
Received 4 February 2024, accepted 27 February 2024, date of publication 5 March 2024, date of current version 12 March 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3373902

Task Mapping and Scheduling on RISC-V MIMD
Processor With Vector Accelerator Using
Model-Based Parallelization
SHANWEN WU 1, SATOSHI KUMANO2, KEI MARUME 2,
AND MASATO EDAHIRO 1, (Member, IEEE)
1Graduate School of Informatics, Nagoya University, Nagoya 464-8601, Japan
2NSITEXE Inc., Tokyo 108-0075, Japan

Corresponding author: Shanwen Wu (wushanwen@ertl.jp)

This work was supported in part by NSITEXE Inc., Tokyo, Japan; and in part by Nagoya University Research Fund. The work of Shanwen
Wu was supported by Nagoya University Interdisciplinary Frontier Fellowship funded by Nagoya University and Japan Science and
Technology Agency (JST), the Establishment of University Fellowships Towards the Creation of Science Technology Innovation under
Grant JPMJFS2120.

ABSTRACT In this paper, we propose a model-based workflow to generate parallel code on a multiple
instruction stream, multiple data stream (MIMD) processor with vector accelerator (MIMDV) from a
Simulink model. Solving data- and task-parallelism is crucial during this process. For data parallelism,
a RISC-V Simulink library written in vector codes is prepared for blocks with sufficient vector or matrix
calculations. Moreover, large inputs can be divided, which means that tasks can be executed simultaneously
using multiple cores. For task parallelism, integer linear programming (ILP) is designed to deploy tasks on
scalar processing elements (SPEs) and a vector processing element (VPE) of MIMDV. The use of a vector
library for a task and the number of SPEs a task uses are determined. To reduce the overhead, synchronization
is realized by barrier wait, and execution is divided into multiple time intervals called layer. We propose a
novel one-step ILP that accurately minimizes the parallel time of such a situation. Furthermore, we propose a
two-step ILP to achieve reasonable performance in practical time. One step is SPE mapping, and the other is
layer scheduling.We tested our methods using random task graphs and real-world applications on DR1000C,
a type of RISC-V MIMD processor with a vector accelerator.

INDEX TERMS Task mapping and scheduling, model-based development, multi-core processor, RISC-V,
MIMD, vectorization, parallelization.

I. INTRODUCTION
Currently, there is an increasing need to process large
numbers of calculations with high performance and low
power consumption, even for embedded systems with limited
hardware resources. Multi-core processors are widely used
because of the bottleneck of single-core performance.
In industrial control, various embedded multi-core system-
on-chips (SoCs) have been designed to satisfy different
requirements. Furthermore, with the development of artificial
intelligence (AI) and computer vision, data-intensive tasks
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such as image processing can be executed on real-time
embedded SoCs.

Handling data in a vector, called vectorization, can
accelerate data parallelism. For the instruction set, there are
AVX-512 [51] for the Intel CPU and Neon [52] for the ARM
CPU, but they are not sufficiently flexible for some attributes
such as vector length. To solve this problem, RISC-V has
become popular. RISC-V [1] is an open-source general-
purpose instruction set that contains concise documents that
are friendly to developers. Vector extensions are defined in
RISC-V, and some SoCs start to have hardware IPs that
support these extensions.

Among the recent SoCs, MIMD processors with vector
accelerator (MIMDV) have been developed. MIMDV can
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accelerate applications involving task and data parallelism
by simultaneously processing multiple control and data
flows. DR1000C [2] of NSITEXE is a type of MIMDV
for embedded systems with multiple hardware threads
and specialized processing units to handle RISC-V vector
instructions.

Model-based development (MBD) is considered a highly
efficient method for embedded software design because pro-
grammers can easily understand and simulate systems at an
early stage. MATLAB/Simulink is a representative toolchain
for MBD because it provides numerous block libraries and
a well-developed community. Recently, MATLAB/Simulink
has been widely used, particularly for autonomous driving.
For real-world implementation, a brief and descriptive
block diagram in the Simulink model can be automatically
translated into a sequential C code for embedded systems
using the Embedded Coder [53].

Model-based parallelization (MBP) assigns blocks or
subsystems in Simulink models to processors and generates
parallel codes. There are two types of MBP: block and code
level. In block level MBP [5], blocks or subsystems are tasks
and signal lines are edges. It can extract a more simple task
graph and parallelize it. However, it cannot resolve data par-
allelism. Examples include a simple operation (etc. addition)
with large input/output vectors, matrix calculation (etc. image
processing) in a Mathworks’ built-in block, and a loop in
an S-function block. In code level MBP [14], functions are
tasks and arguments are edges. Data parallelism was resolved
by transforming the loops in an S-Function Builder block
into CUDA codes and finally SYCL description. However,
it cannot cover all situations because the optimized loop must
be in a simple format and not a complicated algorithm.

We consider combining the two types of tools that perform
task parallelism by [5] and accelerate data parallelism
using vectorization. Although compilers such as gcc [54]
and clang [55] can perform vectorization automatically,
they can only handle simple code and sometimes fail
to provide desirable performance. Consequently, libraries
for complicated algorithms must be prepared in advance.
Reference [47] is a reliable edge AI toolchain based on
MIMDV. For MBD using MATLAB/Simulink, the toolchain
provides a library with blocks that generate vector codes.
We need to further optimize them usingMBP. In addition, the
blocks using the library are data-extensive; therefore, they can
be parallelized using multi-core by partitioning large inputs.

The deployment of software tasks onto hardware resources
in MBP is known as task mapping. Task mapping is designed
to achieve higher performance, lower communication costs
and power consumption, less memory and cache contention,
and workload balance. Various methods have been proposed
to parallelize software applications on homogeneous [12],
[15], [24] and heterogeneous [25], [26] multi-core plat-
forms. However, the program of MIMDV is a mixture of
scalar and vector codes, which makes it different from
modern CPU-accelerator architecture using OpenCL [56] or
CUDA [57]. MIMDV requires its own formulation to select

between scalar and vector codes. The execution of tasks using
multi-core should also be considered.

