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ABSTRACT Two-dimensional (2D) image registration is a natural choice for simultaneous object pose
estimation and object recognition. However, it was not designed to perform object segmentation, which is
critical for object-picking applications in warehouse automation scenarios. In this study, we propose a unified
2D image registration framework that simultaneously performs image registration and object segmentation
by introducing a deep segmentation network module to the 2D image registration framework. Our method
is designed to automatically generate annotations for training the segmentation network module through
the process of 2D image registration, that is, no additional manual annotations are required. Specifically,
given initial object regions from the 2D image registration results, our method trains the segmentation
network module to refine a pseudo-pixel-level object region and remove background pixels based on
the pixel-level similarity of an aligned image pair. The experimental results on several picking object
datasets demonstrated that the segmentation accuracy of our method was superior to that of existing weakly
supervised segmentation methods, and our method simultaneously achieved better performance for object
recognition and pose estimation. Furthermore, our segmentation network module smoothly cooperated with
many existing 2D image registration techniques.

INDEX TERMS Image registration, pseudo-pixel-level object region, weakly supervised segmentation.

I. INTRODUCTION
Recently, a strong demand has arisen for warehouse solutions
that automate the picking process for planar objects, such
as product boxes and books, using object-picking systems
with cameras and robot arms [1], [2], [3]. These solu-
tions are intended to address labor shortages in logistics.
To accomplish the task by accurately controlling the robot
arm to pick up the target object, such a system requires
computer vision techniques to automatically estimate the
pose parameters, object classes, and pixel-level regions of
the object from images acquired from cameras mounted on
the system. Hence, three tasks, that is, pose estimation, object
recognition, and object segmentation, need to be performed
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automatically and accurately. In this study, we consider
implementing these three tasks in a unified framework.

First, we begin with a common approach to the pose
estimation task. Two-dimensional (2D) image registration
with local features [4], [5] is frequently used to perform the
pose estimation task. This technique estimates an object’s
pose parameter from an image pair using three major
processes: local descriptor extraction, keypoint matching, and
homography matrix estimation. Recently, deep neural-based
2D image registration techniques, such as SuperPoint [6]
+ SuperGlue [7] and LoFTR [8], have been proposed to
perform these processes and achieved high pose estimation
accuracy. One advantage of these techniques is that the results
of local keypoint matching can provide information about
both whether the objects in the two input images are identical
and how much the poses of the two objects are misaligned:
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That is, 2D image registration techniques can simultaneously
perform the object recognition and pose estimation tasks.
However, existing registration techniques were not designed
to perform the object segmentation task and therefore cannot
be applied to automatic object-picking.

A simple solution is to incorporate a pre-trained segmen-
tation network into the registration framework. However,
the network needs to be (pre-)trained in a fully supervised
manner, which requires a large dataset with pixel-level object
region labels, which is highly costly. To reduce the manual
labor of annotation, an alternative approach is to use a
weakly supervised segmentation network [9], [10], [11], [12],
[13], [14], which is trained using only image-level class
label annotation and therefore not using pixel-level object
region annotation. Existing methods train the segmentation
network using the class activation maps (CAMs) of the object
recognition network and have the advantage of eliminating
the cost of pixel-level object region annotation. However,
existing methods cannot obtain high segmentation accuracy
because they do not consider how to cooperate with 2D image
registration techniques.

We propose a novel method that introduces a weakly
supervised segmentation network module to the 2D image
registration framework for performing the segmentation task
with only image-level class label annotation. The main
contributions of this study are as follows:

• We introduce a weakly supervised segmentation net-
work that easily combines with existing 2D image
registration techniques to simultaneously perform seg-
mentation, pose estimation, and object recognition tasks.

• No pixel-level object region annotation is required
for the segmentation training process. We train our
segmentation network using only pseudo-object regions
generated using keypoints detected by 2D image regis-
tration techniques.

• We design region loss and regularization terms to
refine the pseudo-object regions by leaving object pixels
and removing background pixels. Refining these loss
terms accurately requires only image-level class label
annotation.

