
Received 6 February 2024, accepted 27 February 2024, date of publication 5 March 2024, date of current version 3 May 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3373798

An Ultra-Short-Term Wind Power Forecasting
Model Based on EMD-EncoderForest-TCN
YU SUN 1, JUNJIE YANG2, XIAOTIAN ZHANG1, KAIYUAN HOU1, JIYUN HU1,
AND GUANGZHI YAO1
1State Grid Corporation of China, Shenyang 110179, China
2Shenyang Institute of Computing Technology, Chinese Academy of Sciences, Shenyang 110168, China

Corresponding author: Yu Sun (sunyu2701@163.com)

ABSTRACT Accurate wind power prediction helps to stabilize the operation of the power system, improve
the utilization rate of renewable energy, reduce dependence on traditional energy, and achieve sustainable
energy development. An ultra short-term wind power prediction method integrating EMD-EncoderForest-
TCN is proposed to address the difficulty of predicting wind power due to frequent changes in wind speed.
Firstly, the time-series input data of the model is decomposed into high-frequency and low-frequency com-
ponents using Empirical Mode Decomposition. Then, based on the EncoderForest model and TCN model,
differential information extraction is performed on the low-frequency and high-frequency components. The
EncoderForest model regularizes low-frequency information and captures trend patterns in the data. The
TCNmodel models the high-frequency components of time series to capture complex patterns and structures
in wind power. Finally, based on convolutional neural networks, the output results of each part are calculated
to achieve accurate prediction of wind power. Based on the operational data of an actual wind farm, conduct
a case study analysis. The results show that the proposed model can achieve accurate prediction of short-term
wind power, with a prediction accuracy improvement of 2.57%.

INDEX TERMS Wind power, empirical mode decomposition, encoderforest, temporal convolutional
network, ultra short term wind power prediction.

I. INTRODUCTION
Currently, the world is facing problems such as climate
change, resource shortage and environmental pollution, and
sustainable development is an important goal and guiding
principle for realizing the global energy transition [1], [2].
The global energy transition means shifting from traditional
fossil energy sources to renewable energy sources in order to
reduce environmental damage and pollution and achieve sus-
tainable development.Wind power as a kind of renewable and
clean energy has become a key solution for carbon emission
reduction and energy transition in various countries. It plays
an important role in promoting sustainable development, cop-
ing with climate change, and ensuring energy security [3],
[4], [5]. Global wind energy resources are very rich, and all
countries are actively developing and utilizing wind energy to
promote the development of clean energy. With the progress
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of technology and the growth of the industry, wind power
will play an increasingly important role in the global energy
system. With the vigorous development of the wind power
industry, the proportion of wind power connected to the grid
has been increasing [6], [7]. At the same time, wind power
generation is characterized by volatility and randomness [8].
Therefore, a large number of wind power connected to the
grid puts forward higher requirements for the safe and stable
operation of the power system. Accurate ultra short termwind
power prediction can help power grid dispatch departments
better understand the output power changes of wind farms.
This can more accurately arrange the power generation plan
of wind farms, thereby improving the access capacity of wind
power [9], [10]. Meanwhile, the output curve predicted by
the wind farm can optimize the output of conventional units,
achieving the goal of reducing operating costs. In addition,
ultra short term wind power prediction can describe the vari-
ation pattern of wind power output, and can take measures in
advance to enhance the safety, reliability, and controllability
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of the system [11], [12]. In summary, accurate ultra short term
wind power prediction is of great significance for improving
the operational efficiency of the electricity market, reducing
system operating costs, enhancing system safety, reliability,
and controllability.

