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ABSTRACT Medical extended reality (MXR) applications are rapidly evolving with innovative use cases
in medical training and surgical planning, among others. MXR benefits from seamless connectivity, like
that promised by 5G, to facilitate its functionality where users can interact with virtual content, share views,
and collaborate. In this paper, we identify practical implementation approaches for MXR connectivity and
characterize the traffic models of selected example MXR applications. The traffic models were obtained
through a data-oriented workflow to showcase general procedures and considerations in modeling traffic
patterns for diverseMXR applications. The proposedmodels correlate the network traffic with specificMXR
deployments (e.g., remote rendering, display mirroring) and events like head rotation, hand movements, and
image download. Accordingly, they can be used to formulate the traffic models for other MXR applications
to support an application-specific approach to the evaluation of relevant MXR connectivity risks.

INDEX TERMS 5G, medical extended reality, biomedical communications.

I. INTRODUCTION
Medical extended reality (MXR) encompasses augmented
reality (AR) and virtual reality (VR) applications in health-
care use cases. The U.S. Food and Drug Administration
(FDA) continues to receive MXR-related device submissions
for diverse medical uses including in the orthopedic, radi-
ology, physical medicine, ophthalmic, and cardiovascular
areas [1]. MXR applications commonly use commercial-off-
the-shelf head mounted display (HMD) to overlay virtual
content over real images in the case of AR or immerse the
user in a virtual environment populated by virtual content in
the case of VR [2]. Network connectivity is used to facilitate
the communication between MXR system components (e.g.,
application server, HMD, and/or the other non-HMD clients)
and enable the envisioned integration of MXR in use cases
like telemedicine and telesurgeries. Accordingly, remote
healthcare providers can assist in virtual diagnosis and
treatment sessions, coordinate with other specialists, and
allow trainees to participate in realistic learning.MXR is used
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in multiple medical domains to facilitate access to medical
information for diagnosis, treatment, and training purposes.
For example, the FDA hosts a public list of medical devices
that incorporate AR and VR that the agency has reviewed
and authorized for marketing [1]. Multi-user coordination
and access to remote virtual content are MXR features that
rely on network connectivity to support the device-specific
communication requirements and enable the intended device
function [3].
The need to support diverse use cases requiring different

connectivity quality of service (QoS) profiles highlights
the importance of communication infrastructure that can be
easily adapted to accommodate those profiles. 5G has been
identified as one of the promising connectivity solutions
for enabling MXR applications. For example, field trials
for 5G-enabled medical visualization systems have been
conducted by healthcare providers in partnership with 5G
service operators [4], [5]. Furthermore, in a recent 5G
landscape analysis report [6], the Medical Device Innova-
tion Consortium (MDIC) identified 5G-Enabled Simulation
with XR, including telementoring and immersive training,
as a 5G-enabled healthcare use case alongside 5G-enabled
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robotics, mobile units, and remote care. The report also
discusses knowledge gaps and practical considerations for
translating the promises of 5G connectivity into realis-
tic implementations. Those include the need for novel
approaches for ongoing QoS monitoring, unestablished and
varying communication key performance indicators (KPIs)
for 5G-enabled use cases, and the lack of evaluation methods
for medical device functions enabled by 5G. As a cellular
network serving large geographic areas, 5G enables high-
throughput, low-latency connections and facilitates mobile
edge computing (MEC), which can contribute to deploying
MXR applications in hospitals, training facilities, and remote
locations. 5G improvements compared to previous network
generations are enabled by a plethora of technical advance-
ments across the radio access and core networks including
millimeter wave communication, novel waveforms, and
network slicing. Although 5G has been discussed at length
as an MXR enabler, existing HMDs are not yet 5G-native
and a 5G gateway device (e.g., smartphone, customer on-
premises equipment) is needed to facilitate 5G connectivity.
Furthermore, XR development environments are equipped to
incorporate communication using technologies like local area
networks (LAN) and Wi-Fi. A clear distinction between 5G
and LAN technologies is the limited user control over 5G
network configurations and operating conditions leading to
a third party having the primary influence over the QoS that
an MXR application receives.

Although discussions of the MXR connectivity aspects
have been largely in the 5G context, there is a lack of
representative traffic models that address MXR use-cases
and deployment features, which constitute foundational
knowledge of MXR system behavior, regardless of the
enabling connectivity modality. MXR traffic models can help
with the design and evaluation ofMXR devices. For example,
device developers can use them to inform their understanding
of the QoS needs for a device, which influences the selection
of a wireless technology that can support those needs
as recommended in the FDA guidance document Radio
Frequency Wireless Technology in Medical Devices [7].
Network administrators can also benefit from these models
in the planning for network resource allocation and service
provisioning. In this paper, we take a step toward bridging
the gap in traffic modeling by proposing flexible MXR traffic
models that can inform the development, evaluation, and
realistic deployment of MXR devices. To do so, we develop
MXR application examples that capture the diverse deploy-
ment options of MXR in realistic scenarios where the
HMD device as the anchor node interacts with different
companion devices. The trafficmodels were obtained through
a data-oriented workflow to showcase general procedures and
considerations in modeling traffic patterns for diverse MXR
applications. Example equipment, deployments, and MXR
applications were used for model development. The proposed
models attempt to capture small-scale components of MXR
applications like hand movements, head rotation, image
download, etc. to facilitate the simulation of other MXR

applications and support an application-specific approach to
the evaluation of relevant connectivity risks. Accordingly, the
contributions of this paper are three-fold. First, we investigate
the link traffic patterns in connected MXR applications
by developing an end-to-end workflow; second, we collect
and characterize the traffic patterns in representative use
cases using data-oriented methods; third, we reproduce the
traffic loads by implementing the obtained traffic models and
validating the simulated traffic.

Table 1 lists the abbreviations used in this paper. The
remainder of the paper is organized as follows. Section II
summarizes works related to connectivity in MXR and
relevant traffic modeling literature. The system model used
for identifying different MXR use scenarios is introduced in
Section III. The overview of the adopted modeling approach
is explained in Section IV, which is followed by Section V
where the data collection activities are detailed. Section VI
reports the results and validation work. Section VII concludes
the paper.

II. RELATED WORK
The subject of this manuscript is the development of MXR
application traffic models. A review of MXR use cases
is included in [8]. Our previous work in [9] reported the
integration of selected MXR services in a 5G testbed to
document practical implementation challenges and observe
realistic MXR connectivity characteristics. The experimental
MXR application developed and described in [9] was used
to generate MXR network traffic in the work detailed in this
paper.