The experimental results demonstrated that our segmentation
network obtained higher accuracy than existing weakly
supervised segmentation networks. Furthermore, our seg-
mentation network smoothly cooperated with existing 2D
image registration techniques that perform pose estimation
and object recognition tasks.

This paper is an extended version of our previous
paper [15]. The differences between the papers are described
below. In our previous method [15], we required pixel-level
object region annotation for a subset of the training samples.
By contrast, in the current method, we use pseudo-object
regions to train the segmentation network; thus, object region
annotation is not necessary. In our previous method [15],
we used only the region loss term for the segmentation
training process. By contrast, in the current method, we use

the regularization term in addition to the region loss term to
prevent the over-refinement of pseudo-object regions caused
by the region loss term.

II. RELATED WORK
A. IMAGE REGISTRATION
The 2D image registration technique simultaneously per-
forms the pose estimation task and object recognition task
using image pairs that belong to the same object acquired for
different poses, as described in Section I. Generally, the 2D
image registration technique consists of three processes: local
descriptor extraction, keypoint matching, and homography
matrix estimation. We base the concept of our method on this
technique to compute the initial solution of the segmentation
task. In the following, we introduce the details of the 2D
image registration technique for the pose estimation and
object recognition tasks.

Local descriptor extraction is the process of detecting
keypoints in an image pair and computing local descrip-
tors using the keypoints. The keypoints are located on
characteristic points, such as corners, in images. Local
descriptors are pose-invariant features computed from the
appearances of small regions surrounding the keypoints.
SIFT [16] and ORB [17] are well-known methods for the
local descriptor extraction process. Recently, SuperPoint [6]
and ALIKED [18], which are deep neural-based methods,
have been proposed to detect keypoints and compute local
descriptors with high repeatability. In our method, we simply
use SuperPoint to perform the local descriptor extraction
process to achieve repeatability.

Keypoint matching is the process of searching for cor-
respondences of keypoints in an image pair using local
descriptors. A brute-force matcher has been widely used
with conventional local descriptors, such as SIFT and ORB,
for matching the keypoints of an image pair. Recently,
SuperGlue [7], LoFTR [8], and LightGlue [19], which are
deep neural-basedmethods, have been proposed for matching
keypoints with high accuracy. It is well known that SuperGlue
is suitable for texture-full objects and LoFTR is suitable
for texture-less objects. We consider using SuperGlue and
LoFTR, depending on whether the images of the target
objects are texture-full or texture-less. Our method can be
easily combined with both existing methods.

Homography matrix estimation is the process of cal-
culating a transformation matrix using a set of keypoint
pairs matched using the above process. The homography
transformation matrix represents the relative pose from one
region to another region of the same object in an image pair.
RANSAC [20] and CONSAC [21] are popular methods for
the homography matrix estimation process.

The local descriptor detection process and keypoint match-
ing process can be used to perform the object recognition task
in addition to the pose estimation task, as described in [16].
To recognize object class labels, existing methods prepare a
set of target images that contain objects. Existing methods
perform the object recognition task by assigning the object
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TABLE 1. Comparison of the advantages and disadvantages of our
method and existing segmentation methods.

class label of the target image with the largest number of
keypoints corresponding to the input image to the predicted
class label of the input image. Ourmethod performs the object
recognition task in accordance with this approach.

Generally, 2D image registration techniques, such as those
in [6], [7], [8], [16], [17], [18], [19], and [20], are designed to
simultaneously perform the pose estimation task and object
recognition task. However, these techniques are not designed
to perform the segmentation task. Our method is designed
to cooperate with 2D image registration techniques using
the outputs of the local descriptor extraction and keypoint
matching processes to perform the segmentation task. Our
method can be applied to the segmentation task, whereas
existing 2D image registration techniques cannot.

B. SEGMENTATION
The segmentation task predicts pixel-level object regions
from input images as described in [26]. There are two
types of existing methods: fully supervised segmentation
and weakly supervised segmentation. These methods depend
on how the annotation is performed to train segmentation
networks. In the following, we introduce the details of
existing segmentation methods.

