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ABSTRACT Multi-input multi-output structures have been developed to boost performance by learning
multiple ensemble members at a small additional cost to a single network. There were several attempts
to further develop multi-input multi-output structures; however, integrating the benefits of self-supervised
learning into a multi-input multi-output structure has not yet been studied. In this work, we develop a multi-
input multi-output structure designed to jointly learn original and self-supervised tasks, thereby leveraging
the benefits of self-supervised learning. Specifically, in terms of multiple inputs, we improve the mixing
strategy and minibatch structure for rotation-based self-supervised learning technique, and in terms of
multiple outputs, we extend the label space of multiple classifiers to predict both the original class and
true rotation degree. We observe that our method with wider networks on CIFAR-10, CIFAR-100, and
Tiny ImageNet datasets shows better performance compared to previous works, even with nearly half the
number of parameters, e.g., using only about 45.8% of the number of parameters compared to the best-
performing multi-input multi-output method, MixMo, in the Tiny ImageNet dataset, while still achieving a
2.01% improvement.

INDEX TERMS Convolution neural networks (CNNs), deep ensemble, multi-input multi-output network.

I. INTRODUCTION
Researchers have studied effective ways to improve the
performance of convolutional neural networks (CNNs) in
image classification tasks. A line of works investigates
network architectures. For example, it has been empirically
shown that a wider CNN is typically considered an effective
way to enhance performance [1], [2]. Another line of
works focuses on ensemble methods [3], [4], [5]. Deep
ensembles [5] train multiple neural networks of the same
architecture with different random initializations and average
the predictions of these networks. However, these approaches
require more parameters to have better performance, which
incurs more computational and memory costs.

Recent research has focused on how to efficiently boost
performance with mild overhead. One such example is
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implicit deep ensembles [6], [7], [8], [9], [10], which share the
parameters of a single neural network among several ensem-
ble members. Here, a small number of additional parameters
for each member is introduced to make those ensemble
members non-identical. This method has empirically shown
performance comparable to traditional ensemble methods
while requiring a smaller number of additional parameters.
A representative example is the multi-input multi-output
(MIMO) method [9] (see Section III-B for details), which
efficiently reduces the inference cost by learning multiple
ensemble members in a single network architecture. Another
important work is the self-supervised label augmentation
(SLA) method [11], which effectively integrates the benefits
of self-supervised learning into the implicit deep ensemble
method by extending the label space to predict the labels
of the true class and pretext task at once. This method
not only reduces the number of parameters compared to
traditional deep ensembles but also the performance of SLA
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exceeds that of CNN and nearly matches that of deep
ensembles.

Building on these foundations, we focus on two key
advantages:(i) MIMO improves performance over a single
network while maintaining similar computational costs,
and (ii) SLA shows effective performance, nearly matching
that of deep ensembles by leveraging the benefits of self-
supervised learning. Our key motivation is to integrate the
advantages of both structures into one, thereby enhancing
cost-effective performance: firstly, to design a structure
that utilizes the benefits of self-supervised learning for
effective performance; and secondly, to incorporate the
advantages of a multi-input multi-output structure into our
structure, for maintaining computational costs similar to SLA
while simultaneously achieving better performance. For that
purpose, we develop the multi-input multi-output structure
to integrate the benefits of rotation-based self-supervised
learning as follows: First, in the aspect of multiple inputs,
we modify the training minibatch structure and the mixing
strategy, which are key to combining multiple inputs in a
network [9], to incorporate rotation-based self-supervised
learning techniques; second, in the aspect of multiple outputs,
we expand the label space of classifiers, enabling the joint
learning of both original and pretext tasks.

Our contributions are summarized as follows:
• Our method improves performance compared to multi-
input multi-output structures, thereby showing the
effectiveness of integrating benefits of self-supervised
learning into a multi-input multi-output structure.

• While our method has similar computational costs to
SLA, our method shows better performance in wide
networks. Furthermore, the performance gap between
our method and SLA increases as the width of a network
gets larger.

• Our method achieves higher performance compared to
previous works, even with almost half the number of
parameters.

II. RELATED WORKS
A. SELF-SUPERVISED LEARNING AND VARIANTS
The research in self-supervised learning has been driven by
the goal of improving downstream-task performance through
the use of cost-effective unlabeled data [12], [13], [14], [15],
[16]. In [17], a transformation-based self-supervised learning
method is developed, where rotations of 0, 90, 180, and
270 degrees are applied to input images, and these rotation
degrees are used as artificial labels to train a neural network.
This surrogate (pretext) task helps the neural network to learn
useful representations in the pretraining phase.

Recently, there have been research efforts to incorporate
self-supervised learning techniques into (semi-)supervised
learning. For example, Hendrycks et al. [18] utilize
self-supervised learning techniques for semi-supervised
learning. To effectively use limited labeled data and
massive unlabeled data, Hendrycks et al. [18] combine
semi-supervised loss with auxiliary rotation loss, derived

from a transformation-based self-supervised learning tech-
nique. In addition, to improve the robustness in supervised
learning, Zhai et al. [19] also modify the training loss
by using a transformation-based self-supervised learning
technique for the image classification task. Furthermore,
in [11], the SLA method aims to improve the performance
of a fully-supervised classification task by simultaneously
learning both the original and self-supervised tasks.

B. IMPLICIT DEEP ENSEMBLES
Traditional deep ensemble methods train multiple neural
networks with different random initializations and average
their predictions for a single prediction [5]. Although this
method improves classification accuracy, using multiple
neural networks incurs additional memory and time costs
proportional to the number of neural networks used.
To reduce these costs, implicit deep ensemble methods have
been suggested, sharing the parameters of a single neural
network and yielding the same number of predictions as
in traditional deep ensembles [20]. These implicit deep
ensemble methods maintain accuracy comparable to the
traditional deep ensemble method while their number of
parameters and inference cost are approximately that of a
single neural network.