A large number of researchers have conducted research on
ultra short term wind power prediction. There are three main
methods for predicting ultra short term wind power: statis-
tical methods, physical methods, and artificial intelligence
methods [13], [14], [15]. The ultra short term wind power
prediction based on statistical methods establishes statistical
models based on historical wind speed and power data, such
as time series analysis, regression analysis, etc. This method
predicts future power output by analyzing historical data.
Stathopoulos et al. [16] explored the problem of wind power
prediction through numerical prediction models and statis-
tical prediction models. The results indicate that accurate
wind power prediction can be achieved under reliable local
environmental data conditions. González Sopeña et al. [17]
proposed a benchmark framework for wind power predic-
tion models based on statistical data. Research has shown
that modal decompositionmodels exhibit higher performance
compared to other statistical models. Sun et al. [18] pro-
posed a spatiotemporal wind power prediction method based
on multi factor extraction. The model validates the supe-
riority of the proposed method in statistical wind power
prediction. A mathematical model is established based on
meteorological conditions and the working principle of wind
turbines for ultra short term wind power prediction using
physical methods. This method considers factors such as
wind speed, direction, and unit characteristics to predict
power output. Guo et al. [19] constructed a short-term wind
power prediction model considering wake effects. The article
physically enhances the statistical prediction model, indicat-
ing that the accuracy of wind power prediction based on
physical principles has been greatly improved. Nasery and
Aziz Ezzat [20] proposed a yaw adjustment wind power curve
modeling approach, which improved the accuracy of wind
power simulation. Zhou et al. [21] proposed a wind power
prediction method based on hybrid physical processes and
machine learning. Research has shown that a hybrid model
of physics and machine learning can simultaneously lever-
age the advantages of both physical models and machine
learning methods. With the rapid development of artificial
intelligence, more and more researchers are using artificial
intelligence methods to predict wind power. Artificial intelli-
gence based ultra short term wind power prediction utilizes
artificial intelligence algorithms such as neural networks,
support vector machines, random forests, etc. This method
establishes a predictionmodel by learning and training a large
amount of historical data. This method can better capture
complex nonlinear relationships and spatiotemporal changes.
Wang et al. [22] proposed a wind power prediction model
based on deep learning, which integrates multiple predic-
tion learners through a multi-layer stacked prediction model.

Research has shown that the model has good generalization
performance. Liu et al. [23] proposed a wind power predic-
tion model based on sub attention and convolutional neural
networks. The model integrates global and local information
of wind power timing power, which can effectively improve
the accuracy of the model. Abou Houran et al. [24] proposed
a hybrid solar and wind power prediction method based on
deep learning. This model can accurately predict wind and
solar power.

In summary, most scholars predict wind power based on
the fluctuation patterns of wind power and the characteris-
tics of weather changes. Wind power has randomness and
volatility, and using only wind power for prediction cannot
accurately track the detailed changes in wind power [25],
[26]. However, frequent changes in wind speed are the main
reason for the difficulty in predicting wind power. There-
fore, it is necessary to study the fluctuation patterns of wind
power, and decomposing different fluctuation frequencies
can improve the accuracy of wind power prediction. Mean-
while, for the first time, the EncoderForest model and TCN
model are integrated to further extract information features
at different frequencies. In summary, this paper proposes
an ultra-short-term wind power prediction method that inte-
grates EMD-EncoderForest-TCN. The method proposed in
this paper decomposes wind power into high-frequency and
low-frequency components. The differentiated prediction of
high-frequency and low-frequency components can improve
the accuracy of wind power prediction. The model structure
is shown in Figure 1. First, the model timing input data is
decomposed into high-frequency and low-frequency compo-
nents by means of Empirical Modal Decomposition (EMD).
Then, based on the EncoderForest model and Temporal Con-
volutional Network (TCN)model, differential information
extraction is performed on the low-frequency and high-
frequency components. The EncoderForest model regularizes
low-frequency information and captures trend patterns in the
data. The TCNmodelmodels the high-frequency components
of time series to capture complex patterns and structures in
wind power. Finally, based on convolutional neural networks,
the modal functions are superimposed to achieve accurate
prediction of wind power.

The wind power prediction method based on the EMD-
EncoderForest-TCN model exhibits higher robustness and
a series of significant advantages compared to traditional
prediction methods. Wind power data usually exhibits strong
nonlinear and non-stationary characteristics, which makes
traditional prediction methods difficult to cope with. EMD
(Empirical Mode Decomposition) can decompose complex
nonlinear and non-stationary signals into a series of intrinsic
mode functions (IMFs) with physical significance. In addi-
tion, compared to other models with weaker aliasing phenom-
ena, the EMD model has stronger intuitiveness and physical
significance, making it easier for engineering understanding
and application in the training process of machine learn-
ing. Thus, effectively processing these complex features and
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FIGURE 1. Structural diagram of ultra short-term wind power prediction
model.

improving the robustness of the prediction model. In practical
applications, wind power data is often affected by noise and
outliers. EncoderForest combines the prediction results of
multiple base models through ensemble learning, effectively
reducing the impact of noise and outliers on the prediction
results, and enhancing the robustness of the model. TCN
can handle long-term dependency relationships. This enables
the prediction method based on EMD-EncoderForest-TCN to
adapt to the needs of long-term wind power prediction and
maintain the robustness of the prediction results. By combin-
ing EMD, EncoderForest, and TCN, this method can fully
utilize their respective advantages and achieve high-precision
prediction of wind power. This not only contributes to the
stable operation of the power system, but also provides more
accurate data support for the operation, maintenance, and
management of wind farms. This method can be flexibly
adjusted and optimized according to actual needs. For exam-
ple, predictive performance can be optimized by adjusting
parameters such as the decomposition level of EMD, the
number and type of base models in EncoderForest, and the
network structure of TCN. In addition, this method can also
be combined with other advanced algorithms and models to
further expand its application scope and functionality.