Task pairs with data dependency can be assigned to
different cores after task mapping; consequently, we must
determine a reasonable execution sequence using a schedul-
ing algorithm to ensure the correctness of the parallel
program. This process is called synchronization. In general,
parallel programs using multi-core are realized using a thread
language. Thread is an execution path that operates on a
single core. [48] considered multi-threaded execution of a
task in scheduling and was verified in applications with
coarse tasks. However, the fork-join structure involves sig-
nificant thread creation and destruction with low efficiency.
Furthermore, a multi-threaded task is regarded as a batch and
cannot parallel sufficiently with other tasks. Therefore, it may
fail to achieve a high performance when the task granularity
is small. Barrier wait is an easy and common solution to
this problem. When using barrier wait, threads with constant
numbers are created, and the ended thread must wait for
all executing threads to end. Therefore, the program can be
considered as multiple time intervals, called layer, divided by
barrier wait, and various tasks can be parallelized more freely
inside layer. The main overhead comes only from the API.

There are a few related studies on this problem. Adapting
heuristics such as Best-Fit [4] is possible, but is not optimal.
Reference [49] gave an ILP pipeline scheduling among
multiple execution stages. Inspired by this, we define the
world-first one-step ILP to mathematically describe parallel
time using barrier wait. However, with the development of
software and hardware, task and core numbers have increased
significantly; thus, the problem is regarded as an NP-hard
problem and suffers from a long solver time. Therefore,
we divided the ILP problem into two steps to achieve high
parallel performance and reasonable solver time.

In this study, we propose a task mapping and schedul-
ing ILP formulation for RISC-V MIMDV. Based on this
algorithm, we also propose an MBP code generation
workflow.

Our contributions are as follows:
• Our workflow integrates the RISC-V Simulink library
and generates parallel code using barrier wait that
significantly mitigates overhead. It is world-first.

• Proposed one-step ILP is the first formulation to
accurately minimize the parallel time of multiple
interval execution using barrier wait. Vectorization and
multi-core execution of a task are considered. Then, the
proposed two-step ILP divides the problem and reduces
solver time to enhance the practicability of workflow.

The remainder of this paper is organized as follows:
Section II states several definitions and assumptions.

Section III introduces an MBP code generation workflow for
MIMDV. Section IV describes the basic one-step ILP and
Section V describes the advanced two-step ILP. Section VI
introduces the experiments in which we tested randomly
generated task graphs using a MATLAB script and codes
translated from real-world Simulink models on an FPGA

35780 VOLUME 12, 2024



S. Wu et al.: Task Mapping and Scheduling on RISC-V MIMD Processor With Vector Accelerator

FIGURE 1. The MIMDV architecture.

emulator of DR1000C. Section VII discusses related work.
Finally, Section VIII concludes the study and discusses future
researches.

II. PRELIMINARY
This section presents several definitions and assumptions:

A. MIMDV ARCHITECTURE
Amodel of the RISC-VMIMDV architecture assumed in this
study is illustrated in Figure 1. There areNp scalar processing
elements (SPEs), and each SPE is associated with a vector
processing element (VPE).

When a task is executed on an SPE, RISC-V vector
instructions that accelerate data parallelism are executed on
the VPE. We make the following assumptions:

• A task can contain both SPE and VPE execution using
RISC-V and its vector extension instructions, which
means that data transfer from SPE to VPE is contained
in task execution time.

• All the SPE/VPE pairs access a shared memory, and a
task reads/writes values in it during execution.

• IO ports of the shared memory are more than SPE/VPE
pairs, which means latency is zero when concurrent
memory access happens.

• Data coherence and correctness are guaranteed by
barrier wait with constant synchronization overhead
(SO) controlling read/write order to shared memory.
Data transfer between different SPEs/VPEs is that a task
writes data to sharedmemory before the barrier wait, and
the success task reads it after the barrier wait.

B. MODEL-BASED PARALLELIZATION FOR MIMDV
1) MODEL-BASED PARALLELIZATION
Model-based parallelization (MBP), such as [5], reconstructs
the sequential code generated from the Simulink model to
parallel one for a multi-core processor. We adapt MBP to
leverage RISC-V MIMDV, and the inputs are as follows:

• Simulink model
• Sequential code generated from the model
• MIMDV parameters like synchronization overhead
• RISC-V vector library for Simulink

FIGURE 2. Simulink model example.

FIGURE 3. C Code generated from Figure 2 using embedded coder.

The output is vectorized threaded code for MIMDV.
An example of the Simulink model is shown in Figure 2.
Part of the C code generated from this Simulink model using
Embedded Coder [53] is shown in Figure 3. In the example,
we assume that SO is 10. RISC-V Simulink vector library is
described in the next section.

2) SIMULINK VECTOR LIBRARY
An example of the Simulink vector library for Add is shown
in Figure 4. According to [14], an S-Function Builder exhibits
good performance, internal state support, C/C++ language
support, and generation support. Therefore, the library is
S-Function Builder blocks using inline assembly instructions
in the RISC-V vector extension. In the generated code, the
loop of the add operation in Figure 3 is translated into vector
codes, such as the vector length setting and vector add, and
the execution cycles can be reduced sharply.

The library can also handle complex MathWorks’ built-in
blocks. For example, vector codes for the MPC toolbox using
a quadratic programming algorithm, QPKWIK, and matrix
QR decomposition, Householder, were realized in [45].
In this study, library blocks for state-space equation, Sobel
edge detection, and FIR image smoothing are prepared.
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FIGURE 4. S-Function Builder block and vector code for vector addition.

C. TASK MAPPING AND SCHEDULING PROBLEM IN MBP
CODE GENERATION FOR MIMDV
1) TASK GRAPH
Task graph G(V ,E,A) is extracted from Simulink model:

• Task node set V : Blocks or subsystems
• Dependency edge set E : Signal lines
• Graph adjacency matrix A
The following information is associated with each task for

MIMDV:

• SPE execution time
• VPE execution time
• Code fragment, which is accessed by task.code(). A task
is a class containing attributes and methods.