There have been extensive research efforts to reduce both
time and memory costs via implicit deep ensembles. One
such method is BatchEnsemble [6] in which the weights
of each ensemble member are derived by multiplying a
member-specific low-rank matrix by a weight matrix of
a single shared network. After creating these ensemble
members, their predictions are averaged for the ensemble
result. BatchEnsemble can achieve performance similar to
the traditional deep ensemble method with only a small
number of additional parameters from the parameterized
vectors. Pruning-based approaches decreasing the number of
floating-point operations (FLOPs) relative to the traditional
deep ensemble method have been also developed [7], [8].
Multi-Input Multi-Output (MIMO) architecture [9] can

make multiple predictions in a single forward pass by passing
multiple inputs at once; as a result, the time and memory
costs have been simultaneously reduced to levels approaching
those of a single network (see Section III-B for more details).
A key factor to consider here is amixing strategy that decides
how to combine multiple inputs for a single forward pass,
which has been further developed in MixMo [10].

III. PRELIMINARIES
A. NOTATIONS
We denote scalar values by lower-case alphabets a, b, . . . , z,
vector values by arrows over lower-case alphabets a⃗, b⃗, . . . , z⃗,
and 3-dimensional tensor values by bold lower-case
a,b, . . . , z. The subscript in a vector, such as a⃗c where
c ∈ [n] := {1, . . . , n} for n ∈ N, indicates the vector’s c-
th element. Note that a subscript in a vector is not limited to
natural numbers and varies with the index set. In addition,
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we use a tuple to simultaneously represent n numbers
of tensors and scalars. For example, we express this as
(ai, bi)i∈[n] = (a1, b1, . . . , an, bn). Furthermore, we define
the symbol ⊕ to concatenate tuples. For instance, if V =

(a1, b1) andW = (a3, b3), then V ⊕W = (a1, b1, a3, b3).
Consider h, w, and d as representing the height, width, and

dimension of an image, respectively, with h = w in this study.
In this context, x ∈ Rh×w×d is referred to as the input for
an image classification task, where y ∈ Y := {1, 2, . . . ,C}

denotes the corresponding class label. The dataset, denoted
as D := (xi, yi)i∈[n], is used for forming a minibatch by
sampling a subset, represented as B := (xi, yi)i∈I where
I ⊂ [n]. The rotation transformation of an image is defined
as R(r)(x) that means rotating the image counterclockwise by
r degrees.
To understand the methods in this paper, we first define

a convolutional layer as κ : Rh×w×d
→ Rh×w×l and a

convolutional neural network (CNN) as f : Rh×w×l
→ Rp.

The feature extracted by passing through κ and f is then
transformed by an affine map ψ : Rp

→ RC into the
logit vector s⃗ ∈ RC . Following this, δ̃ : RC

→ Y
derives the classified result: δ̃(s⃗) := argmaxc∈Y δ(s⃗)c, where
δ(s⃗)c := exp(s⃗c)/

∑C
k=1 exp(s⃗k ). We define the composition

of δ and ψ as a softmax classifier, σ := (δ ◦ ψ), and its
output as the prediction. The cross-entropy loss function is
LCE((σ ◦ f ◦ κ)(x), y) := − log((σ ◦ f ◦ κ)(x)y).

B. MULTI-INPUT MULTI-OUTPUT
1) OVERVIEW
The multi-input multi-output (MIMO) method processes M
inputs to generate M predictions in a single forward pass of
a network f [9] (see Fig. 1 for its illustration). The important
aspect of this method is that MIMO uses only one CNN f
for M multiple predictions, unlike deep ensembles, which
requireM CNNs, i.e.,MIMO reduces both computational and
memory costs compared to deep ensembles.

FIGURE 1. For M = 2, the process of MIMO [9] is divided into three steps:
(i) MIMO encodes the data xj and xj ′ through the first convolution layers
κ1 and κ2, obtaining κ1(xj ) and κ2(xj ′ ). (ii) It passes κ1(xj ) + κ2(xj ′ ) to the
CNN f to obtain the output feature map z⃗ = f (κ1(xj ) + κ2(xj ′ )). (iii) MIMO
uses different softmax classifiers σ1 and σ2 to classify z⃗ , yielding two
predictions σ1(z⃗) and σ2(z⃗).

2) MULTIPLE INPUTS AND OUTPUTS
a: MULTIPLE INPUTS
MIMO modifies the training minibatch structure to handle
multiple inputs. LetAt represent the set formed by uniformly

randomly selecting a proportion of q in the minibatch index
set I (i.e.,At ⊆ I and |At | = q×|I|). The trainingminibatch
of MIMO is constructed as follows:

BMIMO

:=

b⊕
t=1

((
xφ̂

t
1(i), . . . , xφ̂

t
M (i)

)
,
(
yφ̂

t
1(i), . . . , yφ̂

t
M (i)

))
i∈I

(1)

where

φ̂tm(i) =

{
id(i) if i ∈ At

φtm(i) otherwise

is a function that randomly shuffles the indices inAc
t for each

ensemble member m ∈ [M ].
Here, two performance-enhancing techniques are used

in BMIMO. The first technique is the batch repetition rate b,
which indicates the number of times that training examples
in the minibatch are duplicated. This leads to the minibatch
BMIMO containing |I| × M × b instances. The second
technique is the input repetition rate q ∈ [0, 1], specifying
the rate that the identity function is used instead of φtm.
This means that as q increases, κ1, . . . , κM more frequently
encounter a pair of the same instances. Empirical evidence
in [9] shows that higher batch repetition rates slightly improve
accuracy, peaking at b = 4, and that the most effective
input repetition rate varies with the scenarios. When the
capacity of CNN is sufficiently large for a task, such as
WideResNet-10 for the CIFAR-10 dataset, a small input
repetition rate improves performance. Conversely, when the
capacity of CNN is limited, as in the case with ResNet-50 for
the ImageNet dataset, a high input repetition rate is shown to
be beneficial for accuracy.