MXR connectivity is commonly discussed in the context
of 5G networks [6]. The 3rd generation partnership project
(3GPP) has published a technical report (TR) on XR over
5G [10], which addresses typical XR applications and their
QoS benchmarks. In another 3GPP TR, use cases are
categorized and 5G system requirements are identified to
support XR applications [11]. However, investigations of
traffic models in realistic MXR application and the corre-
sponding connectivity requirements are not yet published
in the literature. Although XR applications, of which MXR
is a subset, share many commonalities, MXR introduce
technical evaluation challenges for spatial image quality,
temporal image quality, and usability [3]. Additionally,
low-latency transmissions with high-reliability connection
support have been identified as elements of interest to
enable connected MXR applications [6]. Notably, many
MXR applications use the frameworks offered by generic XR
development platforms, e.g., Unreal Engine and Unity, which
were designed and optimized for multi-player, interactive
network applications like online gaming [12]. As a result,
existing reports of XR traffic modeling are based on XR
games and easily accessible hardware like smartphones.
Accordingly, the authors in [13] proposed a traffic model
for VR applications based on traffic traces of playing
a VR game on the SteamVR platform. Data was solely
collected from the application waiting room, which was
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TABLE 1. List of abbreviations.

FIGURE 1. Example MXR application scenarios and associated traffic
flows. Full Function Headsets, Reduced Function Headsets, and Headset
as a Mirroring Server are abbreviated by FFH, RFH, and HMS, respectively.
Thick arrows indicate the traffic direction with high usage for each
scenario while thin arrows indicate the opposite. The video icon refers to
primarily video content flow and the gear icon refers to all other types of
traffic including control and data exchange.

rendered and streamed from a PC rendering server to a
smartphone acting as a passive VR headset. Frame periods
were modeled as independent and identically distributed
(i.i.d.) Logistic distributed random variables. Video frame
sizes were modeled using a Gaussian Mixture Model.
This work was further expanded in [14] with additional
traffic traces incorporating user interactions. Gaming XR
applications often involve fast-switching backgrounds and
vigorous actions, which differ from the common operations in
MXR use cases. For example, in pre-op planning sessions, the
patient’s AR content is cast onto a body phantom for surgeons
to discuss and practice the possible approaches to surgical
procedures [15]. The user may focus on the operation area
in the filed of view (FOV) for a while without many actions.
The corresponding network traffic would only communicate
limited changes in user motion and background variations.

Traffic models, like those reported in this manuscript
or the ones reported in [13] and [14] can be used with
the traffic generation modules in network simulators (e.g.,
ns-3 [16]) to study network capacity and as a step to
characterize the system reaction to connectivity failure modes
(e.g., congestion, delays on certain interfaces, channel access
conflicts). Additionally, the modeling results can enrich the
emulation capability of network evaluation testbeds [17],
[18] by facilitating the implementation of simple test objects
focused on the communication aspects of realistic devices.
The following sections will introduce the system model for
connected MXR applications and the steps taken to develop
traffic models corresponding to realistic MXR scenarios.

III. SYSTEM MODEL
We consider a system model that identifies use cases and cor-
responding network services supporting MXR applications.
As illustrated in Figure 1, the system model addresses the
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following use cases based on the role ofMXR headset serving
as the primary user interface (UI): Full Function Headsets
(FFH), Reduced Function Headsets (RFH), and Headset as
a Mirroring Server (HMS). The remainder of this section is
dedicated to discussing these three use cases and how the
user input/output (I/O) traffic data flows were captured and
characterized.

A. FULL FUNCTION HEADSETS (FFH)
This case involves MXR HMD nodes and remote application
servers. MXR FFH are equipped with full virtual content
rendering capabilities, i.e., a headset can independently
render and present virtual content on its local display. The
information used for rendering MXR content is prepared
and locally cached while the HMD communicates with the
remote application server to exchange status updates and
other system wide information, e.g., environment changes or
administrator’s messages, as well as changes in peer nodes
if multiple clients are active [19]. The deployment of FFH
in an MXR application requires the least network bandwidth
compared to other use cases as most content, e.g., patient’s
medical profile, are downloaded directly to the HMD, which
reduces the burden on the connectivity infrastructure when
multiple clients collaborate in the same virtual environment.
An FFH node may also request additional MXR information
on the fly, e.g., updated patient X-ray images, from external
medical data sources [9]. However, such on-demand data
transmissions could be fulfilled with intermittent, short
sessions that do not stress the network for long periods.

B. REDUCED FUNCTION HEADSETS (RFH)
Compared to FFH, RFH stands for the type of user nodes
enabled with reduced XR features, e.g., due to HMD resource
limitations and power constraints. In this case, also referred
to as remote rendering in the literature [20], the HMD
primarily serves as an I/O device at the user-end. In the in-
bound traffic, the MXR content is rendered remotely by an
external machine with relevant compute and communication
resources, e.g., mobile edge server, and streamed to the
headset to be displayed in the user’s FOV. In the out-
bound traffic, the HMD updates the rendering engine with
local status changes captured by its embedded sensors and
cameras. Deploying RFH simplifies the user-end equipment
design requirements, e.g., hardware, software, battery, and
form factor, at the cost of increased network traffic loads and
more stringent performance requirements for transmitting
live, remotely rendered virtual content. The rendering engine
can be deployed in the vicinity of the user or remotely at
further geographic locations, which places higher bandwidth
requirements on the link to the end user compared to FFH
applications. In the 5G network, the rendering machine itself
can be deployed either as the UE or on the server side.
In the former, the communications between the rendering
node and the MXR server are similar to the FFH case, which
offloads the display and sensing capability to another field

device; in the latter, the traffic is routed through the wired
network segment of the 5G network as a part ofMEC or cloud
services [21].

C. HEADSET AS A MIRRORING SERVER (HMS)
The FFH and RFH use cases address communication scenar-
ios in MXR applications involving the end-to-end connection
between anMXR user node and the enabling remote services.
Mirroring the headset’s view to third-party observing clients
(OC) is another use case that offers complementing features
to interactive MXR functions. In this case, the headset
serves as a mirroring server (HMS) to share the user’s
view with one or multiple external observers through a live
video stream. Many XR devices and development platforms
provide application program interfaces (API) in support of
this feature [22], [23]. HMS is useful in healthcare training
programs for relaying the mentor’s instructions or guided
therapy sessions for monitoring the session progress [15].
As the HMD device is usually deployed as a field node,

e.g., a user equipment (UE) node in the 5G network, the
above FFH, RFH, and HMS use cases highlight the diverse
data flows that need to be supported by the connectivity
infrastructure in both the uplink and downlink. The traffic
patterns of individual services identified in Fig. 1 can also
serve as elements in formulating the aggregated patterns
of service combinations in hybrid use cases. For example,
realisticMXR applications can adopt a hybrid scenario where
all three types of traffic streams could be implemented
simultaneously to serve specific application purposes [2].

IV. MODELING METHOD OVERVIEW
MXR applications are generally IP-based, where the applica-
tion traffic can be generated in a variety of forms and rates,
which can be constant or fluctuating with time. Modeling the
traffic flows is intended to depict deterministic generation
patterns or stochastic distributions of traffic blocks (TB) in
communication links carrying MXR application messages.
A traffic model considers two primary variables: the traffic
block size (TBS) and the inter-traffic-block time (ITBT).
The former indicates the size of information generated
at each message instance; the latter measures the length
of the interval between any two consecutive blocks. The
traffic modeling effort reported herein is focused at the
Application Layer per the open system interconnection (OSI)
7-layer protocol stack so that the resulting traffic models
represent the application’s unique traffic needs and patterns
for communications regardless of the enabling connectivity
modality.