• Vectorization attribute, which represents a task is
associated with a vector library block.

• Parallel attribute, which represents a task can be
executed on multiple SPEs.

Figure 5 presents the task graph extracted from the
Simulink model in Figure 2. Table 1 lists the execution times
associated with each task shown in Figure 5. Before task
mapping and scheduling, we further modify the task graph
above:

• Parallel attribute, which represents a task contains loop
iterations sufficiently larger than Np.

Tasks with parallel attributes are partitioned into Np tasks.
The execution times of partitioned tasks can generally be
estimated by profiler. For simplicity, we assume in this paper
they are 1/Np of the original one.
Figure 6 presents the resultant task graph after partitioning

the tasks when Np = 4. Table 2 lists the execution times
associated with each task shown in Figure 6. None of the tasks
in the resulting task graph have parallel attributes after the
process is conducted.

From the modified task graph above, we can extract the
following relations among the tasks:

• Dependent relation D: The set of task pairs with con-
trol/data dependencies. We calculate D using function
DependentRelation().

FIGURE 5. Task graph extracted from Figure 2.

FIGURE 6. Task graph after partitioning parallelizable tasks.

TABLE 1. Execution Times of Each Task in Figure 5.

TABLE 2. Execution Times of Each Task in Figure 6.

• Parallel relation P: The set of task pairs, which can
be executed in parallel. We calculate P using function
ParallelRelation().
As one solution, tasks i and j are parallel pairs if there is
no dependency between them and if task j does not exist
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FIGURE 7. Parallel execution in this study.

on any path from start nodes to task i or on any path from
task i to end nodes.

2) TASK MAPPING AND SCHEDULING PROBLEM
In this section, the task mapping and scheduling problem in
MBP code generation on MIMDV is described.

To illustrate the parallel execution of MIMDV, Figure 7
shows an example of a program that uses barrier wait. From
the figure, we define the following two things:

• Thread: Execution sequence on a SPE.
• Layer: Time interval divided by barrier wait.
The execution of each task is defined by (a, b), where a

represents the SPE number to be deployed and b represents
the layer number to be deployed. Note that, in our code
generation method, a single thread executes on a single SPE,
and thread number is equal to SPE number.

We aim to reduce overall parallel execution time of task
graph onMIMDV. The inputs of taskmapping and scheduling
for MIMDV are as follows:

• Task graph adjacency matrix A
• SPE time set TS and VPE time set TV
• Synchronization Overhead SO
The outputs are as follows:
• Task mapping resultMap:

[map1,map2, . . . ,mapi−1,mapi, . . .]

mapi = [mi, ni] is the deployment of task i.mi represents
the SPE number that task i is deployed on. Here, 1 ≤

i ≤ |V |, and 1 ≤ mi ≤ Np. ni is 1 when task i uses
vector code and 0 when it uses scalar code. How many
SPEs a task uses can be known from the deployment of
partitioned tasks.

• Scheduling result LayerInfo:

[[tasks in Layer1], [tasks in Layer2],

. . . , [tasks in Layerl−1], [tasks in Layerl]]

A task is deployed into a layer. For a simple method,
we can use LayerbyDfs() which performs depth first
search on task graph and put tasks with the same
depth into the same layer. In Figure 5, LayerInfo =

[[A,B,C], [D,E,F], [G], [H ]]. After layer division,
tasks in the same layer have no dependency and can be
parallelized freely using heuristics such as Best-Fit.

III. MBP CODE GENERATION WORKFLOW FOR MIMDV
This section introduces the MBP code-generation workflow
for MIMDV. This is illustrated in Figure 8, and the details of
each step are as follows:

FIGURE 8. MBP workflow for MIMDV.

① SPE time is estimated using a profiler (etc. gprof [44]).
It is able to handle complex blocks generating
conditional branches and irregular loops to obtain
performance close to real machine execution time.

② VPE time is obtained from coalescent simulation using
the target processor in model design phase or code
fragment profiling using a special compiler tool for the
target processor after sequential code generation.

③ Task graph 1 is extracted by an MBP tool. Sequential C
code is partitioned into fragments and associated with
tasks that are blocks or subsystems. SPE andVPE times
are also associated with these tasks.

④ ILP formulation described in later sections finds a
solution for deploying tasks on SPEs and VPEs of
MIMDV and determining execution sequence. Such a
process is called task mapping and scheduling.

⑤ Modified Simulink model is created by replacing
ordinary blocks with vector library blocks according to
vectorization selection.

⑥ The modified model can generate vectorized C code,
and tasks can contain vector code. Task graph 2 is
extracted, in which code fragments of tasks contain
both C and vector code.

⑦ Vectorized threaded program for MIMDV can be
generated by code fragment reconstruction.

The details of the parallel code generation are described in
Algorithm 1. The generated code is presented in Figure 9.

Code fragments are placed into multiple threads created in
advance according to the task mapping result. These threads
are executed on different SPEs.

The barrier wait API is inserted into two adjacent layers
according to the scheduling result, synchronizing all threads.

∗_vector is function generated from the S-Function
Builder library block containing the vector codes.

One task can run on multiple threads that handle different
parts of inputs and run in parallel. In this example, Exponent
and Add are multi-threaded executions.

IV. ONE-STEP ILP FORMULATION
First, we propose a novel one-step ILP formulation to
minimize the parallel execution time using barrier wait. The
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Algorithm 1 Parallel Code Generation
Data: Tasks with Code, Task Mapping ResultMap,

Scheduling Result LayerInfo
Result: Parallel Code
Initialize CodeGroup list based on SPE number;
for each Layer L in LayerInfo do

for each Task i in Layer L do
for each SPE j do

if mi ∈ mapi == j then
CodeGroup[j].append(i.code());

end
end

end
CodeGroup[j].append(barrier wait);

end
for each Code Group j do

print(‘‘threadj.create();′′ );
for each Code Fragment C in Code Group j do

print(C);
end

end

FIGURE 9. The example of parallel code generated from Figure 2.

notations are listed in Table 3. 1 ≤ i and k ≤ |V | for task
numbers i and k , and 1 ≤ j ≤ Np for SPE number j.