The next step is to forward a pair of multiple inputs in
BMIMO to a single f . First, after drawing M multiple inputs
(x1, . . . , xM ) from BMIMO, this method passes each of these
M multiple inputs to their corresponding first convolution
layers (i.e., κ1, . . . , κM ) and then sums their values as follows:

τ
(
x1, . . . , xM

)
:=

M∑
m=1

κm
(
xm

)
(2)

Then, MIMO passes τ
(
x1, . . . , xM

)
into f for a forward pass,

resulting in a single feature map z⃗ = (f ◦ τ )
(
x1, . . . , xM

)
.

b: MULTIPLE OUTPUTS
Section III-B This feature map z⃗ is then used to generate
multiple outputs via M softmax classifiers, resulting in
(σ1(z⃗), . . . , σM (z⃗)). In this scenario, each classifier learns to
ignore other inputs, and a single f assists these classifiers to
ensure that the output feature maps are distinguishable [9].
This approach can efficiently generate multiple outputs with
a single f , unlike traditional deep ensembles that require M
separate CNNs for multiple outputs.
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3) TRAINING AND INFERENCE
Given multiple inputs and their corresponding labels, the
training loss for MIMO can be expressed as follows:

LMIMO

((
x1, . . . , xM

)
,
(
y1, . . . , yM

))
=

M∑
m=1

LCE

(
(σm ◦ f ◦ τ)

(
x1, . . . , xM

)
, ym

)
. (3)

At last, for each minibatch, the parameters of the model are
updated using SGD based on the gradient of∑

((x1,...,xM ),
(y1,...,yM ))∈BMIMO

LMIMO
((
x1, . . . , xM

)
,
(
y1, . . . , yM

))
b× |I|

. (4)

In the inference phase, a single image x is duplicated M
times to generate multiple inputs (x, . . . , x). Corresponding
to these M inputs, MIMO yields M predictions, and then
averages them for an ensemble prediction:

1
M

M∑
m=1

(σm ◦ f ◦ τ ) (x, . . . , x) . (5)

4) VARIANT OF MIMO
MixMo is a subsequent study of MIMO that has led
to performance improvements by changing how multiple
inputs are mixed, specifically focusing on M = 2 [10].
Unlike MIMO’s straightforward combination of inputs as
κ1

(
x1

)
+ κ2

(
x2

)
, MixMo uses a hybrid strategy for training.

This method probabilistically switches two mixing strategies
between linear interpolation and the CutMix technique [21]
for each trainingminibatch. In the case of linear interpolation,
MixMo uses 2[ακ1

(
x1

)
+ (1 − α)κ2

(
x2

)
], where α ∼

Beta(2, 2). In the case of CutMix, the mixing strategy
is represented as 2[1α ⊙ κ1

(
x1

)
+ (1 − 1α) ⊙ κ2

(
x2

)
],

where ⊙ is element-wise multiplication, 1 ∈ {1}h×w×l is
a tensor filled entirely with ones, and 1α ∈ {0, 1}h×w×l

is a binary mask consisting of a rectangular cuboid region
with value 1 and its complement with value 0; here, given
α ∼ Beta(2, 2), the rectangular cuboid in a binary mask is
represented as {1}hα×wα×l , where any values of hα and wα
satisfy that hα,wα < h and (hα × wα)/hw = α. Then,
the probability of switching between linear interpolation
and the CutMix technique is determined as follows: Up to
11/12 of the total number of training epochs, these two
techniques are randomly selected with equal probability 0.5,
and beyond 11/12 of the total number of training epochs,
the probability of the CutMix gradually decreases with the
probability of pe := (the # of epochs− current epoch)/( 1

12 ×

the # of epochs).

C. SELF-SUPERVISED LABEL AUGMENTATION
1) OVERVIEW
The self-supervised label augmentation (SLA) method not
only uses the class label of an image but also an artificial
label for training, which is the transformation applied to the

FIGURE 2. The process of SLA [11] is divided into three steps: (i) rotating
an image by all degrees in R, (ii) CNN f extracting feature maps from
each of these rotations, and (iii) a joint classifier using these feature
maps to predict the original class and the specific rotation degree of the
image (see Section III-C2 for more details about a joint classifier).

image [11]. To describe SLA in more detail, we outline its
input-output structure in three steps, as shown in Fig. 2;
here, we focus on rotation transformation using the set of
rotation degreesR := {0◦, 90◦, 180◦, 270◦

} and set the input
dimension of CNN f as Rh×w×d (i.e., d = l). Since this
method also uses a single f , it reduces memory cost compared
to deep ensembles.

2) SLA INPUTS AND OUTPUTS
a: SLA INPUTS
In SLA, the minibatch is expanded by rotating each image xi

by every degree r ∈ R, and each rotated image is paired with
its corresponding class label yi and rotation degree r :

BSLA :=

⊕
r∈R

(
R(r)

(
xi

)
,
(
yi, r

))
i∈I

. (6)

SLA uses BSLA instead of B, resulting in the total number
of image instances in the minibatch increasing from |I| to
|R| × |I|. In addition, since (yi, r) is used for the label of
BSLA, the label space is expanded from Y to (yi, r) ∈ Ŷ =

{(1, 0◦), (1, 90◦), (1, 180◦), (1, 270◦), (2, 0◦), . . . , (C, 270◦)},
and the size of the SLA label space is |Ŷ| = 4C .
The next step is forwarding all rotated images to a network

f for output feature maps, each denoted as z⃗(r) = f (R(r)(x)) ∈

Rp for r ∈ R. Since a single network f performs a forward
pass for each rotated image R(r)(x), there are a total of |R|

output feature maps per image.

b: SLA OUTPUTS
After obtaining output feature maps

(
z⃗(r)

)
r∈R, SLA uses an

affine map defined as9 : Rp
→ RC×|R| to produce the logit

s⃗(r) := 9(z⃗(r)). The affine map enables the joint prediction
of both the original class and the rotation degree. Afterward,
SLA’s next step is to apply softmax to all logits s⃗(r) for r ∈ R
as follows:

1(s⃗(r))(c,r ′) :=
exp(s⃗(r)(c,r ′))∑

(c′′,r ′′)∈Ŷ
exp(s⃗(r)(c′′,r ′′))

. (7)

Note that1(s⃗(r)) is a vector within the range (0, 1)C×|R|, and
(c, r ′) represents an indexwithin this vector’s index set, which
is denoted as Ŷ . In addition, we refer to (1 ◦ 9) as a joint
classifier.
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3) TRAINING AND INFERENCE
SLA’s training loss is expressed as follows:

LSLA ((x), (y, r))

=
1

|R|

∑
r∈R

LCE

((
1 ◦9 ◦ f ◦ R(r)

)
(x), (y, r)

)
. (8)

Therefore, the training loss of SLA is the average of |R|

different cross-entropy losses, computed using predictions
corresponding to the true label and degree (y, r).
During inference with SLA, predicting both the original

class and rotation degree simultaneously becomes unnec-
essary because we already have information about the
transformations. Given the true degree r , we can focus on a
label space of size C instead of C × |R|. In such cases, the
index set changes from Ŷ to {(1, r), (2, r), . . . , (C, r)}. Here,
we express the logit as 9r (z⃗(r)) ∈ RC , which is a vector
composed of the positions corresponding to the modified
index set.