II. GUIDELINES FOR MANUSCRIPT PREPARATION
To accurately evaluate the fusion EMD-EncoderForest-
TCN approach to ultra-short-term wind power prediction,
each component of the model is presented in this chap-
ter. SectionII-A describes the EMD-based approach to

decompose modeled wind power time series data into
high-frequency and low-frequency components. SectionII-B
describes the information extraction of low-frequency power
in wind power based on the EncoderForest model to capture
trending patterns in the data. SectionII-C describes the mod-
eling of high-frequency components in wind power based on
TCN to capture the complex changing patterns and structures
in wind power. SectionII-D describes the superposition of
modal functions by convolutional neural networks to ulti-
mately achieve accurate wind power prediction.

A. TIME SERIES DECOMPOSITION METHOD FOR WIND
POWER BASED ON EMD
EMD is a method used to process nonlinear, nonsmoothed
signals. Its main objective is to decompose a complex signal
into a series of simple oscillatory components [27], [28].
These components are called intrinsic mode functions (IMF).
These IMFs represent the characteristics of different time
scales in the signal. The structure and flow of EMD can be
described as follows [29]:

(1) Identify all local extremes of the wind power time
series, including local maxima and minima.

(2) All these local maxima and minima were fitted with
a cubic spline interpolation function to form the upper and
lower envelopes of the original data, respectively. The upper
envelope is Xu(t), and the lower envelope is Xl(t).

(3) Calculate the average envelope of the upper and lower
envelopes h(t) = X (t) − m(t).
(4) The original data sequence is subtracted from the mean

envelope X (t) to obtain a new data sequence m(t) = [Xu(t)+
Xl(t)]/2.

(5) Determine whether h(t) satisfies the conditions of the
IMF. IMF needs to satisfy two conditions: first, the number
of extreme value points and the number of over-zero points
must be equal or differ by at most one in the entire data series.
The second is that at any moment, the average of the upper
envelope formed by the local extreme value points and the
lower envelope formed by the local extreme value points is
zero.

(6) If h(t) satisfies the condition of IMF, then it is the first
IMF of the original data sequence, denoted as IMF1.

(7) If h(t) does not satisfy the condition of IMF, then
consider h(t) as a new original data sequence and repeat
steps 1-4 until a h(t) is obtained that satisfies the condition
of IMF.

(8) Subtract the first IMF from the original data sequence
X (t) to obtain the residual r(t) = X (t) − IMF1.

(9) Consider residual r(t) as the new original data sequence
and repeat steps 1-8 until all IMFs and the final residual term
are obtained. This process will continue until the residual
term becomes a monotonic function or constant.

With the above steps, the original data sequence X (t) is
decomposed into a series of IMFs and a residual term. These
IMFs are arranged in the order of frequency from high to
low, and each IMF represents an oscillating component with
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Algorithm EMD
Input: Original signal; Stop criterion (residual threshold)
Output: Intrinsic Mode Function (IMF) component
if r(t) = 0:

r(t) = X (t)
Upper and lower envelope lines: h(t) = X (t) − m(t)
Mean envelope: m(t) = [Xu(t) + Xl(t)]/2
Extracting fluctuation details: h′(t) = r(t) − m(t)
Update IMF components: h(t) = h(t) − h′(t)
Update residual signal: r(t) = X (t) − IMF1
IMFs.append(h(t))

return IMFs

different frequencies in the original data series. Empirical
modal decomposition is a method to deal with nonlinear and
nonsmoothed signals. It can decompose the wind farm output
power signal into a series of quasi-single component sig-
nals based on different time scale characteristics. Each IMF
component represents the oscillatory component of the wind
power signal on different time scales. In this way, the dynamic
characteristics of wind power can be better understood. The
algorithm pseudocode is as follows.

Wind speed has fluctuations, randomness, and a certain
periodicity, so wind power also has similar characteristics.
The purpose of EMD decomposition is to extract different
features in the signal, such as frequency, amplitude, phase,
etc., to better understand and analyze the properties of the
signal. The decomposed IMF components have different time
scales, reflecting the local characteristics of the signal at dif-
ferent time scales. Therefore, the number of IMF components
obtained through decomposition depends on the complexity
of the signal itself and the accuracy requirements of the
decomposition. Through repeated experiments, wind power
is decomposed into five signals based on empirical mode
decomposition, which can fully extract temporal data features
while generating less noise and interference. The goal is to
achieve good wind power prediction results.