A. FORMULATION OF ONE-STEP ILP
The objective function is shown in (1). We want to minimize
the finish time finishm of the task graph.

min (finishm) (1)

There are some constraints in task mapping.

Each task can only be executed on a single SPE:

NP∑
j=1

xij = 1 (2)

Each task is executed using either vector or scalar code:

zi,V + zi,S = 1 (3)

Each task is assigned to a single layer:∑
l

si,l = 1 (4)

The execution time of task i, Ti is determined by the
selection between the vector and scalar code. Ti,S ∈ TS is
SPE execution time and Ti,V ∈ TV is VPE execution time:

Ti = zi,V ∗ Ti,V + zi,S ∗ Ti,S (5)

The relationship among the start time starti, execution
time Ti, and finish time finishi of task i is as follows:

finishi = starti + Ti (6)

If task i is assigned to layer l, the task should be executed
after the start time of layer startl and before the finish time
of layer finishl , as expressed in (7) and (8), respectively.
Maxvalue is a very large value, and the inequality should be
satisfied when si,l is 1. Furthermore, the next layer l+1 starts
when layer l and the barrier wait API are completed, as shown
in (9). SO denotes the synchronization overhead:

starti + (1 − si,l) ∗Maxvalue ≥ startl (7)

finishi ≤ finishl + (1 − si,l) ∗Maxvalue (8)

startl+1 = finishl + SO (9)

wijk is calculated as the following inequality: if both xij and
xkl(∃l ̸= j) are 1, wikj is 1; otherwise, it is 0. Notably, wikj is
calculated only when tasks i and k have dependent relation:

xij +
∑
l ̸=j

xkl − 1 ≤ wijk ≤
xij +

∑
l ̸=j xkl

2
(10)

If task k consumes data from task i, they should obey the
execution sequence regardless of the mapping result:

finishi ≤ startk (11)

For tasks i and k with a dependent relation, task k can
be in the same or latter layer as task i as described in (12).
gilk is calculated using the inequality (13), which implies that
if both si,l and

∑
l0≥l sk,l0 are 1, it is 1; otherwise, it is 0.

However, if two tasks are assigned to different SPEs, task k
can exist only in the layers after task i as described in (14).
hilk is calculated using the inequality (15), which means that
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TABLE 3. Notations.

if both si,l and
∑

l0>l sk,l0 are 1, it is 1; otherwise, it is 0.∑
l

gilk = 1 (12)

si,l +
∑
l0≥l

sk,l0 − 1 ≤ gilk ≤
si,l +

∑
l0≥l sk,l2
2

(13)

∑
l ̸=lmax

hilk = 1 (14)

si,l +
∑
l0>l

sk,l0 − 1 ≤ hilk ≤
si,l +

∑
l0>l sk,l0
2

(15)

yijk is calculated as the following inequality: if both xij and
xkj are 1, yijk is 1; otherwise, it is 0. Notably, yijk is calculated
only when tasks i and k have parallel relation:

xij + xkj − 1 ≤ yijk ≤
xij + xkj

2
(16)

For two tasks i and k without dependency (with parallel
relation), task i begins either earlier or later than k , as shown
in (17). If they are mapped onto the same SPE. They cannot
overlap, obeying the execution sequence shown in (18).
Maxvalue is a very large value, and the inequality should
be satisfied when oik is 1. oik is calculated using the
inequality (19), which means that if both rik and

∑
j yijk are 1,

oik is 1; otherwise, it is 0.

rik + rki = 1 (17)

finishi ≤ startk + (1 − oik ) ∗Maxvalue (18)

rik +

∑
j

yijk − 1 ≤ oik ≤
rik +

∑
j yijk

2
(19)

B. RESULT OF ONE-STEP ILP
Figure 10 presents the result of the one-step ILP for the
task graph shown in Figure 5. With this task mapping and
scheduling, the execution time of the task graph is 200 +

10 + 80 + 120 + 10 + 130 = 550, achieving a 7.36x
performance improvement compared with the sequential C
code (execution time of 4050) and a 2.98x improvement
comparedwith the vector sequential code using one SPE/VPE
pair (execution time of 1640). It is the optimal solution under
the assumptions in Section II.

FIGURE 10. The result of one-step ILP for the task graph in Figure 5 with
the execution times in Table 1.

Algorithm 2 Two-Step ILP
Data: Task Graph Adjacency Matrix A, SPE

Execution times TS , VPE Execution times TV ,
Synchronization Overhead SO

Result: Task Mapping and Scheduling Result
LayerInfo1 = LayerbyDfs(A);
P = ParallelRelation(A);
D = DependentRelation(A);
[Map,T ] = TaskmappingILP(Ts,TV ,P,D, SO);
Speedup1 =

time(Map,LayerInfo1)
sequentialtime ;

LayerInfo2 =

SchedulingILP(Map,T , length(LayerInfo1));
Speedup2 =

time(Map,LayerInfo2)
sequentialtime ;

V. TWO-STEP ILP FORMULATION
One-step ILP may suffer from a long solver time because
its objective function and constraints are complex. In this
section, to achieve high parallel performance in a practical
range and time, we partition the problem into a two-step
ILP containing task mapping and scheduling, as shown
in Algorithm 2. LayerInfo1, P and D are calculated as
mentioned before. These are prerequisites of the two-step ILP,
and then we execute task mapping ILP and scheduling ILP in
sequence. We explain the two ILPs in detail using model in
Figure 2 as a example.
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TABLE 4. Notations.

A. TASK MAPPING ILP
The objective function of TaskmappingILP() is given in (20),
as shown at the bottom of the next page. ni is the input degree
of task i and mi is the output degree of task i. The inputs of
the task mapping ILP are as follows:

• SPE time set TS and VPE time set TV
Vectorization attributes can be judged by them. Only
tasks with vectorization attribute have effective VPE
time, or it is significantly large, thus, the task cannot be
assigned to VPE by ILP formulation.