SLA then aggregates these logits for inference in a specific
manner:

9̄ (x,R) =
1

|R|

∑
r∈R

(
9r

◦ f ◦ R(r)
)
(x)

=
1

|R|

∑
r∈R

9r (z⃗(r)) ∈ RC (9)

pagg (c|x,R) =
exp

(
9̄ (x,R)c

)
C∑
k=1

exp
(
9̄ (x,R)k

) (10)

psi(c|x, 0◦) =
exp

(
90◦

(x)c
)

C∑
k=1

exp
(
90◦ (x)k

) . (11)

Finally, there are two types of inference methods: either
using argmaxc∈Y pagg (c|x,R) or argmaxc∈Y psi(c|x, 0

◦) to
obtain the classified result. When using pagg, similar to the
training process, a single f executes |R| forward passes
during inference. In contrast, selecting psi performs only a
single forward pass. Note that a key advantage of using pagg
is that SLA effectively achieves performance nearly close to
that of deep ensembles.

IV. METHODOLOGY
1) OVERVIEW
For both the efficiency ofMIMOand the effectiveness of SLA,
we use a multi-input multi-output structure while jointly
learning original and rotation-based self-supervised tasks.
To briefly describe the input-output structure of our method
for training, as illustrated in Fig. 3 for the M = 2 case, the
process is as follows: (i) a pair of multiple inputs is rotated
by the same degree, then each input is passed through its
corresponding convolution layer (κ1 or κ2), and the outputs
are summed up; (ii) this value is then forwarded to f to obtain
the output feature map z⃗(r) for r ∈ R; (iii) it is classified by
different multiple joint classifiers.

Here, by using a multi-input multi-output structure,
we efficiently generate more ensemble predictions than SLA,
yet at a similar cost. In addition, by changing from multiple
classifiers to multiple joint classifiers, we enhance effective-
ness compared to the MIMO-based model, incorporating the
advantages of rotation-based self-supervised learning into
supervised learning tasks. Furthermore, we aim to not only
integrate these techniques but also to improve them, with a
focus on the training minibatch and mixing strategy, which
we regard as key elements in combining the MIMO and SLA
methods (see Section IV-3 for details).

2) ROTATION DEGREES
Our method uses a rotation-based self-supervised learning
technique, based on the set of rotation degrees R =

{0, 90, 180, 270}. Rotating images by 0, 90, 180, and
270 degrees is a widely adopted practice in research using
a rotation-based self-supervised learning technique for two
primary reasons [11], [17], [18], [19], [22]. First, images
captured by humans typically show objects in an up-
standing position, thereby reducing ambiguity in rotation
transformations [17]. Second, rotations of 0, 90, 180, and
270 degrees are simple to implement as they can be achieved
through flip or transpose operations [11], [17]. We also base
our rotation transformation on 0, 90, 180, and 270 degrees
due to well defined up-standing position of objects in images
and simplicity in implementation. In addition, we experiment
with a different set of rotation degrees, which is discussed in
Table 5.

3) MIXING MULTIPLE INPUTS
To combine the self-supervised learning technique with the
method of mixing M inputs, our minibatch is constructed as
follows:

Bours

:=

⊕
r∈R

( (
R(r)

(
xφ̂

t
1(i)

)
, . . . ,R(r)

(
xφ̂

t
M (i)

))
,

×

((
yφ̂

t
1(i), r

)
, . . . ,

(
yφ̂

t
M (i), r

)) )
i∈I

(12)

where

φ̂tm(i) =

{
id(i) if i ∈ A
φtm(i) otherwise

and m ∈ [M ]. We note that A is the set formed by uniformly
randomly selecting a proportion of q in the minibatch index
set I, and φtm is a function that randomly shuffles the indices
inAc. Here, unlikeMIMO,we design our minibatch structure
to share A. This approach is an extension of the philosophy
of SLA. SLA rotates each image by the rotation degrees in
R to construct a training minibatch. Similarly, for i ∈ A, our
method rotates a pair of the same images by each rotation
degree r ∈ R, i.e.,

((
R(r)

(
xi

)
, . . . ,R(r)

(
xi

)))
r∈R to form a

training minibatch (see the dashed green rectangle in Fig. 3).
For our mixing strategy, we drawM rotated multiple inputs

from Bours, i.e.,
(
R(r)

(
x1

)
, . . . ,R(r)

(
xM

))
for r ∈ R = {0◦,
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FIGURE 3. (a) Training.

90◦, 180◦, 270◦
}. Subsequently, each of convolution layers

κ1, . . . , κM processes its corresponding rotated image. Then,
we sum the features of these rotated images:

τ
(
R(r)

(
x1

)
, . . . ,R(r)

(
xM

))
:=

M∑
m=1

κm

(
R(r)

(
xm

))
. (13)

This summed output is then fed into f to produce the output
feature map. That is,

z⃗(r) = (f ◦ τ)
(
R(r)

(
x1

)
, . . . ,R(r)

(
xM

))
∈ Rp. (14)

We note that for i ∈ A, since there are |R| instances of a
pair of multiple images

((
R(r)

(
xi

)
, . . . ,R(r)

(
xi

)))
r∈R inBours,

there also exist |R| corresponding output feature maps (i.e.,
(z⃗(r))r∈R).
In our mixing strategy, a key aspect is that we rotate each

pair of multiple inputs by the same degree, even though
rotating them by different degrees is possible; this approach
is empirically examined in Section V-E.

4) MULTIPLE OUTPUTS WITH SELF-SUPERVISED LABEL
AUGMENTATION
Just as a reminder, the joint linear classifier (1 ◦ 9), which
enables prediction of both classes and degrees, consists of
9 : Rp

→ RC×|R| and 1 : RC×|R|
→ (0, 1)C×|R|,

the latter representing the softmax layer following the affine
map. In this context, we use M joint classifiers (11 ◦

91), . . . , (1M ◦ 9M ), with each m-th affine map denoted as
9m.
When our method performs a single forward pass, them-th

prediction is as follows:

gm
(
R(r)

(
x1

)
, . . . ,R(r)

(
xM

))

FIGURE 4. (b) Inference.

