via the LDPC decoder given those poor
LLRs of the symbol estimates. The coded BER performance
of all the receivers except the JCDI receiver could not improve
anymore with the increase of the SNR. This is due to that the
impulsive noise is ignored or not perfectly estimated.

Fig. 10 presents the coded BER performance versus the
SINR. JCDI performs best, followed by LMMSE, JCD, RLS-
DFE and ZF. As the SINR increases, the coded BERs of
all algorithms decrease. The results demonstrate that JCDI
effectively cancels the effects of the impulsive noise and
achieves the best coded BER performance.

V. EXPERIMENT
In this section, underwater acoustic communication experi-
mental data is adopted to verify the proposed receiver.

FIGURE 10. The coded BER of the algorithms versus SINR under the SNR
of 15 dB. The blue line with cycle represents the JCD receiver, the red line
with triagnle represents the JCDI receiver, the yellow line with square
represents the LMMSE receiver, the purple line with star represents the
RLS-DFE receiver and the green line with plus sign represents the ZF
receiver.

FIGURE 11. The experimental disployment schematic diagram.

The experiment was conducted on September 23, 2023 in
the Zhoushan Sea, China. The experimental deployment is
shown in Fig. 11 where the location between the transmitter
and the receiver was about 1.5 km. The water depth was
about 33 m. The depth of the transducer and the hydrophone
both were about 2 m. The QPSK single carrier signal was
transmitted. The information bits are encoded by the irreg-
ular LDPC code which is decoded by belief propagation
algorithm. The pulse shaping filter adopts a square root raised
cosine (SRRC) filter. The signal with bandwidth of 3.6 kHz
was transmitted simultaneously over three bands with the car-
rier frequency of 5.5 kHz, 10 kHz and 15 kHz, respectively.
The size of parity check matrix is 3840 × 7680. The data
rate is

7680 − 3840

(511 + 3840) 1+0.2
3600

= 2.648 kb/s. (49)

The rest parameters of the signal and the receiver is listed
in Table 4 where the parameters of the JCDI and RLS-DFE
algorithms are carefully selected for better performance.

40148 VOLUME 12, 2024



M. Zhang et al.: Joint Channel Estimation, Data Decoding, and Group-Sparse Impulsive Noise Estimation

TABLE 4. Signal parameters of experiment.

FIGURE 12. The baseband signal of the first packet which is interfered by
group sparse impulsive noise.

To combat time-varying channels, the phase-lock loop is
adopted in the RLS-DFE receiver.

The impulsive noise is observed in one of the received
packets, as shown in Fig. 12 where the sparse and group
sparse impulsive noise can be observed.

The coded BER results of the experiment data are listed
in Table 5. It shows that the proposed JCDI receiver has
better coded BER performance than that of the RLS-DFE
receiver. The bit error rate of RLS-DFE decreases as the
number of TEQ iterations increases from zero to 1. The BER
is non-decreasing as we continue to increase the number of
TEQ iterations.

TABLE 5. BER of the experiment data using the proposed JCDI iterative
receiver.

VI. CONCLUSION
In this paper, an iterative receiver named JCDI taking impul-
sive noise into account is proposed. The receiver consists
of two main modules, where the first module performs
symbol estimation, channel estimation and impulsive noise
estimation, and the second module performs the data decod-
ing which utilizes the encoding structure. In particular,
an efficient S-FISTA algorithm is proposed to estimate the
group-sparse impulsive noise. Numerical simulations and real
experiments are conducted to show that the proposed JCDI
receiver has better codedBER performance than conventional
receiver.

APPENDIX A
THE FUNDAMENTAL DEFINITIONS AND THEOREMS OF
DEVELOPING THE SMOOTHED FISTA
To develop the smoothed FISTA, we introduce the fol-
lowing definitions and theorems [27] to make this paper
self-contained.
Definition 1: [27, Chapter 5, p. 107] L-smoothness: Let

L ≥ 0. A function f : E → (−∞, ∞] is said to be L-smooth
over a set D ⊆ E if it is differentiable over D and satisfies

∥∇f (x) − ∇f (y)∥⋆ ≤ L∥x− y∥ for all x, y ∈ D, (50)

where ∥ · ∥⋆ is the dual norm. The constant L is called the
smoothness parameter.
Definition 2: [27, Chapter 10, p. 305] Smoothable func-

tions: A convex function h : E → R is called (α, β)-
smoothable (α, β > 0) if for any µ > 0 there exists a convex
differentiable function hµ : E → R such that the following
holds:

(a) hµ (x) ≤ h (x) ≤ hµ (x) + βµ for all x ∈ E.
(b) hµ is α

β
-smooth.

The function hµ is called a 1
µ
-smooth approximation of h

with parameters (α, β).
Theorem 1: [27, Chapter 10, p. 311] Let h1, h2 : E → R

be convex functions, and let γ1, γ2 be nonnegative numbers.
Suppose that for a given µ > 0, hiµ is a 1

µ
-smooth approx-

imation of hi with parameters (αi, βi) for i = 1, 2. Then
γ1h1µ+γ2h2µ is a 1

µ
-smooth approximation of γ1h1+γ2h2 with

parameters (γ1α1 + γ2α2, γ1β1 + γ2β2).

VOLUME 12, 2024 40149



M. Zhang et al.: Joint Channel Estimation, Data Decoding, and Group-Sparse Impulsive Noise Estimation

Theorem 2: [27, Chapter 10, p. 311] Let A : E → V
be a linear transformation between the Euclidean spaces E
and V. Let h : V → R be a convex function and define
q (x) = h (A (x) + b) where b ∈ V. Suppose that for a
given µ > 0, hµ is a 1

µ
-smooth approximation of h with

parameters (α, β). Then the function qµ(x) = hµ(A(x)+b) is
a 1

µ
-smooth approximation of qwith parameters (α∥A∥

2, β).