• Dependent pairs D and parallel pairs P
• Synchronization Overhead SO
The output is Task mapping resultMap.
The first term minimizes the synchronization overhead,

and the second term determines whether vectorization is
worth using to accelerate the task. The third term attempts
to optimize the overall parallel execution time.

The task mapping ILP obeys the constraints (2), (3), (5),
(10) and (16).
Figures 11 and 12 present examples to explain the effect

of the third term when parallelizable tasks with execution
times of 1s, 1s, 1s, and 3s run on two SPEs. All task pairs
are assumed to be parallelizable on different SPEs. Figure 11
shows the optimal solution in which the two SPEs achieve
the shortest execution time. Three 1s-1s pairs are executed
sequentially such that the objective function returns the best
value of 1 + 1 + 1 = 3. Figure 12 performs slightly worse
because one 1s-1s pair and one 1s-2s pair are sequentially
executed. In this case, the objective function returns a larger
value of 1 + 3 = 4. Therefore, minimizing the third term
achieves a load balance to reduce time.

The first term combined with the third term attempts
to determine the utilization of barrier synchronization to
parallelize tasks. Figure 13 shows an example of a simple
graph in which task C processes data from tasks A and B.
According to these definitions, the A-B task pair (∈ P) is a
parallel pair, the A-C task pair (∈ D) is a dependent pair, and
the B-C task pair (∈ D) is also a dependent pair. Two possible
execution situations exist, as shown in Figures 14 and 15.
Tasks A and B can be parallelized as shown in Figure 14
or sequentially executed without barrier synchronization as
shown in Figure 15. The parameters of each figure are listed
in Table 4.
The effectiveness of our proposed formulation is shown

with two examples of task execution time. In these examples,

synchronization overhead is set to 5s. When each of the three
tasks takes 4s, Figure 14 is completed in 4 + 5 + 4 = 13s,
whereas Figure 15 takes a shorter time in 4 + 4 + 4 = 12s.
In this case, the sum of the first and third terms in Figure 14
is 5 ∗ 5/(2 − 1) = 25, whereas that in Figure 15 becomes a
smaller value of 4 ∗ 4 = 16.
When each of the three tasks takes 6s, Figure 14 is

completed in 6 + 5 + 6 = 17s, whereas Figure 15 takes a
longer time in 6 + 6 + 6 = 18s. In this case, the sum of the
first and third terms in Figure 14 is 5∗5/(2−1) = 25, whereas
that in Figure 15 becomes a larger value of 6 ∗ 6 = 36.

B. RESULT OF TASK MAPPING ILP
Figure 16 shows the result of the task mapping ILP for the
task graph in Figure 5. The number of SPEs is 4.
We can observe that task pairs without dependency are

prone to run on the same SPE to realize load balance, whereas
task pairs with dependency are prone to run on different SPEs
to avoid synchronization. We resolved the following items:

• Whether to use vector library:
In the example, tasks F and H benefit from vectorization
and use vector codes executing on VPE.

• How many SPEs a task uses:
It could be suitable to use more SPEs and each SPE
deals with less data considering taking full advantage
of hardware resources. In the example, task H uses all
the four SPEs. However, it could also be suitable to
use fewer SPEs and each SPE deals with more data
considering leaving resources for other tasks. Task B
uses two SPEs and runs concurrently with other tasks.

Parallel execution uses LayerInfo1, which is calculated
using the node depth mentioned previously. The load balance
considered in task mapping does not work because the tasks
are not in a reasonable layer and require further scheduling
among the layers.

C. SCHEDULING ILP
We assign tasks to the layers to minimize the load difference
value among SPEs (idle time) in each layer. The objective
function SchedulingILP() is given as (21). The inputs of
scheduling ILP are as follows:

• Task mapping resultMap
• Task time set T : Whether to use vector library has been
determined in task mapping, vectorization attribute can
be deleted and we can get a specific execution time for
each task, as shown in (5).

• Layer number of LayerInfo1

Here, the output is Scheduling result LayerInfo2.

min
∑
l

∑
p1,p2

|

∑
i

Ti ∗ si,l ∗ xi,p1 −

∑
i

Ti ∗ si,l ∗ xi,p2|

(21)

Scheduling ILP obeys the constraints (4), (12), (13), (14),
and (15).
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FIGURE 11. Optimal task mapping.

FIGURE 12. Worse task mapping.

FIGURE 13. Simple example of a task graph.

FIGURE 14. Parallel execution using Barrier wait.

FIGURE 15. Sequential execution Merging tasks.

FIGURE 16. The result of the task mapping ILP for the task graph in
Figure 5 with execution times in Table 1.

D. FINAL RESULT OF TWO-STEP ILP
Figure 17 depicts the final result of the two-step ILP for the
task graph shown in Figure 5. This result is the same as the

FIGURE 17. Final result of two-step ILP for the task graph in Figure 5 with
the execution times in Table 1.

result of one-step ILP in Figure 10, whichmeans that two-step
ILP also finds out the optimal solution.

Two situations can occur for a task pair with a dependency.
It can be executed on the same SPE in the same layer with
a restricted order, or on different SPEs in different layers
resolved by barrier wait. The execution sequence can vary,
and scheduling ILP makes more adjustments. We resolve the
following items:

• Task movement:
Idle time can be reduced by moving task F from layer 2
to layer 1 (its node depth) to be merged with task C. Idle
time can also be reduced by moving task G from layer 3
(its node depth) to layer 2 to be merged with task E and
executed in parallel with task D.

• Layer reduction:
Not all layers contain tasks, which means that some
layers can be removed. Therefore, LayerInfo2 is fewer
than LayerInfo1.

VI. EXPERIMENTS
In this section, we evaluated one- and two-step ILP formu-
lations using random task graphs and real-world Simulink
models. First, a simple simulation of the random graph
execution times on two or four SPEs (Np = 2 or 4) was
performed. Subsequently, the state-space control and image
processing models were evaluated using an FPGA emulator
of the DR1000C [2].