B. THE LOW-FREQUENCY POWER PREDICTION OF WIND
POWER BASED ON EncoderForest
EncoderForest is a tree set model based on the autoencoder
model [30]. The core idea is to design an effective process that
enables the forest to reconstruct the original path by using the
Maximum Compatible Rule (MCR) defined by the decision
path of the tree. The EncoderForest model is an effective
machine learning method that can be applied to various
prediction and classification tasks. EncoderForest has made
improvements on the basis of random forests, introducing the
idea of encoding [31]. Random forest is an ensemble learning
method based on decision trees. It improves the accuracy
and stability of predictions by constructing multiple decision
trees and integrating their prediction results [32]. In a random
forest, each decision tree is constructed through random sam-
pling and feature selection of training data. This can increase
the diversity of the model and reduce the risk of overfitting.

FIGURE 2. Generator based on EncoderForest.

In EncoderForest, each decision tree is treated as an encoder
used to transform input data into an easy to process encoding.
These codes contain the main features and information of the
input data, providing better input for subsequent models.

Specifically, the algorithmic process of EncoderForest is
as follows:

Constructing Encoder: Based on Random Forest, multiple
decision trees are constructed by self-sampling and feature
random selection, each of which encodes the input data and
generates a coding vector. These encoding vectors constitute
the output of the Encoder.

Training Decoder: Using the generated coding vectors for
prediction, various machine learning algorithms, such as neu-
ral networks, support vector machines, etc., are utilized to
learn and predict the coding vectors.The goal of Decoder
is to learn the mapping relationship from coding vectors to
the target variables, so as to achieve prediction of the target
variables. The model generator is shown in Figure. 2.
Perform prediction: new input data is fed into the Encoder

to generate the corresponding encoding vectors. These coding
vectors are then input into the trained Decoder to get the final
prediction results. The final model prediction result is shown
in Equation 1.

F(x) =

∑
fi(x) (1)

where F(x) is the prediction of the random forest and fi(x) is
the prediction of the ith decision tree.

C. HIGH-FREQUENCY POWER PREDICTION FOR WIND
POWER BASED ON TCN
TCN is a neural network for processing sequence data [33],
[34]. It is based on the convolutional idea of Convolutional
Neural Networks (CNNs), but performs convolutional oper-
ations only in the temporal dimension of the sequence data,
rather than in the spatial dimension. This maintains the tem-
poral information of the sequence data and makes the output
dependent only on the current and previous inputs without
being affected by future inputs. TCN effectively improves the
range of sensibility of the traditional CNN model by intro-
ducing dilated convolution, causal convolution, and residual
networks [35]. Thus the model is able to enhance the breadth
of the processed data and is a convolutional algorithm that
performs well in time series prediction. Among them, causal
convolution is able to avoid the problem of data leakage
caused by future data being recognized by the model in the
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process of processing data. Whereas, dilation convolution
expands the horizon interval of time series data by stacking
fewer network layers, which improves the feature mining
capability of the input data. At the same time, TCN also
uses the residual structure of ResNet to replace the convo-
lutional layer, thereby training a deeper network, as shown
in Equation 2. The residual module includes two layers of
extended convolution, two layers of weight normalization,
two layers of activation function ReLU, and two layers of
Dropout. Unlike ResNet, standard ResNet adds input directly
to output. In TCN, due to the possibility of inconsistent input
and output dimensions, 1∗1 convolution is first introduced to
change the input feature dimension, and then added to the
output.

H (T ) =

n−1∑
i=0

f (i) · xT−d ·i (2)

o = Activation(x + F(x)) (3)

where, T is the time series element, f is the filter, n is the
filter size, d is the inflation factor, xT−d ·i is the historical data,
Activation is the output data, and 6 is the residual calculation.
The advantages of the TCN model are as follows: (1) Due

to the adoption of a convolutional neural network struc-
ture, TCN can perform convolution operations in parallel,
improving the efficiency of the model. This enables TCN to
have better performancewhen processing long sequence data.
(2) The receptive field in TCN can be adjusted by parameters
such as layer number, dilation factor, and filter size. This
allows the model to capture information at different time
scales more flexibly. This flexibility is crucial when dealing
with sequence data with multiple time scales. (3) Due to the
fact that the gradient of TCN is not in the temporal direction,
but in the depth direction of the network. Therefore, when
the input length is longer, the gradient in TCN becomes
more stable. This helps to solve the problem of vanishing
or exploding gradients, allowing the model to train more
effectively. (4) Due to the fact that TCN has only one filter
per layer, its memory usage is relatively low. This makes TCN
more feasible in processing large-scale sequence data.