The data-oriented traffic modeling process shown in Fig. 2
was used to study the MXR use cases specified in Section III.
The process can be decomposed into five steps: traffic
measurement, data pre-processing, data exploratory analysis,
traffic modeling, and validation. Specifically, MXR traffic
in the link of each application use case was measured and
collected. Raw data in terms of packet captures (PCAP)
was then processed by a network protocol parsing tool
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FIGURE 2. Data-oriented workflow for modeling MXR traffic.

to extract packet header field information and meta data.
Next, exploratory data analysis was performed to obtain
preliminary traffic pattern features, e.g., statistical or time-
series. The patterns then informed the development of traffic
model(s) that depict how the application data was generated
using variables for TBS and ITBT. Model verification was
then performed by comparing with measured traffic data for
the considered scenario.

The modeling process allows the initial characterization
of basic traffic flow features and the subsequent detection
of repeated, statistically significant occurrences of unique
traffic instances, their frequency, and triggering conditions.
Notably, the traffic capture on a link can be composed of
multiple parallel data flows for different purposes. These can
be decomposed into unique flows, and each characterized
with a standalone model. However, the decomposition
of flows can be facilitated with the prior knowledge of
communicating services and their anticipated behavior. The
following sections expand on the techniques and outcomes of
individual steps in the traffic modeling process.

Notably, it is difficult to generalize the traffic observations
of an investigated connected medical device and consider
those observations applicable to an entire class of devices.
For example, claiming that the observed traffic for the studied
example MXR application in this paper is representative of
all MXR applications on the market. The intended use of a
certain device, its design, use of data, and how it incorporates
the connectivity infrastructure are factors that influence the
device connectivity requirements and the traffic patterns it
generates [24].

V. TRAFFIC DATA COLLECTION AND WRANGLING
The traffic data collection was performed at the FDA 5G
lab in Silver Spring, MD, USA. The three MXR use cases

FIGURE 3. The MXR link traffic measurement setup illustrated for the FFH
use case.

specified in Section III were configured in representative
experimental setups. Fig. 3 illustrates the measurement setup
used for the FFH links as an example; the other setups
were similar but followed their respective specification for
downstream and upstream traffic links. The application traffic
generation and associated data sets for each use case are
summarized in Table 2 in addition to a summary of the tools
used for data collection and analysis.

A Microsoft Hololens 2 (HL2) was used as an example
HMD. The HL2 is an XR HMD that is supported by multiple
XR development platforms, e.g., Unreal Engine (UR) and
Unity. Traffic data was collected from MXR application
examples developed on Unreal Engine 4.27.2 [9]. FFH data
set was collected using an application example of a multi-user
virtual clinical room with CT image display capability; RFH
data set was collected using another application example
running the VR Preview mode of the UR editor. HMS
data set was collected by streaming the headset display to
external observing nodes while the HL2 was running the FFH
application. Traffic was captured in a LAN setup consisting
of Ethernet connections between the headset and the remote
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TABLE 2. Summary of MXR data sets.

node (i.e., server, render, observer) through an Ethernet router
that was running a Dynamic Host Configuration Protocol
(DHCP) service for assigning the headset’s IP address. The
inbound and outbound traffic flows at the headset and remote
nodes in each measurement were captured by test access
point (TAP) devices that copy all through traffic streams
to a separate measurement computer running Wireshark.
The user and server side traffic copies were saved as
PCAP files for post analysis and modeling. Accordingly,
the traffic modeling addressed the MXR application—
not the underlying connectivity—that represented common
MXR features (e.g., downloading images from a server
and displaying them to the user in a virtual environment).
This facilitates the study of MXR systems communication
behavior in contrast to stressing the network to identify
connectivity-specific capacity and failures. Therefore, the
resulting models can help with simulating MXR applications
over a variety of connectivity enablers like LAN, Wi-Fi,
or 5G.

The data wrangling starts with the raw PCAP files.
To identify and depict traffic patterns, especially inter-block
time distributions, of interest was packet copies that were
captured at the source node and stamped with the time when
they were first observed on the link. For example, in the
FFH use case, the dowlink traffic analysis considers the
packets captured at the MXR server while the uplink traffic
is modeled based on the packets observed at the HMD.
In each data set, traffic flows were cleaned by filtering out
irrelevant protocol packet captures, e.g., Address Resolution
Protocol (ARP) and other network discovery messages,
through Wireshark protocol filters. Afterwards, a Bash script
was executed to call the tshark program [25] for extracting the
header field information from each packet and save the values

of selected fields into a comma-separated values (CSV) file
wherein each column stores values of a recorded header field
and each row stores all field values associated with a single
packet. The tabular CSV data was then imported into a Python
program for pattern analysis and modeling.

VI. EXPLORATORY LINK TRAFFIC ANALYSIS (ELTA) AND
TRAFFIC PATTERN MODELING
The exploratory link traffic analysis (ELTA) aims to explore
traffic patterns and their features in the collected data sets.
Traffic features investigated in ELTA include time-series
characteristics of TBS/IBT variables, their statistics, and their
joint distribution. This process employs visualization tools
and methods to illustrate samples of the studied metric.
ELTA outcomes provide preliminary insight into the studied
data, e.g., the basic shape of variable spaces, that suggests
new candidate features to explore for characterizing traffic
patterns. In addition, metrics obtained by ELTA provide the
basic description of the observed traffic pattern that can help
with studying model accuracy, i.e., if simulated traffic by
a model achieves similar behavior to realistic traffic, e.g.,
values in the expected ranges, ratio of discrete values, sample
densities per clustered values.

A summary of the process is as follows. First, the traffic
data space (e.g., time range, frame size set, rate amplitudes,
and time-size correlations) is illustrated. Afterwards, the pres-
ence of traffic blocks is verified, i.e., aggregated consecutive
message frames indicated by common packet features like
flag values and indicator bits. Next, focus is concentrated on
the majority of traffic data and non-significant contributors
to the traffic load are removed by noting frames occurrence
frequency. Multiple passes through these steps are per-
formed to refine the model. Exploratory methods leveraging
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FIGURE 4. Client-Server communications in connected XR applications
based on Unreal Engine.

engineering knowledge are leveraged including payload
exploration, frequency check of prefix values, throughput
weight calculation, and outlier removal. The result is a set
of observations as summarized in Table 3.
Because the considered use cases exhibited unique traffic

patters, the following subsections will be dedicated to
detailing the results for each use case. The validation results
of individual link traffic models will be discussed along
with implementation examples. The validation objective is
to characterize the capability of the developed models to
generate link traffic loads at the same or similar pace
as the realistic applications. In the following discussion,
‘‘frame’’ denotes the minimum traffic unit for application
layer messages (e.g., the discrete MXR service data and
signaling) while ‘‘packet’’ is used in a more general way
to name any formatted data below the application layer,
e.g., TCP/UDP/IP/Ethernet packets. If multiple frames are
identified to be generated and transmitted sequentially in an
organized manner, the term ‘‘burst’’ is used to denote the
frame groups.