In all the experiments, we compared the strictly defined
one-step ILP and the two-step ILP formulation. Moreover,
because the two-step ILP included task mapping and
scheduling, we calculated the speedup of the task mapping
ILP, as shown in Algorithm 2, to determine the influence of
each step in the two-step ILP.

To the best of our knowledge, no task mapping or
scheduling methods have been proposed for MIMDV. Hence,
we implemented the Best-Fit algorithm for MIMDV to

min

 ∑
(i,k)∈D

SO2
∗

∑
j wijk

ni ∗ mk − 1
+

∑
i

T 2
i +

∑
(i,k)∈P

TiTk ∗

∑
j

yijk

 (20)
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compare with our ILP formulation. First, the task graph was
divided into multiple layers based on node depth. Thereafter,
tasks in the same layer were sorted by execution time from
large to small and assigned to SPEs individually, choosing
the SPE with the longest spare time.

A. RANDOM TASK GRAPH TEST
In this experiment, random DAGs were generated using a
MATLAB script. As mentioned above, our ILPs can merge
and move tasks among layers. Therefore, they were robust
to the granularity of tasks and the overhead of barrier wait.
To prove this, the execution times of the tasks were varied
from 1000 to 9000 cycles, and small/large synchronization
overheads (SO = 500 or 4000) were utilized. The main
objective was to parallelize tasks when SO = 500, whereas
that was to compromise between merging and parallelizing
tasks when SO = 4000. The number of parallel pairs |P|

and dependent pairs |D| were counted based on the previous
definitions. Finally, ILP methods using the optimization
solver CPLEX on an Intel(R) Core(TM) i9-7900X CPU
@3.30GHz with up to 20 threads were applied to the task
graphs.

1) SMALL TASK GRAPH TEST
We performed two experiments on speedup by changing
the number of dependent pairs and number of parallel
pairs. The number of tasks was fixed at 12 and 200 task
graphs were generated for each experiment. Each experiment
generated four figures, where the number of threads and
synchronization overhead were 2 and 500, 2 and 4000, 4 and
500, and 4 and 4000, respectively. In each figure, the blue line
represents the Best-Fit algorithm, the red line represents the
two-step ILP with task mapping and scheduling, the yellow
line represents the task mapping ILP, and the purple line
represents the one-step ILP.

In the dependent pair experiment, the value when
The Number of Dependent Pairs = M was calculated as
the average speedup when the x-axis ranged from M − 3 to
M + 3, and Figure 18 was obtained. As we focused only on
the parallel effect, the vectorization ratio was set to 0. For ILP
methods, the performance decreases with an increase in the
number of dependent pairs, particularly when the number of
threads and synchronization overhead are larger.

In the parallel pair experiment, the value when
The Number of Parallel Pairs = N was calculated as the
average speedup when the x-axis ranged from N − 3 to
N + 3, and Figure 19 was obtained. The vectorization ratio
was set to 0. The performance increases with an increase in
the number of parallel pairs, particularly when the number of
threads and synchronization overhead are larger.

In the two experiments above, the one-step ILP determines
the optimal solution. Even when using only task mapping,
ILP outperforms Best-Fit because it performs optimization
by merging some tasks. The two-step ILP further improves
performance by optimizing the structure of multiple layers
and scheduling tasks among them. In small task graphs, the

FIGURE 18. Relationship between Speedup and number of dependent
pairs under different numbers of threads and barrier overheads.

two-step ILP is not able to reach the optimal solution but is
close to it when the number of dependent pairs is smaller and
the number of parallel pairs increases. Best-Fit only provides
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FIGURE 19. Relationship between speedup and number of parallel pairs
under different numbers of threads and barrier overheads.

a simple layer division and performs parallelization inside
each layer, which does not change significantly with changes
in the dependent and parallel pairs.

TABLE 5. Average Solver Times of One-step and two-step in Different
Task Numbers (Thread Number:2, Synchronization Overhead:500).

2) LARGE TASK GRAPH TEST
We evaluated the speedup and solver time of the one-step
ILP and two-step ILP, changing the number of tasks selected
from 16, 25, 36, 49, and 64. The number of threads and
synchronization overhead were set to 2 and 500, 2 and 4000,
4 and 500, 4 and 4000, and 2 and 400, respectively. 60 task
graphs were tested, and the average speedup and solver time
were calculated for each task number. The max time limit of
the CPLEX solver was set to 300s. In some cases, the one-step
ILP problem was too large, and the solver cannot give any
solution within time limit. In this situation, the speedup was
set to 0 and the solver time did not exist. In some cases, the
solver time reached the 300s time limit before the one-step
ILP finds the optimal solution.

We plot speedup into Figure 20. When the number of
tasks is less than 36, the two-step ILP can obtain a relatively
high-quality solution which approximates or even exceeds
the one-step ILP when the number of tasks increases. The
two-step ILP is closer to the one-step ILP when the number
of threads is higher. When the number of tasks is over 36, the
range of the one-step ILP problem is too large for the solver
under the experimental settings. By contrast, the two-step
ILP can still find a reasonable solution, and the performance
increases with the number of tasks. Best Fit increases with
the number of tasks but fails to obtain great speedup.

The solver times are listed in Table 5, 6, 7 and 8. In the
two-step ILP, we calculate the whole average time, average
task mapping and scheduling time, respectively. We can
observe that using the two-step ILP can reduce the solver time
dramatically compared with the one-step ILP. Two-step ILP
can even solve large-scale problems that one-step ILP cannot
solve. For the proportion of task mapping and scheduling
time, task mapping accounts for a greater percentage when
the number of threads is greater because the workload
balance among different threads is more difficult. Scheduling
accounts for more percentages when the number of threads
is small because further adjustment among layers is more
important. Best Fit solves problem in a moment but it is not
a great choice considering its performance.

B. REAL-WORLD APPLICATION ON DR1000C
To demonstrate the effectiveness of the workflow illustrated
in Figure 8, we performed experiments using two real-world
Simulink models on the FPGA emulator of the DR1000C,
which is an actual RISC-V MIMDV architecture processor.
One model in Figure 21 used a state-space [50] controller
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FIGURE 20. Relationship between Speedup and the number of tasks
under different numbers of threads and barrier overheads.

to control a state-space plant. The other model in Figure 22
used blocks in the Simulink Computer Vision Toolbox [46]
to highlight the edges of a picture.