Fully supervised segmentation methods train deep neural
networks with pixel-level object region annotation. Many
methods have been proposed, such as Unet++ [22] and
Deeplabv3+ [23]. To train segmentation networks, fully
supervised segmentation methods require large datasets with
pixel-level object region annotation. However, pixel-level
object region annotation is time-consuming and requires
expensive manual labor.

To reduce the manual labor of annotation, weakly super-
vised segmentation methods [9], [10], [11], [12], [13], [14]
have been proposed in recent years. These segmentation
networks are trained with only image-level class label
annotation. In the training process, these methods use
CAMs [27] generated by object recognition networks trained
by image-level class labels. CAMs are multidimensional
weight arrays that represent objects’ characteristics for the
object recognition task. Generally, CAMs have large weights
only for partial object regions, therefore, not entire object
regions. To train weakly supervised segmentation networks,
existing methods, such as PSA-Net [9], CONTA [10],
SEAM [11], Puzzle-CAM [12], BECO [13], and PPC [14],

FIGURE 1. Examples of the dominant canonical planes in planar object
images. The planar object handled in warehouses consists of a small
number of ‘‘canonical planes’’ [28]. The dominant canonical plane is
mainly observed in each planar object image. The appearance of the
dominant canonical plane corresponds one-to-one with the
three-dimensional (3D) pose of the planar object.

estimate pseudo-object regions using CAMs. Specifically,
these existing methods train segmentation networks by
propagating the weights of CAMs to expand partial object
regions to entire object regions.

Co-segmentation methods [24], [25] that require no
pixel-level object region annotation to perform the segmen-
tation task have been proposed. Although such methods train
segmentation networks using only image-level class labels,
they require a set of images that contain the same object in
both the training and inference processes. The acquisition of
a set of images in the inference process is a constraint when
designing object-picking systems. Two important approaches
used to acquire a set of images are usingmultiple cameras that
acquire the same object simultaneously or an object-tracking
camera that acquires a video sequence of the same object.
Regardless of which approach is used, large costs are required
to set up accurate camera parameters to stably acquire a set of
images. Therefore, co-segmentation methods are unsuitable
for the design of low-cost object-picking systems.

In Table 1, we show the advantages and disadvantages of
our method and existing segmentation methods. Our method
estimates the pseudo-object region using a single image from
the output of the local descriptor extraction and keypoint
matching processes in 2D image registration techniques.
This concept is completely different from that of existing
weakly supervised segmentation methods and existing co-
segmentation methods. Our pseudo-object region has large
likelihoods for both entire object regions and surrounding
background regions. Our method trains the segmentation
network by propagating the likelihoods of the pseudo-object
region to refine the target object regions in an image pair.
In this study, we introduce a novel concept for the weakly
supervised segmentation task.

III. INTRODUCTION OF THE WEAKLY SUPERVISED
SEGMENTATION NETWORK MODULE TO 2D IMAGE
REGISTRATION FRAMEWORK
A. OVERVIEW OF OUR METHOD
Before we describe the concept of our method, we introduce a
canonical plane [28], which is a prerequisite for our method.
In [28], planar objects handled inwarehouses, such as product
boxes and books, consist of a small number of planar surfaces
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called ‘‘canonical planes.’’ For example, daily necessary
product boxes are often cuboid; hence, a box consists of six
canonical planes. When a camera acquires the planar object
image, a dominant canonical plane is observed in each image,
as shown in Figs. 1 (a), (b), and (c). The appearance of the
dominant canonical plane corresponds one-to-one with the
3D pose of the planar object.

We assume the 3D pose estimation of a planar object as
the 2D transformation estimation of a dominant canonical
plane contained in an image pair. The homography matrix
is estimated between the keypoints of the same dominant
canonical plane with different poses using existing 2D
image registration techniques, such as those in [6], [7],
and [8]. Suppose the homography matrix of an image pair
in Figs. 1(d) and (e) is computed using 2D image registration
techniques. This homography matrix represents the relative
2D pose change between the dominant canonical plane
images and also represents the relative 3D pose change
between the planar objects.