A. FFH TRAFFIC PATTERN ANALYSIS
The traffic packets between the FFH HMD and the MXR
server are identified as UDP datagrams, which are light-
weight, connection-less IP-based traffic packets. Fig. 4
shows the routine and on-demanded message exchanges
between MXR client and server nodes in the Unreal Engine
application. Readers can refer to the technical documentation
of Unreal Engine that introduces common communication
messages between client-server pairs [26].
Encrypted UDP packets carry the application data. Fur-

thermore, there is no publicly-available technical reference
explaining the structure of Unreal Engine messages or details
about its driver design for HL2. Therefore, no attempts were
made to recover the upper-level message content during data
analysis.With the objective of recognizing traffic patterns and
developing models to characterize the network traffic load,
the pattern analysis and modeling were performed solely
based on the protocol data unit (PDU) payload information
contained in UDP datagrams. Downstream and upstream
traffics were analyzed separately, which uncovered the traffic

FIGURE 5. Illustration of FFH traffic patterns. Five frame sizes are
considered in DT, which are s0 of 10 bytes, s1 of 21 bytes, s2 of 37 bytes,
s3 of 48 bytes, and s4 of 0 byte for the ‘‘silent’’ frames.

patterns described in Table 3 and illustrated in Fig. 5. Notably,
message frames contained in individual UDP packet payloads
were considered traffic blocks in both the downstream and
upstream links. Accordingly, the FFH downstream traffic
(DT) model is based on the distributions of frame size and
inter-frame time (IFT), which are statistically decoupled from
each other. On the contrary, the FFH upstream traffic (UT)
model is based on its own IFT distribution with a single, fixed
frame size.

1) FFH DOWNSTREAM TRAFFIC (DT) ANALYSIS
Examining the downstream traffic pattern in the FFH data
set, i.e., data transmitted from the MXR server to the
HMD, revealed that most observed frames — carried by
UDP packets — were less than 100 bytes. The top four
frequently observed data frame sizes, i.e., 10, 21, 37, and
48 bytes, represented the majority of data and accounted
for 99.81% of the total packets and 99.51% of the traffic
load in a measurement period of around 420 seconds. The
results of ELTA for this data set are illustrated in Fig. 6
including frames time variation and statistics. IFT outliers,
i.e., the instances that were either too short (< 5 msec) or
too long (> 30 msec), were removed in the illustrations,
noting that they occupied less than 0.066% in the total data.
DT traffic between the client and server presented a frequent
but lightweight communication pattern. The throughput in the
link was observed at < 25 Kbps.
The joint distribution of the frame size and IFT shown

in Fig. 6b illustrates the clustered traffic pattern. However,
it does not indicate whether the frame size can be modeled
independently from the IFT. To explain the discrete frame
sizes and clusters in the IFT dimension, frames prefix
were inspected, i.e., the few bytes at the beginning of the
UDP payload, to document that DT data were formatted in
segments where larger-sized frames carried more segments
than smaller frames. A simple model can help explain the
segmented data in DT messages. Suppose that there are
two variables, (A, B), denoting for example updates to the
environment and objects in the XR application, respectively.
Binary states, i.e., ON (1) and OFF (0), can be used to denote
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TABLE 3. Summary of traffic patterns and modeling on the MXR data sets.

the presence of updates from each variable or environment
component in a frame when it is generated. Therefore, (0, 0)
means neither variable has a change to report, (1, 0) means A
has an update, (0, 1) means B has an update, and (1, 1) means
both have updates. Consequently, an update from a single
variable introduces a marginal load, e.g., A with 11 bytes and
B with 27 bytes. Therefore, a basic data load of 10 bytes
can be associated with (0, 0), (1, 0) represents the basic
load plus A’s update resulting in a total of 21 bytes, (0, 1)
is for the basic load plus B’s update resulting in a total of
37 bytes, and (1, 1) generates the largest load of 10 + 11 +
27 = 48 bytes. Accordingly, multiple application status
variables were present that are routinely updated through
the communication link. However, it was not necessary to
transmit the values of all variables if they have no updates
to report.

Random variables like IFT follow a continuous distribution
unless the generation time is arbitrarily manipulated, e.g.,
being truncated by separate segments. Without additional
prior knowledge of the traffic generation scheme used by the
application, an assumptionwasmade that the applicationmay
skip some update cycles as maintained by local timers when
no new information was generated to update the receiver.
Accordingly, ‘‘silent’’ frames were introduced and populate
into the frame intervals with long IFT values, e.g., selecting
the interval samples > 15 msec. In such cases, the traffic
generator would omit the outstanding update slot and reload
the timer waiting for the next update instance. This can
explain the IFT clustered distribution shown in Fig. 6b as
the data contained not only the interval instances between
any two consecutive frames but also the accumulated delay
involving silent frames in between.Multiple silent frames can

be inserted into one long interval, however, only the case with
up to two consecutive silent frames in the same interval was
considered. The IFT distribution based on the reshaped frame
samples is shown in Fig. 7.

A Markov chain model was used to depict the transition
probabilities between consecutive frames in which the states
were in the extended frame size set S = {s0, s1, s2, s3, s4}
containing the four detected frame sizes s0 to s3 (representing
10, 21, 37, and 48 bytes, respectively) plus a zero size state
s4 for all silent frames. The model can be denoted as follows.

p = p× A (1)

p =
[
p0, p1, . . . , p|S|

]
(2)

A = [pi,j]|S|×|S|

=


p0,0, p0,1, . . . , p0,|S|−1
p1,0, p1,1, . . . , p1,|S|−1
. . . , . . . , . . . , . . .

p|S|−1,0, p|S|−1,1, . . . , p|S|−1,|S|−1

 (3)

pi,j = Pr{snext = sj|scurrent = si} for si, sj ∈ S (4)

6
|S|
j=0pi,j = 1, si ∈ S (5)

pi,j is the transition probability between states i and j.
A is the Markov Chain transition matrix. p, the stationary
distribution of states S, was calculated as [0.242, 0.037,
0.478, 0.05, 0.193] per the DT data set.

IFT values are found not normally distributed. Therefore,
the CDF curve of this empirical distribution can be directly
used in practice to randomly generate IFT instances (e.g.,
importing the CDF curve into a network simulator and calling
the simulator built-in interpolation functions). Alternatively,
it is also plausible to construct a look-up table for the
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FIGURE 6. Example findings in ELTA on the FFH DT data: (a) frame size
(in red) and rate (in blue) versus time and (b) joint frame size and IFT
distribution.

quantile function (i.e., inverse CDF) of the IFT to improve
the computation efficiency in the simulation. The state-wise
distribution plotted in Fig. 7b demonstrates that IFT values
do not exhibit significant changes associated with specific
frame sizes. Therefore, the frame size and IFT represented
in the data set are independently distributed, which permits
the decoupled selection of their values.