:= (1 ◦9m ◦ f ◦ τ)
(
R(r)

(
x1

)
, . . . ,R(r)

(
xM

))
(15)

for m ∈ [M ] and r ∈ R. In a single forward pass, our
method yields M such predictions, and considering all pairs
of multiple inputs in Bours, our method generates a total of
M × |R| × |I| predictions.

5) TRAINING LOSS AND INFERENCE
Given a pair of M multiple inputs and its corresponding pair
of labels, we compute the training loss for our method as
follows:

Lours

((
R(r)

(
x1

)
, . . . ,R(r)

(
xM

))
,
((
y1, r

)
, . . . ,

(
yM , r

)))
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=

M∑
m=1

LCE

(
gm

(
R(r)

(
x1

)
, . . . ,R(r)

(
xM

))
,
(
ym, r

))
.

(16)

Then, for each pair of training examples in the minibatch
Bours, we compute the gradient of Lours. Using the average
of these gradients, the parameters of the model are updated
via SGD.

When inferring from a single image x, we generate the
following pairs of multiple inputs:((

R(r)(x) , . . . ,R(r)(x)
))

r∈R
(17)

where each pair of multiple inputs consists of M instances
(see Fig. 4 for an illustration). Next, we use (f ◦τ ) for forward
passes across all pairs of multiple inputs to obtain (z⃗(r))r∈R.
The output feature maps are then classified using a different
approach from training. Since we already have information
about the true degree r , it is unnecessary to predict both
the class and rotation degree simultaneously. We only need
to consider 9r

m(z⃗
(r)) ∈ RC , a logit computed based on

the reduced label space, without using 9m. We classify the
output feature maps using an extended version of the SLA
aggregation method [11] as follows:

9̄self ((x, . . . , x) ,R)

=

∑
r∈R

M∑
m=1

(
9r
m ◦ f ◦ τ (r)

)
(x, . . . , x)

M × |R|
(18)

pself-agg (c| (x, . . . , x) ,R)

=
exp

(
9̄self ((x, . . . , x) ,R)c

)
C∑
k=1

exp
(
9̄self ((x, . . . , x) ,R)k

) (19)

pself-si
(
c| (x, . . . , x) , 0◦

)
=

exp
(

1
M

M∑
m=1

(
90◦

m ◦ f ◦ τ (0
◦)
)
(x, . . . , x)c

)
C∑
k=1

exp
(

1
M

M∑
m=1

(
90◦

m ◦ f ◦ τ (0
◦)
)
(x, . . . , x)k

) .
(20)

We note that the classified result can be obtained using
either argmaxc∈Y pself-agg (c| (x, . . . , x, ) ,R) or argmaxc∈Y
pself-si (c| (x, . . . , x) , 0◦). There are two methods for infer-
ence, similar to SLA.

V. EXPERIMENTS
In this section, we empirically verify our method in
image classification by comparing it with SLA and the
MIMO-based model on benchmark datasets (Section V-B).
Then, we investigate the effects of hyperparameters in our
algorithm. We first consider the input repetition rate q in
our method, which is a key factor affecting its performance
(Section V-C). We then examine the performance of our
method by varying several hyperparameters, such as the
number of multiple inputs and outputs M and the range of

rotation degrees R (Section V-D). Lastly, we study different
alternatives to our minibatch constructions for training and
mixing strategies for multiple inputs (Section V-E).

A. EXPERIMENTAL SETUP
a: DATASETS
For our image classification task, we use benchmark datasets
such as CIFAR-{10, 100} [23] and Tiny ImageNet [24]. The
CIFAR-{10, 100} datasets consist of 32× 32 3-channel color
images, with 50, 000 images for training and 10, 000 images
for testing. The CIFAR-10 dataset contains 6, 000 images
per class across 10 classes, and the CIFAR-100 dataset
has 600 images per class across 100 classes. The Tiny
ImageNet dataset, a downsized version of ImageNet [25],
is composed of 64 × 64 3-channel color images, with a total
100, 000 images for training (500 images per class across
200 classes). As a public test dataset is not provided in the
Tiny ImageNet dataset, we use the validation set consisting
of 10, 000 images as our test dataset.

b: MODELS AND HYPERPARAMETERS
When training on the CIFAR-{10, 100} datasets, we primarily
use WideResNet28-W (WRN-W ) [2]; the network width
increases in proportion to the width parameter W and the
network depth is set at 28. For the CIFAR-10 dataset,
WRN-{6, 10, 14} consist of 13.16M, 36.50M, and 71.50M
parameters respectively.

For both the CIFAR-{10, 100} datasets, we use the SGD
optimizer with a learning rate of (0.1×minibatch size)/(128×
b′). Here, b′ represents the batch repetition rate b = 4 in
the MIMO-based model [9], [10], and it denotes the number
of rotation degrees |R| = 4 in both SLA and our method.
We use Nesterov momentum updates with the momentum
parameter 0.9, a warm-up epoch of 1, a minibatch size of
64, and L2 regularization with the regularization parameter
3e − 4. We also use learning rate decay with a decay ratio
of 0.2: 300 epochs with learning rate decays at epochs
{120, 240, 270} for the CIFAR-10 dataset and 350 epochs
with decays at {120, 240, 270, 300, 330} for the CIFAR-100
dataset.

For the Tiny ImageNet dataset, we use PreActResNet18-
W (PRN-W ), where the network depth is set at 18 and the
network width scales proportionally with the width parameter
W , ranging from W = 1 to W = 3 [26]. The number of
parameters for W = 1, W = 2, and W = 3 are 11.28M,
44.80M, and 100.56M, respectively. When training on the
Tiny ImageNet dataset, we use the same hyperparameters as
in the CIFAR-100 case, except for aminibatch size andwarm-
up epochs. The minibatch size is set to 128, and the number
of warm-up epochs varies with the width parameter W
in PRN-W . Specifically, for W = 1, all method use 2 warm-
up epochs. For W = 2, both SLA and our method still use
2 warm-up epochs, MixMo uses 3, and the original PRN-2
uses 5 due to instability in the early stages of training.
Likewise, for W = 3, SLA and our method continue
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TABLE 1. Accuracy measured using the WRN-W architecture on the CIFAR-10 dataset.

TABLE 2. Accuracy measured using the WRN-W architecture on the CIFAR-100 dataset.