The 2D image registration technique can simultaneously
perform the pose estimation and object recognition tasks
described in Section I, but cannot perform the segmentation
task. The reasons for this are as follows: The 2D image
registration technique uses the sets of keypoints on the
dominant canonical plane, as shown in Fig. 2(a), to perform
the pose estimation task. The sets of keypoints represent
the characteristic points of the dominant canonical plane,
but not the entire region of the dominant canonical plane.
To perform the segmentation task, we exploit the sets of
keypoints as an initial solution for training our segmentation
network module. Specifically, we generate an initial solution
that roughly covers the region of the dominant canonical
plane using the sets of keypoints, as shown in Fig. 2(b). Based
on the initial solution, our segmentation network module
predicts the regions of the dominant canonical planes in an
image pair. In the following, we refer to the initial solution as
a pseudo-object region.

The pseudo-object region contains foreground pixels and
background pixels. The foreground pixels represent the
dominant canonical plane, for example, Fig. 3(a), and the
background pixels do not represent the dominant canonical
plane, for example, Fig. 3(b). To perform the segmenta-
tion task using the pseudo-object region, we exploit the
similarity of the foreground pixels and the dissimilarity of
the background pixels in an image pair. For this purpose,
we introduce region loss and regularization terms to refine the
initial pseudo-object region. Our loss terms have the effect of
refining the region by leaving foreground pixels with similar
appearances and removing background pixels with dissimilar
appearances.

B. TRAINING PROCESS
Fig. 4 shows the overview of our weakly supervised
segmentation network for the training process. In this process,
our network uses a part of two images, referred to as
a query image Iq and target image It . We assume that

FIGURE 2. Examples of the sets of keypoints on the dominant canonical
plane and pseudo-object regions. The sets in (a) represent the
characteristic points of the dominant canonical plane. We generate the
pseudo-object regions in (b) to roughly cover the region of the dominant
canonical plane using the sets of keypoints.

FIGURE 3. Examples of foreground pixels and background pixels. The
foreground pixels in (a) represent the dominant canonical plane, whereas
the background pixels in (b) do not represent it.

the query Iq and target It contain the same dominant
canonical plane with different poses. We also assume that
the backgrounds’ appearances for the query Iq and target It

are completely different. We believe that image pairs with
different backgrounds are often acquired in real-world
scenarios, such as warehouses.

In the training process, the 2D image registration
module r() estimates a homography matrix Ĥq from the
target It to the query Iq as follows:

Ĥq
= r(Iq, It ;Kq,Kt ). (1)

The module r() internally detects a query keypoint set Kq
=

{kqn}Nn=1 and target keypoint set Kt
= {ktn}

N
n=1 using

existing methods for local descriptor extraction and keypoint
matching, such as those in [6], [7], [8], [16], [17], [18],
and [19].

After estimating the homographymatrix, the pseudo-object
region module p() generates the query pseudo-object
region Ĩqr using the query keypoint set Kq as follows:

Ĩqr = p(Kq) =

⋃
kqn∈Kq

Ikqn , (2)

where the binary image Ikqn is a one-keypoint region generated
using the query keypoint kqn stored in the query keypoint
set Kq and the operator

⋃
represents pixel-wise logical

disjunction. The binary image Ikqn is determined by a circle
of radius r centered on the keypoint kqn. Our method assigns
the binary pixel value 1 to the inside of the circle and 0 to the
outside. Note that the radius r is a hyperparameter. The target
pseudo-object region Ĩtr is generated using the target keypoint
setKt using the same approach as the generation of the query
region Ĩqr .

After generating the pseudo-object regions, the weakly
supervised segmentation network module s() predicts the
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FIGURE 4. Overview of our weakly supervised segmentation network for the training process. Our network module predicts the query
object appearance and target object appearance using a query pseudo-object region and target pseudo-object region. To predict the
query object appearance and target object appearance adequately, our method trains the module by reducing the region loss term
and regularization term.

query object region Îqr from the query Iq and query pseudo-
object region Ĩqr as follows:

Îqr = s(Iq, Ĩqr ) = d(e(Iq, Ĩqr )). (3)