In addition, seven application states (AS) were exercised
during a measurement window of 420 sec to inspect traffic
variations following user actions. Table 4 lists the user actions
associated with individual application states, each of which
was observed for around 60 sec. No significant DT/UT
throughput variations were observed between different AS.
It echos the earlier discussion on the client-server communi-
cation design adopted by the FFH test case where the link is
designed and optimized with minimum network bandwidth
consumption so that sporadic, on-demand requests may
produce minor marginal increments in the aggregated traffic
need. The traffic model can capture the average transmission
load level and depict variations in the frame sequence.

TCP sessions for downloading medical images from an
Apache server were also captured. The traffic was on-demand

FIGURE 7. IFT distribution in FFH DT: (a) the entire data set and
(b) state-wise data sets.

TABLE 4. Application states in the FFH traffic measurement test.

once the client HMD requested the patient profile that
was not available in its local cache. The request was
fulfilled with a one-time Hypertext Transfer Protocol Secure
(HTTPS) session, which can be modeled as sporadic bursts
for the client-server handshakes or be emulated as a short
HTTPS session by built-in HTTPS protocol modules in
network simulators, e.g., NS-3. Assuming that patient-related
medical data has been collected, verified, and made available
before starting MXR sessions, the on-demand medical data
communication is out of scope of the traffic modeling effort
in this paper while noting that models for this type of traffic
can be implemented as add-ons when needed.

2) FFH UPSTEAM TRAFFIC (UT) ANALYSIS
FFH UT was inspected through similar steps to the DT case
to observe that UT packets were also UDP datagrams with a
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FIGURE 8. IFT distribution in FFH Upstream link.

single packet size of 39 bytes dominating the data set. The
IFT distribution is shown in Fig. 8.

3) FFH TRAFFIC MODELS AND IMPLEMENTATION EXAMPLES
The DT model can be implemented using the steps proposed
in Algorithm 1. In this implementation, the initial frame
size is randomly selected following the stationary probability
and the time and size of the following frame instances are
estimated according to the Markov chain state transitions and
the IFT CDF curve, respectively. Specifically, the parameters
in the Markov chain for the frame size transitions include the
state set S denoting the frame size, the stationary probability
vector p in Eq. 2, and the state transition probability matrix
A in Eq. 3; the IFT CDF curve is presented as FIFT =
Pr{IFT < t} along with its inverse function F−1IFT , i.e., the
quantile of a given probability number; the algorithm stops at
a predetermined simulation time Tstop.

Algorithm 1 FFH Downstream Traffic Frame Generation
Input: S, p, A, FIFT , Tstop
Output: [(f itime, f

i
size)]

n
i=0

1: f 0time← 0
2: r ← X ∼ U (0, 1)
3: if 6i−1

0 pi ≤ r < 6i
0pi then

4: f 0size← si
5: k ← 0
6: while f ktime < Tstop do
7: r ← X ∼ U (0, 1)
8: f k+1time ← f ktime + F

−1
IFT (r)

9: s← S.index(f ksize)
10: r ← X ∼ U (0, 1)
11: if 6

j−1
0 ps,j ≤ r < 6

j
0ps,j then

12: f k+1size ← sj
13: k ← k + 1

Implementing the FFH UT pattern discussed above is
simpler than FFH DT as there is only one frame size variable
to be simulated, which can be summarized by the steps shown
in Algorithm 2.

FFH downstream traffic simulated by Algorithm 1 was
compared to the actual traffic data set in Fig. 9. The error

Algorithm 2 FFH Upstream Traffic Frame Generation
Input: FIFT , Tstop, fsize
Output: [(f itime, fsize)]

n
i=0

1: f 0time← 0
2: k ← 0
3: while f ktime < Tstop do
4: r ← X ∼ U (0, 1)
5: f k+1time ← f ktime + F

−1
IFT (r)

6: k ← k + 1

FIGURE 9. Verification of the FFH Downstream traffic model.
Left—distribution of the traffic load difference, and Right—the p-p plot of
the load difference distribution.

in observed data rates between the two sets has a mean of
0.07 Kbps and standard deviation of 1.04. The p-p plot,
which is a visual measure for how closely observations in
two data sets align, illustrates the close agreement between
the simulated and measured sets. Similarly, comparing traffic
simulated by Algorithm 2 with actual FFHUTmeasurements
uncovers a mean data rate error of of 0.06 Kbps and
0.32 standard deviation.

B. RFH TRAFFIC PATTERN ANALYSIS
Similar to the FFH analysis, the outcome of inspecting RFH
data set is illustrated in Fig. 10. RFH links carry different
application messages compared to the FFH links resulting in
unique traffic patterns as will be discussed hereafter.

1) RFH DT ANALYSIS
The remote rendering machine transmits data frames in RFH
DT to the headset containing processed MXR content, which
may vary with the user’s input that encompasses HMD
embedded sensors and cameras. To investigate traffic load
variations according to application states, we implement the
states shown in Table 5 as a representation of user actions
used in MXR.

Fig. 11 illustrates select ELTA results in the RFH DT
data set. The RFH downstream traffic is also composed of
UDP messages, which can be observed with discrete size
ranges: low (<150 bytes), medium (around 400 to 800 bytes),
and large (800+ bytes) as shown on Fig. 11 demonstrating
a scatter plot of the UDP payload frame size with time.
Inspecting the prefix sequence of the payload data indicated
that these frames belong to different message types, which
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FIGURE 10. RFH traffic patterns illustrated: (a) Downstream and (b) Upstream.

TABLE 5. Application states in the remote rendering test with RFH.

can be clustered into parallel streams. ELTA results also
indicated that the traffic pattern varies with the active AS.
In Fig. 11, the medium and large frames exhibit unique
patterns depending on the presence of user hand input in
consecutive application states, where deviations from the
trend for accumulated data can be observed for example
between t = 100 s and t = 200 s reflecting AS 3 andAS 4 per
Table 5. Traffic load variations in response to different states
are captured in Fig. 11b, where similar observations aremade.
In addition, the 2-D scatter plot that considers frame size and
IFT variables further supports that RFH DT data constitutes
compound traffic streams. Accordingly, the modeling effort

TABLE 6. Frame types in RFH downstream per the frame prefix.

benefits from decomposing the aggregated traffic stream into
several statistically significant pattern elements to reduce the
model complexity and improve its accuracy.

Accordingly, the DT data prefix was inspected up to the
first 40 bytes of the UDP payload and results reported in
Table 6. Frames with a ‘‘0 × 8023’’ prefix dominated the
observations with 98.32% of total frames and 98.63% of total
loads. Frames with ‘‘0 × 8065’ prefix followed with 0.65%
of total frames and 1.14% of total loads. Other frames only
occupied 0.23% of the total load and were not considered
in the traffic modeling, which focused on characterizing two
independent traffic streams.