TABLE 3. Accuracy measured using the PRN-W architecture on the Tiny ImageNet dataset.

with 2 warm-up epochs, but MixMo uses 6 and the original
PRN-3 uses 8 for the same reason. When more than 2
warm-up epochs are used for MixMo and/or original PRN,
we extend the total training epochs to maintain an equal
number of (total training epochs − warm-up epochs).

For all datasets, our methods mainly use the number of
multiple inputs and outputs M = 2, and the set of all
rotation degrees R = {0◦, 90◦, 180◦, 270◦

} (for detailed
explanations, see Section V-D).

c: OTHER SETUPS
For the CIFAR-{10, 100} datasets and the Tiny ImageNet
dataset, all networks were trained three times using the
TensorFlow framework. All the results of these image clas-
sification experiments were reported with the test accuracy at
the last iteration, rather than selecting the best test accuracy
without a validation dataset as seen in approaches like [10].

B. MAIN EXPERIMENTS
a: PREPARATION
In the main results, we compare the performance of our
method with that of SLA and MixMo, which is an improved
version of MIMO [10]. Here, since the MixMo paper reports
performance improvements with the application of CutMix

augmentation to the input images [21], we follow this
setup. In addition, because our method and SLA can use
four forward passes during inference, we also evaluated the
performance of MixMo using multiple forward passes via
test-time augmentation (TTA) [27], [28], [29]. In particular,
we use 5 crop TTA for MixMo (MixMo 5C), a widely
used TTA technique involving center cropping and cropping
each of the four corners of an image, thus requiring
five forward passes [27], [28], [29], [30]. In all of our
experiments, SLA SI accuracy and SLA AGG accuracy
refer to accuracies measured using argmaxc∈Y psi(c|x, 0

◦)
and argmaxc∈Y pagg (c|x,R), respectively. Similarly, our
SI accuracy and our AGG accuracy denote accuracies
measured using argmaxc∈Y pself-si (c| (x, . . . , x) , 0

◦) and
argmaxc∈Y pself-agg (c| (x, . . . , x, ) ,R). The term baseline
represents the performance of a vanilla network without any
ensemble and augmentation methods.

b: MAIN RESULTS
We observed that our method performs better than SLA
and MixMo with wider CNNs, especially in the CIFAR-
{10, 100} results when using the WRN-{10, 14} architectures
(Table 1, 2), and in the Tiny ImageNet results for all PRN-
{1, 2, 3} cases (Table 3). Furthermore, in Table 1, 2, 3,
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we observed that as the width of a network gets larger, our
method can achieve better performance than SLA andMixMo
even with fewer parameters.

c: MAIN RESULTS: COMPARING OUR METHOD WITH SLA
Looking at the CIFAR-{10, 100} and the Tiny ImageNet
experimental results (Table 1, 2, 3), we observed that the
difference (our AGG accuracy − SLA AGG accuracy)
increased as the width parameterW of the network increased.
For the CIFAR-10 results obtained with the WRN-6 architec-
ture (Table 1), our AGG accuracy and SLA AGG accuracy
showed similar results. However, in the CIFAR-10 results
with the WRN-10 architecture (Table 1), our AGG accuracy
exceeded SLA AGG accuracy by 0.17%, and this difference
even increased to 0.23% with the WRN-14 architecture.
In addition, in the CIFAR-100 results using the WRN-
6 architecture (Table 2), our AGG accuracy was 0.3% lower
than SLA AGG accuracy. However, with wider architectures,
our AGG accuracy outperformed SLA AGG accuracy; when
using the WRN-10, our AGG accuracy showed a 0.19%
improvement, and with the WRN-14, this increase was
even more pronounced at 0.24%. Moving to the Tiny
ImageNet dataset (Table 3), our AGG accuracy consistently
outperformed SLA AGG accuracy across all PRN-{1, 2, 3}
architectures. Specifically, with the PRN-1 architecture, our
AGG accuracy achieved a 0.39% higher performance than
SLA AGG accuracy. This gap widened with the PRN-2
architecture, where our AGG accuracy exceeded SLA AGG
accuracy by more than 0.95%. Moreover, with the PRN-3
architecture, the difference further increased to 1.14%.
In addition, our SI accuracy consistently outperformed
SLA SI accuracy in all results (Table 1, 2, 3), except
when using the WRN-6 architecture on the CIFAR-
10 dataset, where our SI accuracy was almost similar to SLA
SI accuracy.

d: MAIN RESULTS: COMPARING OUR METHOD WITH
MIXMO
Our AGG accuracy outperformed MixMo 5C accuracy in
all experimental results (Table 1, 2, 3). Especially for
the Tiny ImageNet results with all PRN-{1, 2, 3} architec-
tures (Table 3), the performance gap between our AGG
accuracy and MixMo 5C accuracy was > 2.3%. As the
width parameter W increased, the performance of our
method improved over that of MixMo, with (our AGG
accuracy − MixMo 5C accuracy) being 2.3% for PRN-1
architecture, 2.5% for PRN-2 architecture, and 2.62% for
PRN-3 architecture.

e: MAIN RESULTS: PERFORMANCE EFFICIENCY
In Table 1, 2, 3, we observed that as the width of a network
gets larger, our AGG method outperforms SLA AGG and
MixMo 5C even with fewer parameters. For example in
Table 1, our method, based on the WRN-10 architecture,
uses 36.54 million parameters, whereas SLA and MixMo,
based on the WRN-14 architecture, use 71.52 million

and 71.51 million parameters, respectively. Yet, our AGG
accuracy was > 0.1% compared to SLA AGG and MixMo
5C accuracy. Similarly, in Table 2, we compare our method,
which uses the WRN-10 architecture with 37.01 million
parameters, to SLA and MixMo. Both of these are based
on the WRN-14 architecture and use 71.85 million and
71.67 million parameters, respectively. Our AGG accuracy
was > 0.06%. Furthermore, in Table 3, although our
method with the PRN-2 architecture uses 46.24 million
parameters, our AGG accuracy was > 0.15% compared to
SLA AGG and MixMo 5C accuracy, both with the PRN-3
architecture, which use more than double at 101.48 million
and 100.87 million parameters, respectively.

f: SUMMARIZATION
To summarize our findings (Tables 1, 2, 3), our method with
wider networks can achieve better performance compared
to other methods. In particular, although our method incurs
similar computational costs to the SLA method, the AGG
accuracy gap between our method and the SLA method
becomes more pronounced as the width of the networks
increases. Furthermore, our method can achieve higher
accuracy compared to the previous works with similar
computational costs, even with almost half the number of
parameters.