Through the dilated convolution structure of TCN, the
effective window size of the convolutionmodule will increase
exponentially with the number of layers. After the model
construction is completed, use the training dataset to train the
TCNmodel. Improve the accuracy and stability of predictions
by optimizing the parameters and structure of the model. The
model achieves wider data feature mining with fewer layers,
which can effectively solve the problem of large input data
scale in wind power high-frequency power prediction.

D. WIND POWER PREDICTION BASED ON
CONVOLUTIONAL NEURAL NETWORKS
By using convolutional neural networks for data convolution
calculation, the prediction results of different modules are
stacked to achieve accurate prediction of wind power. Con-
volutional neural networks (CNN) are common algorithms

FIGURE 3. TCN model structure diagram.

in deep learning and widely used in image processing [36].
The CNN model structure is shown in Figure 2. The CNN
model preprocesses the original image data and normalizes
the image amplitude. Currently, in load forecasting, scholars
treat load data as different grayscale points and preprocess
them. The CNN model consists of two parts: convolutional
layer and pooling layer. In the convolutional layer, the feature
matrix of the input data is generated through convolutional
kernel calculation, and the formula for calculating the feature
matrix is shown in equation 5. Train using gradient descent
and backpropagation algorithms, and the gradient formulas
for convolutional and pooling layers are shown in equation 6
[37].

W ′
=

(W + 2q− m)
s

+ 1 (4)

∂E
∂Wij

=
∂E
∂Vij

∂Vij
∂Wij

= δij
∂Vij
∂Wij

(5)

where, W is the feature weight matrix, V is the input matrix,
m is the size of the convolution kernel, and q is the number
of zero padding layers.

CNN models share convolutional kernels and can cap-
ture high-dimensional data features. At the same time,
there is no need for manual feature selection, and linear
and nonlinear relationships between different variables are
explored through weight feature matrices. By using CNN
convolutional layers to calculate the low-frequency and high-
frequency prediction components of wind power, accurate
prediction of ultra short term wind power can be achieved.
The pseudocode based on the EMD-EncoderForest-TCN
model is shown below.

III. RESULTS AND DISCUSSIONS
A. EVALUATION INDICATORS
This paper adopts Normalized Mean Absolute Error
(NMAE), Normalized Root Mean Square Error (NRMSE),
and Coefficient of Determination (R2) as metrics for eval-
uating wind power forecasts. NMAE measures average
prediction errors, NRMSE emphasizes larger errors by squar-
ing them, and R2 quantifies the fit between predicted and
actual values. The calculation methods for these metrics are
outlined below:

NMAE =
1
n

∑n

t=1

∣∣∣∣ ŷt − yt
Cap

∣∣∣∣ (6)
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FIGURE 4. TCN model structure diagram.

Algorithm EMD-EncoderForest-TCN
def wind_power_prediction (wind_data, emd_component_
num,encoder_forest_params, tcn_params):

emd = EMD()
imfs = emd.emd(wind_data)
high_frequency_component = imfs[0:i]
low_frequency_component = np.sum(imfs[i:], axis=0)
# Using EncoderForest model for low-frequency

components
encoder_forest = EncoderForest(∗∗encoder
_forest_params) low_frequency_prediction =

encoder_forest.predict(low_frequency_component)
# Using TCN model for high-frequency components
tcn = TCN(∗∗tcn_params)
high_frequency_prediction=

tcn.predict(high_frequency_component)
# Combination prediction results
final_prediction = low_frequency_prediction +

high_frequency_prediction
return final_prediction

NRMSE =
1
n

∑n

t=1

(
ŷt − yt
Cap

)2

(7)

R2 = 1 −

T∑
t=1

(
ŷt − yt

)2
T∑
t=1

(
ŷt − ȳ

)2 (8)

where ŷt is the actual power, yt is the predicted value, Cap is
the rated capacity of the wind farm, ȳ is the average value of
power, and n is the number of sampling points.

B. EVALUATION INDICATORS\

Data quality is a critical foundation for ensuring neural net-
works achieve their intended performance. The proposed

TABLE 1. Parameter value.

method requires a coverage of over one year, aligningwith the
common demands of current deep learning approaches. The
dataset utilized originates from the historical measurements
of a wind farm in China, spanning from January 2021 to
December 2022. To address issues of missing and anomalous
data, we initially calculate the upper and lower quartiles of the
historical data distribution to identify outliers, subsequently
replacing both outliers and missing values. The replacement
strategy employs a moving average technique. It’s important
to note that models trained on local data are only effective
locally. Deploying prediction systems in other wind farms
necessitates training models with data from those specific
locations.