The ‘‘0× 8065’’ frames were present in the RFH DT data
set at all times, even before the XR content was introduced
to the link. Accordingly, it is plausible that these are control
messages, which is further supported by observing their
constant frame size of 1380 bytes and IFT = 1 sec, which
resembles heart beat signals at 1 Hz. The data rate was
calculated around 11 kbps.

The ‘‘0 × 8023’’ frames exhibited varying frame sizes
and IFTs. Notably, these frames, especially the larger ones
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FIGURE 11. Selected ELTA findings in the RFH DT data: (a) frame size
variation with time, (b) data rate in time (per 0.1 sec), and (c) joint size
and IFT distribution.

(> 800 bytes), were commonly within discrete ‘‘bursts’’. The
frames belonging to a burst were generated within 10s of
microseconds while the inter-burst interval (IBT) was at the
scale of 10s of milliseconds. Within a burst, not all frames
were of the same size or generated at the same interval.
As depicted in Fig. 10, there are three types of frames
in a burst, namely ‘‘head’’, ‘‘core’’, and ‘‘tail’’, following
their size and relative timing. Head frames were observed
at the beginning of a burst with the smallest frame size
among the three types (<100 bytes). Core frames were the

primary frames with the largest frame size (>800 bytes) and
were observed as multiple consecutive frames. Tail frames
appeared at the end of a burst with a moderate frame size
(around 400–800 bytes).

Differences among the sub-burst frames can also be
verified by their unique labels embedded in data messages,
where head frames shared a common field ‘‘0 × 0000’’
immediately after the prefix ‘‘0× 8023’’. Values of the same
field in core and tail frames were found to increment by
one in each new instance, which counted for core and tail
frames separately. In addition, core and tail frames could be
differentiated by the 24-th hex digit in their data: the former
with ‘‘0 × 0’’ (or ‘‘b0000’’) and the latter with ‘‘0 × 2’’
(or ‘‘b0010’’), which was a one-bit flag toggled for different
frame types.

Fig. 12 illustrates the sub-burst frames with time. Tail
frames were clearly correlated with the display of content
responding to user’s input, e.g., highlighting the user’s
hand(s) once detected, as such frame sizes increased sig-
nificantly for application states when the user’s input was
activated. Core frames can be correlated to the display of XR
content, e.g., 2D/3D virtual objects, as they carried the most
significant portion of the link traffic load.

Core frames were periodically generated with a frequency
of∼30 Hz, which also reflects the 30 frames per second (fps)
refresh rate of the default configuration in the UR editor. This
is illustrated in Fig. 13 plotting the distribution of inter-core
sequence intervals, i.e., the interval between two core frame
sequences as shown in Fig. 10. Notably, there are spikes
on the shoulders of the interval distribution at a distance
of around 1 msec. Causes for this jitter can include delays
in frame generation associated with delay compensation
mechanisms, internal clock drift, and the non-realtime system
threads at the rendering machine,1 as well as buffering delays
at the LAN router. At least one head or tail frames is observed
in every burst and both were commonly present. Fig. 14
illustrates the intra-burst interval distributions including the
head-to-core intervals and tail-to-core intervals. Notably, the
negative values shown in Fig. 14(b) indicate that tail frames
were generated earlier than core frames in some bursts.

The above observations inspired the focus on depicting
the burst-wise interval and load patterns in the traffic model.
Therefore, the periodicity of core frames was used to
represent the inter-burst time because the majority of burst
load occurred at and around core frames. Tail frames were
also observed to appear before the core frame sequence when
head frames were missing in these bursts. However, tail
frameswere generally distributed around core frameswithin a
fewmilliseconds as shown in Fig. 14b. Although head frames
were independently distributed in time as shown in Fig. 14,
their relatively small frame sizes, i.e., 20+ bytes (<1% of the
burst size), could be neglected in the load analysis.

The burst size was calculated as the sum of the correspond-
ing head/core/tail frame sizes. Since we observed that the

1Windows 10 on a Dell laptop with a NVIDIA RTX A3000 GPU.

VOLUME 12, 2024 39177



Y. Liu, M. O. Al Kalaa: Link-Level Traffic Modeling of Medical Extended Reality (MXR) Applications

FIGURE 12. RFH Downstream sub-burst (head/core/tail) frames in time for the dominant ‘‘0 × 8023’’ frames.

FIGURE 13. RFH DT inter-core sequence interval distribution for the
dominant ‘‘0 × 8023’’ frames.

RFHDT data rate also varied with the active application state,
we factored in these states when obtaining burst statistics.
We then focused on analyzing variations of the burst size
distribution with specific application states as introduced
in Table 5. State-wise burst size distributions are shown in
Fig. 15. The IBT variation with state switches were then
investigated to document that IBT instances were centered
around 33.3 msec for the 30 fps refresh rate, which did not
change with changing application states.

2) RFH UT ANALYSIS
Table 7 illustrates dominant frame types RFH UT data as
distinguished by the prefix values stored in the first 4 hex
digits of frame data. For the purpose of traffic load modeling,

FIGURE 14. Distributions of intra-burst frame intervals in RFH DT bursts
for the dominant ‘‘0 × 8023’’ frames: (a) head-to-core intervals and
(b) core-to-tail intervals.

the top two frame types in the load, i.e., ‘‘0 × 8000’’ and
‘‘0× 8065’’, were considered which occupied up to 98.32%
of the total upstream load. Among the selected frames,
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FIGURE 15. RFH DT state-wise burst size distributions for the dominant
‘‘0 × 8023’’ frames in CDF.

FIGURE 16. ELTA results for the RFH UT data: (a) frame size variation with
time and (b) data rate in time (per 0.1 sec).

TABLE 7. Frame types in RFH upstream per the frame prefix.

‘‘0 × 8065’’ frames were similar to their downstream peers
that appeared once every 1 second as UT heart beat signals,
each with a data size of 1380 bytes. Therefore, the focus

FIGURE 17. RFH upstream IBT distribution for the dominant
‘‘0 × 8000’’ frames.

was on recognizing the pattern of ‘‘0 × 8000’’ frames that
varied with time, size, and application states. Inspecting the
occurrence frequency of ‘‘0 × 8000’’ frames revealed that
they commonly appeared in pairs which could be labeled as
‘‘head’’ and ‘‘tail’’ frames, as shown in Fig 10. Therefore,
similar to the downstream terminology, the upstream ‘‘burst’’
also denoted frame clusters in time. Note that a burst may
contain one or more frame pairs while all included frames
are identified with the same 4 hex-digit index number
immediately following the frame type prefix ‘‘0 × 8000’’.
This feature was used to identify individual bursts and
characterize burst properties.

The burst start time is considered the start time of the first
frame in a burst. Fig. 17 illustrates the IBT distribution in UT,
which echos the 30 fps refresh rate for the XR content update
in the DT and indicates that the RFH node also updated its
own status with the rendering machine at the same frequency.