In the module s(), the encoder layer e() extracts a feature
map of the query Iq using internal layers. To represent the
foreground region of the query Iq roughly, the layer e()
multiplies the query pseudo-object region Ĩqr by the feature
map extracted by a certain internal middle layer. The decoder
layer d() generates the query object region Îqr from the feature
map extracted by the encoder layer e(). The query object
appearance Îqa is predicted from the query Iq using the query
object region Îqr as follows:

Îqa = Iq ◦ Îqr , (4)

where ◦ is the operator for the pixel-wise product. The target
object appearance Îta is predicted using the target pseudo-
object region Ĩtr by generating a target object region Îtr
in the same manner as the generation of the query object
appearance Îqa by the module s().

Finally, the total loss term L is computed as follows:

L = Lr + λLε, (5)

where Lr is the region loss term, Lε is the regularization term,
and λ is a hyperparameter. In the following, we describe the
region loss term Lr and regularization term Lε. The region
loss term Lr refines the query pseudo-object region Ĩqr and
target pseudo-object region Ĩtr . The loss term Lr is computed
using the mean structural similarity (MSSIM) index [29] as
follows:

Lr = 1 − m(Îqa, Î
t
a′ ), (6)

where m() returns the MSSIM index and Îta′ is a target
object image transformed using the homography matrix Ĥq.
The loss term Lr returns a small value when the query
object appearance Îqa is close to the transformed target object
appearance Îta′ . The high similarity of the appearances Îqa
and Îta′ means that the background pixels of the query Iq

and target It were accurately removed from the query object
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FIGURE 5. Overview of our weakly supervised segmentation network in the inference process. The object
recognition task is performed in advance by assigning the object class label of the selected target that contains
the same dominant canonical plane of the input to the predicted class label of the input and the pose estimation
task is performed by estimating a homography matrix. Our network performs the segmentation task for the input
using our network module trained in Section III-B.

region Îqr and target object region Îtr . The regularization
term Lε prevents the region loss term Lr from over-refining
the query pseudo-object region Ĩqr and target pseudo-object
region Ĩtr . The loss term Lε is computed using the L1 norms
of the query object region Îqr and target object region Îtr as
follows:

Lε =
1

||Îqr ||1 + c
+

1

||Îtr ||1 + c
, (7)

where c is a constant used to avoid division by zero. The loss
term Lε returns a large value as a penalty when the query
object region Îqr and target object region Îtr are over-refined
by the region loss term Lr . By reducing the region loss
term Lr and regularization term Lε, our method can train our
segmentation network module s() without pixel-level object
region annotation.

C. INFERENCE PROCESS
Our method initially performs the object recognition task for
an input image Ii in the inference process. To perform the
object recognition task, our method stores a target image
set T = {Itm}

M
m=1. Each target Itm has one object class label

corresponding to the dominant canonical plane.
In the object recognition task, our method detects an

input keypoint set Ki
m and target keypoint set Kt

m using
existing methods for local descriptor extraction and keypoint
matching processes, such as those in [6], [7], [8], [16],
and [17]. Then, our method selects a target It∗ from the target
set T , where the target It∗ has the largest number of keypoints
corresponding to the input Ii. The object recognition task is
performed by assigning the object class label of the selected
target It∗ to the predicted class label of the input Ii.

After the object recognition task, our method performs
the pose estimation task and segmentation task using the
input Ii. Fig. 5 shows the overview of our inference process
network for the pose estimation task and segmentation task.
Our network simply uses the weakly supervised segmentation
network module s() trained in Section III-B. The 2D image
registration module r() estimates a homography matrix Ĥi

from the selected target It∗ to the input Ii and detects an
input keypoint set Ki. The pseudo-object region module p()
generates an input pseudo-object region Ĩir using the input
keypoint set Ki. The weakly supervised segmentation net-
work module s() predicts an input object appearance Îia using
the region Ĩir .