The deep learning models involved in this article are all
developed on the pytorch (version 1.7.1) framework through
the python (version 3.7.9) language.

Utilizing the aforementioned dataset, we configured the
parameters including optimizer, learning rate, model depth,
and other relevant settings as detailed in Table 1. Within
the table, the TCN is constructed by stacking three neu-
ral network layers, with the internal cell connection rules
adhering to standard default settings. The hyperparame-
ters values, including Optimizer, Learning Rate, Epoch,
and Batch Size listed in the table, were all determined
through the application of a Bayesian stochastic optimization
plugin.
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FIGURE 5. Wind power forecasting results of different methods. The forecasting error of each method increases with the extension of
the lead time and is influenced by the uncertainty level of wind speed fluctuations, resulting in significant errors at certain moments.
However, compared to the control model, the proposed method yields results that are closer to the actual values, with smaller error
magnitudes, demonstrating higher precision.

TABLE 2. Allocation plan of each modal component and its prediction
accuracy.

C. EMD DECOMPOSITION RESULTS FOR WIND POWER
SERIES
Based on the original data, this article selects 240h data
points at intervals as a group. One group of data is taken
as an example. The EMD method is used to decompose the
original waveform signal into the classification of eachmode.
The original power sequence of one selected group and its
first five modal components are shown in Figure 4. Each
component reflects different characteristics of wind power
output. The IMF4 and IMF5 components mainly manifest
themselves as high-frequency fluctuations, and their ampli-
tudes change significantly with time. IMF1∼IMF3 shows
a smoother fluctuation trend. The information contained in
different modal components is not consistent, and a targeted
feature extraction network model should be established.

Based on the above modal decomposition results,
we designed multiple modal component allocation schemes
based on the differential extraction capabilities of Encoder-
Forest and TCN for low-frequency fluctuation information
and high-frequency information. The input modal component
information of EncoderForest gradually increases from IMF1
to IMF1-4, and the input information of TCN gradually
decreases from IMF2-5 to IMF5. The prediction accuracy
obtained by different plans is shown in Table 2. It can be seen
from the table that plan 2 has the highest accuracy, and this
type of allocation plan will be used as fixed parameters of the
model in the future.

D. COMPARISON WITH TRADITIONAL METHODS
To assess the superiority of the proposedmethod over conven-
tional power prediction models, this section compares it with
several benchmark models including AutoFormer, Reformer,
Transformer, LSTM, NBEATS, TCN, SVM, and XGBoost.
The essential training and modeling parameters for these
models are documented in Table 9, located in the Appendix.
The forecasting outcomes for four different types of power
fluctuation scenarios are depicted in Figure 5. In the figure,
the actual power fluctuations are represented in black, while
the predictions made by the proposed method are shown in
red.

The forecasting errors of all methods tend to increase
as the prediction lead time extends, and they are affected
by the degree of uncertainty in wind speed fluctuations,
leading to significant errors at certain moments. Among the
four scenarios, both the wind speed increase and decrease
phases show a clear pattern of escalating errors, while sce-
narios with minor wind speed changes are more prone to
random errors. However, compared to the benchmark mod-
els, the proposed method’s predictions are closer to the
actual values, with smaller error spikes, indicating supe-
rior precision. A comprehensive comparison reveals that
the proposed method exhibits a stronger capability to accu-
rately match actual power, demonstrating higher overall
accuracy.

To further compare the advantages of the proposed meth-
ods, we use NRMSE, NMAE, and R2 as indicators to
calculate the prediction errors of various methods at differ-
ent time steps. The resulting error histograms are shown in
Fig. 6 - Fig. 8. As can be seen from the figure, the proposed
method achieves the lowest prediction error in each prediction
step. Among themodels, Reformer, LSTM, and SVM showed
higher errors. The Transformer’s underperformance is likely
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TABLE 3. Forecasting error for various methods at the fourth hour.

TABLE 4. Ablation protocol.

TABLE 5. Prediction error of the 4th-hour for different ablation experimental test plans.

FIGURE 6. Stepwise NMAE for various models.

FIGURE 7. Stepwise NRMSE for various models.

due to its focus on long sequences, which doesn’t align well
with the short temporal spans analyzed in this study.

Given the wind power industry’s focus on the accuracy
of ultra-short-term power forecasting at the 16th step (the
fourth hour), which serves as a standard for assessing wind
farms’ grid integration, we have documented the forecasting
error of each method at this specific hour as a case in point.

FIGURE 8. Stepwise R2 for various models.