The burst size varied with application state changes in
discrete values containing the upstream content (e.g., the
captured user input through embedded HMD sensors and
cameras). Fig. 19 illustrates the primary burst sizes per
application state in terms of probability mass functions
(PMF).

3) MODEL IMPLEMENTATIONS
Algorithm 3 presents an example implementation of the
traffic model that supports both RFH DT and UT simulations
with the difference being the reference burst size and IBT
distributions applied in the algorithm. Specifically, for FIBT

Algorithm 3 RFH Traffic Data Generation
Input: FTBS , FIBT , Tstop, fAS (t)
Output: [(bitime, b

i
size)]

n
i=0

1: b0time← 0
2: k ← 0
3: while bktime < Tstop do
4: r ← X ∼ U (0, 1)
5: bk+1time ← bktime + F

−1
IBT (r)

6: s← fAS (b
k+1
time )

7: r ← X ∼ U (0, 1)
8: bk+1size ← F−1TBS (s, r)
9: k ← k + 1
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FIGURE 18. RFH Upstream sub-burst (head/tail) frames in time for the dominant ‘‘0 × 8000’’ frames.

FIGURE 19. Counts of RFH UT burst sizes over application states
(displayed with the primary ‘‘0 × 8000’’ frames in 50 bins between 0 and
2500 bytes).

that depicts the IBT randomness, theDT traffic simulator uses
the empirical CDF shown in Fig. 13 while the UT one uses
the IBT model shown in Fig. 17. Since the RFH traffic blocks
were discussed in terms of bursts, for FTBS depicting the burst
size, the DT simulator selects the state-specific empirical
CDF per Fig. 15 while UT adopts the discrete PMF matched
with the desired application state s.

DT and UT flows were simulated for application states
AS2 and AS6 to study the performance of RFH traffic models.
Results are plotted in Fig. 20 and Fig. 21 for DT and UT,
respectively. Additionally, the simulated traffic traces are
compared with the measured ones and the results reported in
Table 8.

TABLE 8. Simulation results in RFH links.

Specifically, Fig. 20 reports that the DT model generates
the application session rate at each state and closely matches
the realistic session rate measured at the MXR rendering
machine. The deviation in the rate distribution is plotted
in Fig. 20(a) and Fig. 20(b) and can be explained by
the wide TBS range in DT for dynamic MXR content
carried by individual bursts. The needed TBS per burst is
not constant, even within the same application state. For
instance, AS2 describes the static operation by the user while
staring at a 2-D virtual medical image. However, the user’s
micro-movements, either intentional or unintentional, could
result in changes of the TBS per burst to adjust the FOV
display. Furthermore, when the user interacts with virtual
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FIGURE 20. Results of simulated RFH DT traces in comparison with the
measured traffic traces. AS2 and AS6 are presented as examples. Data
rate is presented per second.

content, e.g., the double-hand MXR manipulation defined
by AS6, human-device interactions (HDI) would affect the
TBS variation at the macro level in time, e.g., TBS instances
being correlated in a few seconds. Further improvement
of the traffic model accuracy would require additional
measurement, analysis, and modeling of HDI behaviors,
which is beyond the scope of this paper. Considering the
long-term link load performance, Fig. 20(c) and Fig. 20(d)
illustrate that the model can match the measured traffic load.
Numerical analysis results as reported in Table 8 and indicate
that the delta value between the simulated and measured rate
stays within a limited range for the majority of the simulated
period, which is a fraction of the rate level. For example,
in AS2 the simulated DT rate is limited to ±100 kbps from
the measured rate for 80.37% of the time.

Adopting the same implementation procedures, the UT
simulation achieves better periformance compared to the DT
one as shown in Fig. 21. This is primarily due to the stable UT
load per burst instance and the limited TBS values illustrated
in Fig. 19.

C. HMS TRAFFIC PATTERN ANALYSIS
The HL2 HMD provides a streaming service for mirroring
its view on the display of a separate user device through
the built-in Device Portal API. Accordingly, HMS trace data
were collected for both DT and UT. DT is from the mirroring
server (i.e., HMD) to the observing client (i.e., a computer
running VLC media player [27]). UT is from the player back

FIGURE 21. Results of simulated RFH UT traces in comparison with the
measured traffic traces. AS2 and AS6 are presented as examples. Data
rate is presented per second.

to the HMD. Unlike traffic streams captured in the previous
two cases, mirrored content from the HMD was transmitted
through TCP messages. In addition, the UT link carried
only acknowledgement (ACK) messages from the player in
response to downstream TCP transmissions. Since there is
no application data transmitted in the UT link, modeling was
done only for DT traffic pattern in HMS.

1) HMS DT ANALYSIS
Fig. 22 illustrates observations of the HMSDT traffic pattern.
Starting at the raw PCAP trace data, the TCP protocol
analysis tool in Wireshare was used to detect and reproduce
each DT stream application frame that was carried by one
or multiple TCP messages. Additional time-series analysis
using the timestamp of each data frame unveiled that the
DT application data was generated in bursts. In each burst,
DT data was carried bymultiple frames with maximum frame
size of 16,408 bytes and inter-frame time within 1 msec.
In most burst cases, there were up to five frames. However,
in some rare cases, a burst contained up to 14 frames. Since
almost all frame elements were generated within 10 msec
from the burst start, i.e., the first frame element time,
it is still plausible to use the burst as the traffic block to
characterize the HMS DT pattern. Accordingly, TBS and
IBT distributions, respectively, are characterized in the traffic
model.

DT bursts were generated following the IBT distribution
shown in Fig. 23. Notably, there were differences in how
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FIGURE 22. HMS traffic pattern illustrated (Downstream only).

FIGURE 23. IBT distribution of the HMS DT data set.

the data was transmitted by the server and the way it was
consumed by the client. Fig. 23 indicates that the IBT is
around 66 msec (i.e., around 15 Hz) while the VLC player at
the receiver replayed the streamed traffic as anMP4 live video
stream at the rate of 30 fps, which was twice the traffic rate.
There was a noticeable delay of about a few seconds from the
headset display to the replicated view at the receiver, which
indicates that the ‘‘live’’ traffic was buffered before replay.

Fig. 24 illustrates ELTA results based on frame and burst
samples identified in HMS DT data, where IBT and TBS
distributions shown in Fig. 24(d) can be directly used to

FIGURE 24. ELTA results for the HMS DT data set.

replicate the traffic. The implementation considers inde-
pendent and identically distributed (IID) random variables
for TBS and IBT by running Algorithm 3 with a single
application state. However, the IID model for HMS DT does
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FIGURE 25. Aggregated burst delay and load size illustrated in the HMS
DT super-burst cycle (SBC).

not consider time-series characteristics in the transitions from
one burst to the next, which results in significant deviations
from the realistic load. Notably, the measured session data
rate is ∼5 Mbps. According to the HL2 developer manual,
the HMD live stream service is provided with multiple rate
options of which we select the one offering the highest rate at
around 5 Mbps for the 720P (1280 × 720) resolution quality
and 30 fps refresh rate. Accordingly, The HL2 HMD encodes
video content into video frames and ensures the transmission
rate meets the pre-selected goal. Therefore, we introduce
the effect of the rate-control design implemented in this
use case leveraging observations in the data set (i.e., absent
complete knowledge of the rate control algorithm adopted by
the HMD.)