C. IMPACT OF INPUT REPETITION RATE
1) PERFORMANCE
a: PREPARATION
In this section, we examined the influence of the input
repetition rate q on the performance of our method. To better
understand the role of q, we also compared the performance
of our method with MIMOwhen both methods used the same
q value.
In Fig. 5, the impact of different input repetition rates

q on performance is demonstrated. We separately trained
the WRN-10 architecture with our method for each specific
q ∈ {0.0, 0.25, 0.5, 0.75, 1.0} on the CIFAR-10 dataset. For
each q value, we conducted three independent trials and then
computed the average accuracy. In each trial, accuracy was
measured using our method’s argmaxc∈Y pself-agg (c|x,R).
We followed a similar procedure for MIMO, using the same
range of q values and the same number of trials.

b: EXPERIMENTAL RESULTS
There are two notable observations in our experiment
illustrated in Fig. 5. First, with our method, the input
repetition rate q = 0.5 showed the highest accuracy. From
this observation, we used q = 0.5 as the default value for
our method. Second, MIMO showed higher accuracy with
lower q values, but our method exhibited a different pattern:
performance was better at q ∈ {0.75, 1.0} compared to lower
values of q ∈ {0.0, 0.25}. This indicates that the pattern of
accuracy variations with different q values in our method
differs from that observed in MIMO.
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FIGURE 5. We conducted three independent trials for each q value and
computed the average of these trials’ accuracies for our method, referred
to as ‘‘AGG’’. Similarly, the average accuracy obtained from MIMO(M = 2)
across these trials is denoted as ‘‘MIMO’’.

c: DISCUSSION
In Fig. 5, Our method achieves over 1% higher performance
in its optimal case (q = 0.5) compared to the best-performing
case of MIMO (q = 0.0), specifically when using
WRN28-10 on the CIFAR-10 dataset. In other words,
integrating the benefits of self-supervised learning into a
multi-input multi-output structure results in a performance
improvement of over 1% compared to scenarios where these
benefits are not applied.

2) DIVERSITY BETWEEN MEMBERS
We also measured changes in diversity among individual
predictions when varying q, since this diversity in ensemble
learning is one of the key factors associated with perfor-
mance [8], [10], [31], [32].

a: PREPARATION
KL-divergence is a popular metric for measuring the
diversity between ensemble members [8], [9], [33], [34].
Note that for two C-dimensional probability vectors, p⃗
and q⃗, KL-divergence can be computed as DKL(p⃗||q⃗) =∑

c∈Y p⃗c (log p⃗c − log q⃗c). This metric is employed in our
analysis to investigate the diversity between predictions of
ensemble members in our method.

Before delving into the diversity analysis, we define the
following notation: for r ∈ R = {0◦, 90◦, 180◦, 270◦

}

and m ∈ [M ] = {1, 2}, the {m, r}-individual prediction
σ̂
(r)
m (x, x) ∈ RC is defined as

σ̂ (r)
m (x, x)c :=

exp
((
9r
m ◦ f ◦ τ (r)

)
(x, x)c

)
C∑
k=1

exp
((
9r
m ◦ f ◦ τ (r)

)
(x, x)k

) (21)

for all c ∈ Y . Here, performing a single forward pass
for a rotation degree r ∈ R results in a total of
M = 2 individual predictions, denoted as

(
σ̂
(r)
m (x, x)

)
m∈[M ]

.

These individual predictions together are referred to as r-
predictions. Furthermore, performing forward passes for all
degrees {0◦, 90◦, 180◦, 270◦

} results in a total ofM × |R| =

2 × 4 = 8 individual predictions.

b: DIVERSITY METRICS
To better understand the diversity of predictions generated
by our methods, we measure two quantities: classifier-wise
KL-divergence and rotation-wise KL-divergence. The
classifier-wiseKL-divergencemeasures the diversity between
r-predictions in our method given the same rotation degree,
which is defined as

Classifier-wise KL-divergence

:=
1

2 × |R|

∑
r∈R

∑
m1 ̸=m2

DKL

(
σ̂ (r)
m1

(x, x)||σ̂ (r)
m2

(x, x)
)
. (22)

where m1,m2 ∈ {1, 2}. We note that this diversity measure is
similar to the diversity measure used in the original MIMO
paper [9]:

∑
m1 ̸=m2

DKL(σm1 (x, x)||σm2 (x, x))/2 where
m1,m2 ∈ {1, 2}.
The rotation-wise KL-divergence is defined as follows:

for each r ∈ R and p⃗(r) ∈ RC defined as p⃗(r)c =

pself-si(c|(x, x), r),

Rotation-wise KL-divergence

:=
1

|R|(|R| − 1)

∑
r1 ̸=r2

DKL

(
p⃗(r1)||p⃗(r2)

)
(23)

where r1, r2 ∈ R. This measure does not compare the
diversity between individual predictions; instead, it measures
the diversity between (p⃗(0

◦), p⃗(90
◦), p⃗(180

◦), p⃗(270
◦)). We note

that the rotation-wise KL-divergence corresponds to the
diversity between multiple forward passes in SLA if we
replace pself-si by psi.

c: EXPERIMENTAL RESULTS
Wemeasured the classifier-wise KL-divergence and rotation-
wise KL-divergence of our method by varying the input rep-
etition rate q (Table 4) and compared them with the diversity
in MIMO and SLA. We conducted three independent trials
for each method—our method, SLA, and MIMO—on the
CIFAR-10 dataset, each employing theWRN-10 architecture,
and then measured the average of diversity metrics. We note
thatMIMOuses the input repetition rate q, whereas SLA does
not employ q in its approach.
In Table 4, we observed that both the classifier-wise

KL-divergence in our method and MIMO KL-divergence
decreased with lower q values, such as q = 0 or q = 0.25.
However, the rotation-wise KL-divergence in our method
showed a different trend, where it tended to increase as q
values increased, particularly peaking at q = 0.75. This
suggests that a relatively high q ∈ {0.5, 0.75, 1.0}, may
reduce the diversity between r-predictions in a single forward
pass, but it can enhance the diversity between predictions
from rotation-wise multiple forward passes. When varying q,
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TABLE 4. Diversity analysis for varying input repetition rates q.

we expect that the influence of rotation-wise KL-divergence
in our method contributes to the different performance
patterns compared to MIMO.