From the data, it can be concluded that the proposed method
can reduce the NMAE value by an average of 2.49% and
the NRMSE value by an average of 2.65%. The accuracy,
as measured by the R2 value, can be improved by an average
of 5.48%. This superior performance is primarily attributed to
the innovative integration of EMD, EncoderForest, and TCN
techniques, which effectively decompose and analyze wind
speed variations, capturing complex patterns more accurately
than traditional models.

E. ABLATION EXPERIMENT
In order to analyze the effectiveness of EMD decomposition
and TCN and EncoderForest in the proposed method, this
section designs an ablation experiment as shown in Table 4.
‘
√
’ in the table indicates that each frequency domain com-

ponent obtained by EMD decomposition is used as data
input, and ‘-’ indicates that the EMD method is not used
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FIGURE 9. Power prediction results of different ablation experimental test plans. Overall, predictions without frequency domain
decomposition (CM1, CM2) show larger deviations, both in terms of random errors and errors at the fourth hour. This is most
evident in scenario B. Additionally, methods using EncoderForest and TCN to parallel process the decomposition results exhibit
smaller bias and less frequent large random fluctuations, ranking just below the proposed method among the comparison
plans.

and the original data is input. The part of the table titled
‘‘IMF/Original’’ is used to indicate whether the information
input to the module is the modal component decomposed
by EMD or the original power data. Mainly designed the
following types of test plans:

• Test whether the EMD decomposition scheme is
effective. The experiment includes CM1-CM6, where
CM1-CM3 is a method without EMD, and CM4-CM6
is a method using EMD.

• Test the adaptability of the EncoderForest module to
low-frequency components. The experiment includes all
original information as input information, mainly CM1
and CM2. The input information is all modal component
information, mainly CM4 and CM5.

• Test the adaptability of the TCN module to high-
frequency components. The experiment includes all
original information as input information, mainly CM1
and CM3. The input information is all modal component
information, mainly CM4 and CM6.

Based on the described approach, the power prediction results
for four scenarios of output changes are illustrated in Figure 8.
In the figure, the red curve represents the prediction results of
the proposed method, while the curves in other colors corre-
spond to the results from various ablation experimental plans.
Overall, predictions not involving frequency domain decom-
position (CM1, CM2) exhibit larger deviations, evident in
both error randomness and error amplitude, at the fourth hour,
particularly in scenario B. Moreover, the method that uses
EncoderForest and TCN to process decomposition results in
parallel shows smaller bias and fewer occurrences of signif-
icant random fluctuations, ranking just below the proposed
method among the comparison plans. A comprehensive com-
parison of curve fitting across various prediction scenarios

FIGURE 10. Stepwise NMAE for different ablation experimental test
protocols.

FIGURE 11. Stepwise NRMSE for different ablation experimental test
protocols.

FIGURE 12. Stepwise R2 for different ablation experimental test
protocols.

demonstrates that the proposed method outperforms others,
confirming its advantages.
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TABLE 6. The 4th-Hour forecasting accuracy metrics of SCS1.

TABLE 7. The 4th-hour forecasting accuracy metrics of SCS2.

TABLE 8. Percent improvement in accuracy of the proposed method.

We still use NMAE, NRMSE, and R2 as evaluation indi-
cators for the prediction accuracy of each step size, and the
results are shown in Fig.10, Fig.12 respectively. As can be
seen from the figure, in general, the prediction errors of
various methods gradually increase with the prediction step
length. Among them, the errors of CM1-CM3 that do not
use the EMD method increase significantly, and the worst
performance is CM3 that uses TCN alone. Among these three
types of methods, the best is CM1 which uses TCN and
EncoderForest. Among the CM4-CM6 that use the modal
component data obtained by EMD, the best performance is
the CM6 that uses TCN as the encoder alone. The effects of
CM4 and CM5 are similar.

Further analysis of the 16th step prediction errors from
various ablation experimental plans is presented in Table 5.
The table reveals that methods incorporating Empirical
Mode Decomposition (EMD) exhibit lower prediction errors

compared to those without EMD (CM1-CM3), with an aver-
age reduction of 1.63% in NMAE error, 2.41% in RMSE
error, and an average improvement of 5.24% in R2. When
compared to methods that do not utilize EncoderForest for
extracting low-frequency modal information (CM1, CM2,
CM4, CM5), the proposed method achieves a reduction of
1.12% in NMAE error, 1.67% in NRMSE error, and an
average improvement of 3.69% in R2. Additionally, against
methods lacking TCN for high-frequency component extrac-
tion (CM1, CM3, CM4, CM6), the proposed method shows
a reduction of 1.09% in NMAE error, 1.59% in NRMSE
error, and an improvement of 3.68% in R2. These findings
underscore the superior prediction accuracy of the proposed
method, highlighting the significant contribution of the EMD
method, followed by the EncoderForest module, and finally
the TCN module in enhancing forecasting precision.