In addition to identifying the data burst structure, a time-
series analysis of DT data documents the burst periodicity.
Approximately 15 bursts are transmitted in each cycle, which
includes an ending burst that is usually bigger than the others.
The group of bursts is named a super-burst cycle (SBC) in our
model. The first 14 burst elements (i.e, regular bursts in SBC)
have a size below 60,000 bytes while the ending burst element
(i.e., the ‘‘pilot’’ in SBC) is > 60,000 bytes, which conforms
to the observed TBS distribution in Fig. 24d.
The SBC is illustrated in Fig. 25, where the size of

each burst element k in an SBC i can be denoted as Bki .
Accordingly, the aggregated burst size βki is defined as the
sum of the sizes of burst elements whose indices are less
or equal to k . In addition, the aggregated burst delay λki is
denoted by the delay from the start of the SBC i to the burst k .
Therefore, the IBT between the burst k and k + 1 can be
calculated by λk+1i − λki . The aggregated burst rate rki per
burst element can also be presented as rki = βki /λ

k
i .

The aggregated rate distribution is plotted in Fig. 26 per
the collected data set. As a result of the HMD rate control,
each intermediate burst in the SBC is an attempt to tuning
the aggregated data rate to the target value (i.e., 5 Mbps,
which was measured around 4.8 Mbps in the data set), and
the ending burst regulates the aggregated rate with respect to
the target. However, there were random events observed that
contributed to deviations from the target.

FIGURE 26. Aggregated rate distribution per burst element in a
super-burst cycle.

FIGURE 27. Joint distribution of the aggregated burst delay λ and the
aggregated burst size β in an SBC in the measured HMS DT data set.

To characterize time variations of bursts under the rate
control mechanism in the DT model, the rate control period
was assumed to be the same as the SBC, i.e., around 1 sec.
The mirroring server can select its control goal for the rate in
multiple ways. Absent technical specifications for the actual
rate control design implemented in the HL2’s mirroring
service, the following options were considered in the traffic
model.

1) ‘‘SBC ON’’. In this rate control option, the traffic
model introduces the periodicity of different burst
element types, i.e., regular and pilot, defined in the
SBC structure. Each burst element uses the specific
TBS distribution to determine the value of its size in
the simulated traffic.

2) ‘‘SBC, Burst’’. Based on the definitions of aggregated
burst size and delay, the IBT and TBS for each burst
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Algorithm 4HMSDT Frame Generation (w/ ‘‘SBC, Burst’’)

Input: {Fλ,β,k}
14
k=0, Tstop

Output:
[
[(bi∗14+ktime , bi∗14+ksize )]14k=0

]n
i=0

1: b0time← 0
2: i← 0
3: while bi∗14time < Tstop do
4: k ← 0,
5: r ← X ∼ U (0, 1)
6: (λki , β

k
i )← F−1λ,β,k (r)

7: while k < 15 do
8: k ← k + 1
9: r ← X ∼ U (0, 1)
10: (λki , β

k
i )← F−1

λ≥λk−1i ,β≥βk−1i ,k
(r)

11: k ← 0
12: while k < 15 do
13: bi∗14+ktime ← bi∗14time + λki
14: bi∗14+ksize ← βk+1 − βk

15: k ← k + 1
16: i← i+ 1

FIGURE 28. HMS DT measured and simulated application rate
distributions. ‘‘Measured, 1-sec wind.’’ calculates the rate per the 1-sec
window; ‘‘Measured, SBC-wide’’ presents the rate in each SBC period; the
rate in all simulated cases is calculated per 1-sec window.

element are determined by the joint (λ, β) distribution
shown in Fig. 27.

3) ‘‘SBC, Pilot’’.Distinguished from ‘‘SBC, Burst’’ by is
fixing the aggregated rate for the pilot burst to the rate
target.

2) MODEL IMPLEMENTATIONS
Algorithm 4 is introduced to implement the HMS DT model
for simulating streaming traffic, which uses the ‘‘SBC,
Burst’’ case. Other variants can be similarly implemented.
For example, Algorithm 5 can support the ‘‘SBC, Pilot’’
option by assigning the aggregated rate at the Pilot to be
closest to the rate target.

Fig. 28 presents distributions of the application rate in
the measured and simulated traffic data sets. Notably, the
simulated rate using the ‘‘SBC, Pilot’’ model is closer to the

Algorithm 5 HMS DT Frame Generation (w/ ‘‘SBC, Pilot’’)

Input: {Fλ,β,k}
14
k=0, Rtarget , Tstop

Output:
[
[(bi∗14+ktime , bi∗14+ksize )]14k=0

]n
i=0

1: b0time← 0
2: i← 0
3: while bi∗14time < Tstop do
4: k ← 0
5: r ← X ∼ U (0, 1)
6: (λki , β

k
i )← F−1λ,β,k (r)

7: while k < 15 do
8: k ← k + 1
9: if k == 14 then
10: (λki , β

k
i ) ← argmin

(λ,β)
|β/λ− Rtarget | for

(λ, β) ∈ F−1
λ≥λk−1i ,β≥βk−1i ,k

11: else
12: r ← X ∼ U (0, 1)
13: (λki , β

k
i )← F−1

λ≥λk−1i ,β≥βk−1i ,k
(r)

14: k ← 0
15: while k < 15 do
16: bi∗14+ktime ← bi∗14time + λki
17: bi∗14+ksize ← βk+1 − βk

18: k ← k + 1
19: i← i+ 1

measured one compared with other model variants because it
considers the most information about the realistic case.

VII. CONCLUSION
Link-level traffic models offer foundational knowledge in
how MXR applications communicate and their associated
needs for connectivity QoS. In this paper, we have devel-
oped an end-to-end data-oriented modeling workflow for
measuring, analyzing, and reproducing link traffic loads
of MXR application. The diversity of traffic loads in
selected MXR implementation examples was observed and
documented, which enriches existing literature reports on XR
traffic patterns, commonly focused on gaming. Algorithms
for model implementation were proposed and their overall
performance was evaluated. Results indicate that our traffic
models can emulate link-level traffic loads in individual
application scenarios including projected variations in time
and application states. This work contributes to the devel-
opment and evaluation of novel MXR devices. It can assist
MXR device developers in identifying their applications’
transmission behaviors and needs and selecting relevant
connectivity modalities and configurations to support those
needs. It also provides reference traffics to network engineers
for designing and optimizing connectivity solutions relevant
to emerging MXR use cases and aid in the development
and integration of existing or future protocols and standards
for network QoS. Future work includes the integration of
developed models into the evaluation of connected MXR
applications enabled by 5G and next generation Wi-Fi.
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