APPENDIX B
THE DERIVATION OF (36)
According to the definition of the proximal mini-
mization and the definition of g

(
ǒ
)
, i.e., g

(
ǒ
)

=

λ1
∑Ly

n=1

∥∥ǒ (2n− 1 : 2n)
∥∥, the proximal operator (31) is

expanded to

ǒk+1
= argmin

ǒk+1

{ 1

L̃
λ1

Ly∑
n=1

∥∥∥ǒk+1(2n− 1 : 2n)
∥∥∥

+
1
2

∥∥∥∥ǒk+1
−

(
ǒk −

1

L̃
∇Fµ

(
ǒk

))∥∥∥∥2 }
. (51)

For ease of derivation, complex variable ok+1 (n) defined
in (22) is adopted. Define

a =


ǎ (1) + jǎ (2)
ǎ (3) + jǎ (4)

...

ǎ
(
2Ly − 1

)
+ jǎ

(
2Ly

)
 ∈ CLy , (52)

where ǎ is defined in (36). Substituting (22), (36) and (52)
into (51) leads to

ok+1
= argmin

ok+1

×

 1

L̃
λ1

Ly∑
n=1

∥∥∥ok+1 (n)
∥∥∥ +

1
2

∥∥∥ok+1
− a

∥∥∥2
 . (53)

Note that the optimization problem (53) is separable w.r.t. the
impulsive noise ok+1 (1) , ok+1 (2) , · · · , ok+1

(
Ly

)
. There-

fore, the optimization problem (53) is simplified to

ok+1 (n) = argmin
ok+1(n)

×

{
1

L̃
λ1

∣∣∣ok+1 (n)
∣∣∣ +

1
2

∣∣∣ok+1 (n) − a (n)
∣∣∣2} ,

(54)

for every n. Define the objective function in (54) as
J

(
ok+1 (n)

)
which can be formulated as

J
(
ok+1 (n)

)
∝

1

L̃
λ1

∣∣∣ok+1 (n)
∣∣∣ +

1
2

∣∣∣ok+1 (n)
∣∣∣2

− ℜ

{
ok+1 (n) a∗ (n)

}
=

1
2

∣∣∣ok+1 (n)
∣∣∣2

+

(
1

L̃
λ1 − |a (n)| cos

×

(
̸ ok+1 (n) − ̸ a (n)

)) ∣∣∣ok+1 (n)
∣∣∣ , (55)

which is a quadratic function of
∣∣ok+1 (n)

∣∣. Therefore,
if |a (n)| cos

(̸
ok+1 (n) − ̸ a (n)

)
> 1

L̃
λ1, the optimal∣∣ok+1 (n)

∣∣ and ̸ ok+1 (n) minimizing J
(
ok+1 (n)

)
is∣∣∣ok+1 (n)

∣∣∣ = |a (n)| cos
(

̸ ok+1 (n) − ̸ a (n)
)

−
1

L̃
λ1,

(56)
̸ ok+1 (n) = ̸ a (n) . (57)

Otherwise,
∣∣ok+1 (n)

∣∣ = 0.

APPENDIX C
THE DERIVATION OF THE MM ALGORITHM FOR
SOLVING (41)
Define

yr = yi −H i−1,tailxi−1,tail − oi. (58)

Ingoring the constant term σ−2
v which does not affect the

optimization result, introduce the initial point xki where the
superscript denotes the k-th iteration and expand the objec-
tive function in (40)

∥yr −H i−1xi∥2

= ∥yr −H i−1xki −H i−1

(
xi − xki

)
∥
2

=

(
xi − xki

)H
(H i−1)

HH i−1

(
xi − xki

)
− 2ℜ

{(
x− xki

)H
(H i−1)

H
(
yr −H i−1xki

)}
+

∥∥∥yr −H i−1xki
∥∥∥2 . (59)

Define the maximum eigenvalue of
(
H t
i−1

)HH t
i−1 as λmax.

The surrogate function of (59) can be constructed as

∥yr −H i−1xi∥2

≤ λmax∥xi − xki ∥
2

− 2ℜ
{(
xi − xki

)H
(H i−1)

H
(
yr −H i−1xki

)}
+

∥∥∥yr −H i−1xki
∥∥∥2

= λmax∥xi∥2 − 2λmaxℜ

{
xHi x

k
i

}
− 2ℜ

{
xHi (H i−1)

H
(
yr −H i−1xki

)}
+ const

= λmax∥xi − xko∥
2
+ const (60)

where

xko = xki +
1

λmax

(
yr −H i−1xki

)
. (61)

In this way, it becomes easier to optimize the new objective
function since every variable of vector xti can be opti-
mized individually. Apparently, the optimal solution at the
k-th iteration is xi = xko if the solution is within the constraint.
If not, it is not hard to imagine that the optimal solution will

40150 VOLUME 12, 2024



M. Zhang et al.: Joint Channel Estimation, Data Decoding, and Group-Sparse Impulsive Noise Estimation

be the point on the boundary of the constraint which is closest
to xko.
Take the constraint

|ℜ{xi (n)}| ≤ A,

|ℑ{xi (n)}| ≤ A, n = 1, 2, · · · (62)

as an example where xi (n) is the n-th element of vector xi.
The optimal solution minimizing the approximated objective
function indicated by (60) under the constraint (62) is

xk+1
i (n) = sign

{
ℜ

{
xko (n)

}}
min

{
A, ℜ

{
xko (n)

}}
+ j · sign

{
ℑ

{
xko (n)

}}
min

{
A, ℑ

{
xko (n)

}}
(63)

where xo (n) is the n-th element of vector xo.
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