TABLE 6. Average Solver Times of One-step and two-step in Different
Task Numbers (Thread Number:2, Synchronization Overhead:4000).

TABLE 7. Average Solver Times of One-step and two-step in Different
Task Numbers (Thread Number:4, Synchronization Overhead:500).

TABLE 8. Average Solver Times of One-step and two-step in Different
Task Numbers (Thread Number:4, Synchronization Overhead:4000).

FIGURE 21. State–space control model.

FIGURE 22. Image-processing model.

Although DR1000C had four scalar processing units
(SPUs), each SPU had four hardware threads. In our
experiments, we used one hardware thread per SPU to avoid
resource contention. Two SPUs were utilized, indicating
that the number of threads was 2. Before the experiments,
we tested the overhead of the barrier wait API using two
threads on DR1000C, which was considered sufficiently
small to parallelize applications in fine granularity.

After converting the Simulink model into a task graph,
we performed one-step ILP, two-step ILP, task mapping ILP,
and Best-Fit. We measured the execution times of the follow-
ing four types of programs on DR1000C. sequentialCcode
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TABLE 9. Speedup of State-space Model using four Methods.

FIGURE 23. Task graph of state-space model.

was generated by the Embedded Coder, vectorsequentialcode
was generated by replacing some matrix operation blocks
with vector library blocks, threadCcode was generated by
reconstructing fragments of the sequential C code, and
threadvectorcode was generated by reconstructing fragments
of the vector sequential code corresponding to each task based
on the mapping and scheduling results.

We tested the following metrics:
Vectorization Speedup(VS): TimeofSequentialCCode

TimeofVectorSequentialCode

Parallelization Speedup1(P1E): TimeofSequentialCCodeTimeofThreadCCode

Parallelization Speedup2(P2E): TimeofVectorSequentialCodeTimeofTreadVectorCode

Total Speedup(TS): TimeofSequentialCCodeTimeofTreadVectorCode

1) STATE-SPACE CONTROL MODEL
Although Figure 21 shows the control model, the two
state-space blocks of the controller and plant can be replaced
by vector library blocks because the differential equation is
solved through matrix multiplication. The dependencies of
the input of the state-space and unit-delay can be deleted to
increase the possibility of parallelization because our tool can
handle the output and update parts of the block, respectively.

In Table 9, three ILP methods outperform the Best-Fit, and
they obtain a total speedup of 5.9x (4.1x by vectorization
and 1.4x by parallelization). In the control model, although
the granularity of the blocks varies and some blocks have
execution times similar to the synchronization overhead,
applications still benefit from using MIMDV.

As mentioned earlier, the processing of some blocks
is divided into the output and update parts. Therefore,
the extracted task graph differs slightly from the original
Simulink diagram. To explain this, a task graph extracted
from the state-space equation model using our tool is
shown in Figure 23. DiscreteState_Space, State_Space, and
UnitDelay are divided into two tasks. The output executes
first, and the update executes later. There are 8 tasks in total.

Figure 24(a) shows that two threads parallel execution in
the state-space control model using the three ILP methods

FIGURE 24. (a) Task mapping and scheduling result of two-step ILP,
one-step ILP and task mapping ILP in state-space model. (b) Task
mapping and scheduling result of the best-fit in state-space model.

is the same. Figure 24(b) shows two threads parallel
execution using Best-Fit. All tasks with vector attributes
select vectorization. In Best-Fit, the number of layers (four
layers) divided by the depth of the node is large, and
parallelization within the layer results in a long execution
time because of the large idle time. In task mapping ILP,
the load difference is reduced by merging tasks into a
coarse granularity for parallelization, resulting in a shorter
execution time. Optimal parallel execution can be achieved by
merging tasks through task mapping, eliminating the need for
task movement through further scheduling; consequently, the
speedup of task mapping ILP is the same as that of two-step
ILP and one-step ILP, the optimal one.

2) IMAGE PROCESSING MODEL
In Figure 22, Sobel and FIR blocks perform convolution
operations on the image matrix and can achieve high
efficiency when written into vector codes. Furthermore, other
basic blocks, that is, Selector, Add, and Highlight (vector
comparison), with large inputs can be vectorized. In addition
to data parallelism, this model also includes task parallelism.

In Table. 10, our two-step ILP can reach the optimal
parallel solution as a one-step ILP, outperforming the task
mapping ILP and Best-Fit. The total speedup is 17.7× (10.9×
by vectorization and 1.6x by parallelization). Although we
assume that the size of the image is 20×20 considering the
memory limitation of DR1000C, the speedup of vectorization
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TABLE 10. Speedup of Image Processing Model using four Methods.

is prominent, which means MIMDV is a good choice for
dataflow applications such as image processing.

The tasks and dependencies of the image-processingmodel
correspond to the blocks and signal lines in Figure 22.
Consequently, the task graph is omitted here.

Analyzing the depth of the nodes, one Sobel block is in
layer 2 and the other is in layer 5. Figure 25 shows two
threads’ parallel execution of the image processing model
with one-step and two-step ILP, task mapping ILP, and Best-
Fit, respectively. All tasks use vectorization.

In Best-Fit, the number of layers (five layers) divided by
the depth of the node is large, and parallelization within each
layer results in a long execution time owing to the large idle
time. In taskmapping ILP, tasks aremergedwhile considering
synchronization overhead; however, load balancing is not
desirable in each layer because tasks are not assigned to
appropriate layers. The idle times in both cases are almost
the same, resulting in similar execution times. However, Best-
Fit can freely parallelize within layers, whereas task mapping
ILP considers a trade-off with dependencies, resulting in a
slightly lower performance. Task mapping ILP and Best-Fit
are unable to parallelize two Sobel blocks in the same
layer. In contrast, two-step ILP, which involves scheduling,
achieves more efficient parallelization by moving tasks
among the layers.