IV. EXPERIMENTS
A. DATASET
We evaluated the segmentation accuracy, pose estimation
error, and recognition accuracy of the proposed network on
a dataset that consisted of a mixture of three popular datasets
for the picking process scenario: YCB dataset [30], APC
dataset [31], and ARC dataset [32]. We used 13 cuboid
objects and five plane objects to create a selected dataset:
five cuboid objects in the YCB dataset, six cuboid objects
and one plane object in the APC dataset, and two cuboid
objects and four plane objects in the ARC dataset as shown
in Fig. 6. Each object in these datasets consisted of a 3D
mesh model and texture map. In our previous study [15],
we required pixel-level object region annotation for a subset
of the training samples. By contrast, in this study, we required
no pixel-level object region annotation for the training
samples.
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FIGURE 6. Target objects from the YCB dataset, APC dataset, and ARC
dataset used in our experiments. The color frame indicates the type of
object shape (red: cuboid, orange: plane).

FIGURE 7. Examples of the background conditions used in our
experiments.

We used two background conditions: HOPE background
and HBDB background. For the HBDB background con-
dition, we used publicly available images from the HOPE
dataset,1 as shown in Fig. 7(a). For the HBDB background
condition, we used publicly available images from the HBDB
dataset [33], as shown in Fig. 7(b). Note that the objects
contained in the HOPE dataset and HBDB dataset were
completely different from the target objects in Fig. 6.
For the training process, we used 10, 000 pairs of the

query image Iq and target image It . Fig. 8 shows examples
of the pairs of the query image Iq and target image It .
The query Iq and target It contained the same dominant
canonical plane. We generated the query Iq by applying
3D rendering with random three degree-of-freedom (3-DOF)
rotation, translation, and scaling to the object under theHOPE
background condition. We sampled the 3-DOF rotation
angles in the range [−30, 30] degrees, translation parameters
in the range [−150, 150] pixels, and scale parameters in the
range [0.8, 1.2]. We acquired the target It using a camera
setup so that its optical axis passed through the target object’s
center of gravity under the HBDB background condition.

For the inference process, we used 1, 000 input images Ii

and the target image set T = {Itm}
M
m=1. We generated the

input Ii in the same manner as the query Iq. Note that we
completely separated the pose parameters of the inputs Ii

from those of the training image pairs ⟨Iq, It ⟩. Each target Itm
had one object class label corresponding to the dominant
canonical plane. The target set T stored 88 targets, that is,
13 × 6 + 5 × 2, because one cuboid object contains six

1https://github.com/swtyree/hope-dataset

FIGURE 8. Examples of pairs of the query image and target image. The
query was generated under the HOPE background condition and the
target was generated under the HBDB background condition.

TABLE 2. Parameters of our method used to achieve the best
performance.

canonical planes and one plane object contains two canonical
planes.

We fixed the sizes of the query Iq, target It , and input Ii

to 600 × 600 pixels. In the 2D image registration module r()
and pseudo-object region module p(), the size of the input
images we used was 600 × 600 pixels. We resized the
input images to 128 × 128 pixels in the weakly supervised
segmentation network module s().

B. IMPLEMENTATION AND PERFORMANCE METRICS
In the weakly supervised segmentation network module s(),
the encoder layer e() consisted of one pooling layer and
four convolutional layers. The layer e() multiplied the
pseudo-object region by the feature map extracted by the
first convolutional layer. The decoder layer d() consisted of
four deconvolutional layers and one upsampling layer. In the
upsampling layer, the 1 × 1 convolutional layer converted
the number of output channels of the final deconvolutional
layer to one. The 2D image registration module r() used
SuperPoint [6] for the local descriptor extraction process
and SuperGlue [7] for the keypoint matching process. For
SuperPoint and SuperGlue, we used the network weights and
hyperparameters provided by default. We set the radius r =

80 of the pseudo-object region, hyperparameter λ = 0.005 in
Eq. (5), and constant c = 10−10 in Eq. (7). We trained our
network using stochastic gradient descent with a learning
rate of 1 and momentum parameter of 0.9 for 200 epochs.
We present the parameters of our method used to achieve the
best performance in Table 2.

We implemented our network using the PyTorch frame-
work. We used RTX 4090 GPU with 24 GB and Intel Core
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TABLE 3. Performance of our weakly supervised network and existing
segmentation networks.