F. VALIDATING EFFECTIVENESS ON OTHER WIND FARMS
To validate the effectiveness of the proposed method on
data from wind farms in other locations, we conducted addi-
tional tests using two years of operational data from wind
farms in Northwest China (the first supplementary case study,
SCS1) and Northeast China (the second supplementary case
study, SCS2). The data underwent the same integrity checks
and cleaning processes as described previously and were
compared against the same control models mentioned ear-
lier. The predictive accuracy of the test sets is detailed in
Tables 6 and 7.
The results demonstrate that the proposed method also

exhibits high performance on additional datasets. In the first
supplementary case study, the method achieved an average
reduction of 1.99% in NMAE error, 2.27% in NRMSE error,
and an average increase of 6.43% in the R2 accuracy metric.
In the second supplementary case study, the method saw
an average reduction of 1.49% in NMAE error, 1.91% in
NRMSE error, and an average increase of 5.06% in the R2
accuracy metric. The performance improvements in different
regions highlight our model’s adaptability and reliability in
forecasting wind power, demonstrating its broad applicability
across varied environmental conditions.

IV. CONCLUSION
Enhancing the precision of ultra-short-term wind power fore-
casting is essential for ensuring the stability of the power
grid and boosting the revenues of wind farms connected
to it. To address the challenges posed by the multi-scale
stochastic variations in wind speed, which complicate wind
power prediction, we have developed an integrated short-term
wind power predictionmethod that combines EMD, Encoder-
Forest, and TCN. This methodology underwent evaluation
using authentic operational data, demonstrating enhance-
ments across key evaluation metrics as detailed in Table 8.
The principal findings include:

• Modal decomposition is a crucial strategy for enhanc-
ing ultra-short-term wind power prediction accuracy.
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By differentially extracting information from various
frequencymodes, our method leverages the EncoderFor-
est module for low-frequency trend data and the TCN
module for high-frequency details, significantly boost-
ing accuracy. The results show a reduction in NMAE
error by an average of 2.49% and in NRMSE error by
2.65%, with an average increase of 5.48% in the R2
accuracy metric.

• Regarding the impact of model components, the EMD
method stands out, reducing NMAE error by 1.63%,
RMSE error by 2.41%, and enhancing R2 by 5.24% on
average. The EncoderForest module, focusing on low-
frequency information, follows closely, with a reduction
in NMAE error by 1.12%, NRMSE error by 1.67%, and
a 3.69% average increase in R2, underscoring the critical
role of trend information in ultra-short-term prediction.
The TCN module’s extraction of high-frequency details
also contributes, reducing NMAE error by 1.09%,
NRMSE error by 1.59%, and improving R2 by 3.68%.

It can be seen from the existing research conclusions that
the current challenge of ultra-short-term power prediction
mainly lies in improving the prediction accuracy in step 16.
The power prediction trend information and fluctuation
details should be further jointly considered, and ultra-short-
term numerical weather forecasting should be introduced,
which will effectively increase the prediction accuracy of the
4th hour time node. This will be one of the focuses of our
future research work.

V. DISCUSSION
The accurate prediction of wind power based on EMD-
EncoderForest-TCN has various potential applications.
Firstly, the wind power prediction results can provide accu-
rate information for power system dispatchers about the
future generation of wind farms. This helps dispatchers to
develop more reasonable power generation plans, optimize
the allocation of power resources, and ensure the stable oper-
ation of the power system. Secondly, accurate wind power
prediction results can provide important basis for themanage-
ment of energy storage systems. Energy storage systems can
provide supplementary electricity when wind power output
is insufficient to balance power supply and demand. Finally,
wind power forecasting results can provide decision support
for trading in the electricity market. Buyers and sellers in the
electricity market can evaluate future electricity supply and
demand based on wind power forecasting results and develop
reasonable trading strategies. In summary, the wind power
prediction results based on the EMD-EncoderForest-TCN
model have broad application prospects in power system
scheduling and optimization, energy storage system man-
agement, wind farm operation and optimization, electricity
market trading, and renewable energy policy formulation.
These applications can not only improve the efficiency and
reliability of the wind power industry, but also promote the
integration and utilization of renewable energy, and promote
the transformation and upgrading of the energy structure.

VI. APPENDIX

TABLE 9. Compare model parameter settings.
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