VII. RELATED WORKS
For homogeneous multi-core processors, a number of meth-
ods have been proposed.

Reference [12] optimized the parallelization on multiple
CPUs using mixed-ILP (MILP). References [15] and [16]
generated multi-threaded codes using ILP mapping and
scheduling to optimize the communication among processors
and threads. An ILP formulation was proposed to find a task
mapping and scheduling solution to minimize the overall
throughput and latency [24]. ILP is a general algorithm
that can handle many complex situations, such as data
cache [27] or power consumption [28] by adjusting the
objective function and constraints. In vehicle control, [29]
used ILP to map tasks on multiple ECUs and schedule tasks
in the slots of FlexRay.

Some heuristics are available, such as earliest finish
time [30] and global fair lateness [31]. Reference [6] adapted
an MBP tool to a Kalray MPPA2-256 processor with a
cluster architecture. Reference [10] parallelized blocks in
function level using multi-threads. Reference [13] partitioned
the runnable graph of AMALTHEAmodel into tasks and then
assigned the tasks to a multi-core platform. Reference [20]

FIGURE 25. (a) Task mapping and scheduling result of the one-step and
two-step ILP in image processing model. (b) Task Mapping and
scheduling result of task mapping ILP in image processing model. (c) Task
mapping and scheduling result of best-fit in image processing model.

introduced a tool called MiniSIGNAL generating multi-task
codes frommulti-layer task graphs, in which tasks aremerged
considering granularity.

Various search-based algorithms are also available. Ref-
erence [33] used a genetic algorithm (GA) to map tasks
on MPSoC. Reference [34] scheduled tasks using a whale
optimization algorithm (WOA) in a cloud computing envi-
ronment and compared it with a particle swarm optimization
(PSO). Artificial intelligence-based load balancing and task
scheduling combined with GA have also been proposed [35].
Reference [36] proposed answer set programming optimiza-
tion in a Simulink-to-MPSoC design flow. Reference [37]
proposed a scheduling algorithm using a satisfiability modulo
theory solver.

These methods are difficult to apply to heterogeneous
multi-core processors. For heterogeneous multi-core proces-
sors, a number of methods have also been proposed.

ILP formulations were adapted for ARM big.LITTLE
architecture to reduce communication costs among different
cores [25] and CPU-GPU architecture to reduce the execution
time of the critical path [26]. Reference [32] modified
the basic heuristic to consider the heterogeneous ratio,
task graph structure, data partition, and data transfer time.
Reference [38] found a solution for less memory contention
and energy consumption on heterogeneous MPSoCs by
deleting solutions with small fitness values and updating the
solution set. Reference [7] used the tool to parallelize a PID
control model with multiple rates on MPSoC with FPGA.
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Reference [18] generated parallel codes for heterogeneous
dataflow process networks (DPNs).

However, the program of MIMDV is a mixture of scalar
and vector codes, whichmakes it different frommodernCPU-
accelerator architecture using OpenCL or CUDA. Therefore,
these heterogeneous methods cannot be used directly to
MIMDV, and MIMDV requires its own formulation to select
between scalar and vector codes. We realized more for MBP
of MIMDV to get higher performance.

Reference [8] used the MBP tool to parallelize a
self-driving system using Simulink blocks for a robot
operating system (ROS). It partitioned For-Iterator blocks to
get higher performance. We further considered loop partition
into ILP formulation. Reference [17] synthesized SIMD
codes to accelerate the computing-sensitive model. We used
RISC-V vector library rather than automatic generation to
obtain higher performance.

For other parallelism enhancements, [9] adjusted the
feedback structure and assigned tasks using an operating
system. Reference [11] analyzed data dependencies in detail
to enhance the parallel potential. We also realized the
bottleneck of parallelism in Simulink control models and
enhanced its parallelism.

Except the MATLAB/Simulink, [19] generated efficient
C and Java codes using DFSynth, and actors are divided
into multiple layers in schedule analysis. Reference [21]
generated parallel codes from Lustre or Scade models. Refer-
ence [22] generated VHDL codes from RVC-CAL language.
Reference [23] introduced a tool called SESAM/ParIVAll
that generates efficient code for MPSoC.

There have also been some studies on barrier wait in
multi-threaded programming, such as OpenMP, Pthread, and
CUDA. Reference [39] summarized the benefits of barrier
synchronization without mutual exclusion and proposed
a ring algorithm to realize barrier wait. Reference [40]
compared different barrier wait algorithms and used butterfly
barrier with shared memory reduction to reduce latency.
Reference [41] researched about barrier on ARMv8 multi-
core architectures. The barrier wait was also used for GPU
calculation synchronization [42], [43]. In this study, we used
the barrier wait API of DR1000C whose overhead is smaller
than ordinary CPUs, consequently, the generated code is
effective and fit well for real-time systems.

VIII. CONCLUSION AND FUTURE WORKS
In this study, we proposed an Model-Based Parallelization
(MBP) workflow for MIMD processors with vector accelera-
tor (MIMDV) that inputs a MATLAB/Simulink model and
outputs parallel code that contains multiple layers divided
by barrier wait, significantly mitigating thread overhead.
In the workflow, a one-step integer linear programming
(ILP) was proposed to represent the parallel execution time
and determine the optimal solution, and a two-step ILP
was proposed to ensure both respectable performance and
practical solver time. In the experiments, we tested our

methods using random task graphs in computer simula-
tions and real-world applications in FPGA emulation of
DR1000C, which is an actual RISC-V MIMDV architecture
processor.

Because each step in our workflow is achieved using
existing tools or scripts, we will conduct research on fully
automatic parallel code generation using MBP and extend
it to other heterogeneous multi-core embedded systems with
GPU or Sycl accelerators. Themulti-threaded program can be
not only DR1000C hardware threads but also other languages
such as pthread. For the optimal algorithm, although we
designed ILP formulations to obtain a shorter execution time
for a new situation on MIMDV, the solver time can increase
when the number of tasks and threads increases. Therefore,
we will propose a heuristic solution to this problem and
consider other elements such as resource contention.
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