FIGURE 9. Loss value changes for our method.

i9-13900KF CPU with 128 GB. The training process of
our weakly supervised segmentation network module s()
required 2.6 GB of GPU memory and 19 hours per run.
The inference process of the module s() required 1.0 GB
of GPU memory and 42 milliseconds per image pair. The
computational complexity increase incurred by adding our
module was 0.9 GFLOPs and 3.9 M parameters. Note that
we required 2.7 GB of GPUmemory and 58 milliseconds per
image pair on SuperPoint [6] and SuperGlue [7] as the 2D
image registration network module r() for both the training
and inference processes.

We used the following three metrics for performance
evaluation. We used the intersection over union between
the predicted input object region Iir and the ground truth
object region to evaluate segmentation accuracy. We used
the Frobenius norm of the difference between the estimated
homography matrix Ĥi and the ground truth homography
matrix to evaluate the pose estimation error. Note that we
computed the pose estimation error only when the object
class of the input image Ii was the same as that of the target
image It∗ selected in the object recognition task. We used
the correct match rate of the selected target It∗ to evaluate
recognition accuracy. We used the average performance over
the three runs, each with different training-testing splits.

C. COMPARISON OF OUR NETWORK WITH EXISTING
SEGMENTATION NETWORKS
We evaluated the effectiveness of our network by comparing
it with the segmentation network methods [9], [10], [22], [23]
described in Section II-B.

Unet++ [22]: Fully supervised network with pixel-level
object region annotation using the Segmentation Models
library2.
Deeplabv3+ [23]: Fully supervised network with pixel-

level object region annotation using the SegmentationModels
library2.

2https://github.com/qubvel/segmentation_models

PSA-Net [9]: Weakly supervised network without
pixel-level object region annotation using an official
implementation3.
CONTA [10]: Weakly supervised network without

pixel-level object region annotation using an official
implementation4.
We applied fine-tuning to the provided default network

weights for existing methods.We compared the segmentation
accuracy of Unet++ [22] and DeepLabv3+ [23], which
differ from our network because they use pixel-level object
region annotation, to investigate the benefit of annotation.
We also compared the segmentation accuracy of PSA-Net [9]
and CONTA [10], which are the same as our network
because they use only image-level class label annotation,
to investigate the effectiveness of our segmentation network
module.
The results are shown in Table 3. Regarding segmenta-

tion accuracy, our network outperformed existing weakly
supervised segmentation networks [9], [10] by significant
margins. The improved accuracy proves the importance
of our weakly supervised segmentation cooperating with
the 2D image registration techniques. The segmentation
accuracy of our network was inferior to that of existing
fully supervised segmentation networks [22], [23]. However,
our network achieved segmentation accuracy closer to
these networks [22], [23] than existing weakly supervised
segmentation networks [9], [10]. Moreover, our network
was the only one able to perform the pose estimation
task. Regarding recognition accuracy, our network achieved
performance equivalent to fully and weakly supervised
segmentation networks [9], [10], [22], [23].

We show the loss value changes during the training process
in Fig. 9. Until epoch 4, the values of the region loss term Lr
in (a) and regularization term Lε in (b) decreased drastically.
We believe that this decrease was caused by the refinement
of the pseudo-object regions from a randomly generated
solution toward an approximate solution. After epoch 4, the
value of Lr in (a) decreased gradually and the value of Lε

in (b) was almost constant. We believe that this decrease of Lr
in (a) was caused by the refinement of the pseudo-object
regions toward an approximate solution. We also believe
that the almost constant value of Lε in (b) was caused by
the maintenance of the appropriate size of the pseudo-object
regions.
We show qualitative results of the weakly supervised

segmentation network module s() in Fig. 10. In the figure,
we show the input image Ii for the inference process in (a),
the input object appearance Îia predicted by the module s()
in (b), a transformed input object appearance converted by
the homography matrix Ĥi in (c), and the target image It∗
selected in the object recognition task in (d).When generating
the transformation input object appearance, we used the
inverse matrix of Ĥi. We believe that the weakly supervised

3https://github.com/jiwoon-ahn/psa
4https://github.com/dongzhang89/CONTA
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FIGURE 10. Qualitative results of our weakly supervised segmentation network module. The dominant canonical plane in the transformed input object
appearance of (c) is close to that in the selected target image of (d).

TABLE 4. Results of the combination of our network with other 2D image
registration techniques.

segmentation network module s() worked accurately because
the dominant canonical plane in (c) was close to the dominant
canonical plane in (d).

D. COMBINATION OF OUR NETWORK WITH OTHER 2D
IMAGE REGISTRATION TECHNIQUES
Our network can be easily combined with the existing 2D
image registration framework described in Section III-B.
We evaluated the performance of our network when it
was combined with various 2D image registration tech-
niques. We added the following combinations: SIFT [16] +

RANSAC [20], LoFTR [8], and SuperPoint [6] + Super-
Glue [7] for the local descriptor extraction and keypoint
matching processes in the 2D image registration mod-
ule r(). We evaluated the performance of all methods for
these combinations by applying the same dataset used in
Section IV-A. We simply used the network weights and
hyperparameters provided by default for existing 2D image
registration techniques [6], [7], [8], [16]. The results are
shown in Table 4. SuperPoint + SuperGlue combined with
our network outperformed the other techniques in terms of
segmentation accuracy, pose estimation error, and recognition
accuracy. We believe that SuperPoint and SuperGlue were
better than the other techniques in terms of their combi-
nation with our weakly supervised segmentation network
module s().

FIGURE 11. Segmentation accuracy for various values of the radius for
the pseudo-object region.

E. INVESTIGATION OF OUR SEGMENTATION NETWORK’S
CONFIGURATIONS
We compared the segmentation accuracy of our net-
work for various values of radius r of the pseudo-
object region. We generated pseudo-object regions with r
from 20 to 160 pixels, in 20-pixel increments. The results
are shown in Fig. 11. Segmentation accuracy was higher
with r = 20, 40, 60, and 80 pixels than the other numbers of
pixels. We believe that r set to 80 pixels or less can achieve
higher segmentation accuracy on the dataset in Section IV-A.
We also believe that r is unlikely to be parameter-sensitive.

We compared the segmentation accuracy of our network
for various values of hyperparameter λ in Eq. (5). We set λ =

0, 0.001, 0.005, 0.01, 0.05. Setting λ = 0 meant that we
ignored the regularization term Lε in the training process.
The results are shown in Fig. 12. We confirmed that our
network with λ = 0.005 achieved the highest segmentation
accuracy. By contrast, the segmentation accuracy of our
network with λ = 0 was almost zero. We consider that the
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FIGURE 12. Segmentation accuracy while changing the hyperparameter
for the regularization term.

correct λ adjustment between the region loss term Lr and
regularization term Lε is essential for the training process.

V. CONCLUSION
We proposed a method that introduces a weakly supervised
segmentation network module to the 2D image registration
framework for performing the segmentation task with only
image-level class label annotation. To train our proposed
network, we generated the pseudo-object region as the
initial segmentation solution using the output of 2D image
registration techniques. Moreover, we used the region loss
term and regularization loss term to refine the pseudo-object
region by leaving object pixels and removing background
pixels. We demonstrated that our network achieved higher
segmentation accuracy than existing weakly supervised
segmentation networks in cooperation with 2D image regis-
tration techniques.

We discuss the limitation of our method as follows: As
described in Section III-B, the region loss term correctly
removes the background pixels of pseudo-object regions
under the assumption that the background appearance of
the query is different from that of the target. Our method
has a limitation when the query and target do not satisfy
this assumption, for example, when the query and target are
acquired for the same color tray background. In this case,
there is a risk that the region loss term cannot correctly
remove the background pixels of the query and target.

In future work, we will develop a novel loss term to check
the boundary between the foreground and background pixels.
We will expand our approach to evaluate the performance
of our network on objects of various shapes. We intend
to design an algorithm for generating the pseudo-object
region, which is more suitable for training the weakly
supervised segmentation network module. We also intend
to develop applications that use the weakly supervised
segmentation module, such as multimodal image registration
techniques [34] and camera pose reconstruction [35].
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