D. OTHER NUMBER OF MULTIPLE INPUTS/OUTPUTS AND
SET OF ROTATION DEGREES
a: PREPARATION
In Section V-A, we initially introduced the hyperparameters
of our method with the number of multiple inputs and
outputs M = 2, and the set of rotation degrees R =

{0◦, 90◦, 180◦, 270◦
}. In this section, we explore different

values of M ∈ {1, 3, 4} and the alternative set of rotation
degreesR′

= {0◦, 180◦
}.

We evaluated the performance of our method by varying
the number of multiple inputs and outputs M ∈ {1, 2, 3, 4}
and the set of rotation degrees from {R,R′

}. When we
use R′, to maintain a consistent learning rate with b′

= 4,
we construct the training minibatch as follows:⊕

r∈{0◦,180◦,0◦,180◦}

( (
R(r)

(
xφ̂

t
1(i)

)
, . . . ,R(r)

(
xφ̂

t
M (i)

))
,

×

((
yφ̂

t
1(i), r

)
, . . . ,

(
yφ̂

t
M (i), r

)) )
i∈I
. (24)

Note that our method requires two forward passes withR′

for a single inference, unlikeR with four passes.

b: EXPERIMENTAL RESULTS
In Table 5, we conducted three independent trials and
averaged the accuracy for each setup on the CIFAR-10 dataset
using the WRN-10 architecture for our method. Within
this table, we observed that our method achieved better
performance using the set of rotation degrees R compared
to the setR′, and the higher performance was observed when
using M = 2 across {1, 2, 3, 4}; hence, we use M = 2 and
R as default hyperparameters for our method in Section V-B.
We also used M = 2 and R for other datasets and network
architectures.

E. OTHER MINIBATCH CONSTRUCTIONS AND MIXING
STRATEGIES
Our method combines two input images x1, x2 for training
using the mixing strategy κ1

(
R(r)

(
x1

))
+ κ2

(
R(r)

(
x2

))
for

r ∈ R. This mixed result is then passed into a network.
Instead of using the same rotation degree r for both images
(i.e.,

(
R(r)

(
x1

)
,R(r)

(
x2

))
), we can try other mixing strategies

and training minibatch structures by applying other pairs of
rotation degrees to the images (i.e.,

(
R(r1)

(
x1

)
,R(r2)

(
x2

))
for

TABLE 5. Accuracy results from varying number of multiple
inputs/outputs and sets of rotation degrees.

r1, r2 ∈ R). In this section, we introduce two alternatives and
compare their performances with that of our method.

1) OTHER PAIRS OF ROTATION DEGREES
Here, we introduce mixing strategies and training minibatch
structures using

(
R(r1)

(
x1

)
,R(r2)

(
x2

))
for r1, r2 ∈ R.

a: ALTERNATIVE 1
In the first alternative, we use the following mixing strategy:

κ1

(
R

(
γ i1

)(
x1

))
+ κ2

(
R

(
γ i2

)(
x2

))
∀i ∈ I (25)

where random variables γ i1, γ
i
2 follows the uniform distribu-

tion over {0◦, 90◦, 180◦, 270◦
}. Note that this method can

create a total of 16 pairs of degree combinations. The training
minibatch of Alternative 1 is composed as

b⊕
t=1

( (
R

(
γ i1

)(
xφ̂

t
1(i)

)
,R

(
γ i2

)(
xφ̂

t
2(i)

))
,((

yφ̂
t
1(i), γ i1

)
,
(
yφ̂

t
2(i), γ i2

)) )
i∈I

(26)

where

φ̂tm(i) =

{
id(i) if i ∈ A
φtm(i) otherwise

for m ∈ {1, 2} and γ i1, γ
i
2 ∼ unif({0◦, 90◦, 180◦, 270◦

}).
Recalling that A is the set formed by uniformly randomly
selecting a proportion of q in the minibatch index set I, and
φtm is a function that randomly shuffles the indices in Ac.

b: ALTERNATIVE 2
We similarly construct the training minibatch of Alter-
native 2. Here, the difference with Alternative 1 is that
Alternative 2 applies the same rotation degree for i ∈ A
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as follows:
b⊕
t=1

( (
R

(
γ i1

)(
xφ̂

t
1(i)

)
,R(γ̂ (i))

(
xφ̂

t
2(i)

))
((
yφ̂

t
1(i), γ i1

)
,
(
yφ̂

t
2(i), γ̂ (i)

)) )
i∈I

(27)

where

γ̂ (i) =

{
γ i1 if i ∈ A
γ i2 otherwise

and

φ̂tm(i) =

{
id(i) if i ∈ A
φtm(i) otherwise

for m ∈ {1, 2} and γ i1, γ
i
2 ∼ unif({0◦, 90◦, 180◦, 270◦

}). The
mixing strategy of Alternative 2 can be described as

κ1

(
R

(
γ i1

)(
x1

))
+ κ2

(
R(γ̂ (i))

(
x2

))
. (28)

2) COMPARISON AMONG MIXING STRATEGIES
a: PREPARATION
In this section, we compare the performances of our method
with different mixing strategies and training minibatch
structures.

In Fig. 6, SI accuracy and AGG accuracy are measured
in the same manner as in Section V-B (Table 1, 2, 3),
based on the CIFAR-10 dataset using the WRN-10 archi-
tecture. Furthermore, for the cases of Alternative 1 and
Alternative 2, we denote the accuracy obtained by
argmaxc∈Y pself-ext (c| (x, . . . , x) ,R) asAGG16, an extended
version of the pself-agg aggregation method, detailed as
follows:

9̄self-ext ((x, . . . , x) ,R)

=

∑
r1∈R

∑
r2∈R

M∑
m=1

(
9r
m ◦ f ◦ τ (r)

)
(x, . . . , x)

M × |R| × |R|
(29)

FIGURE 6. Accuracy variations based on the mixing strategies for multiple
inputs and training minibatch structures.

pself-ext (c| (x, . . . , x) ,R)

=
exp

(
9̄ext ((x, . . . , x) ,R)c

)
C∑
k=1

exp
(
9̄ext ((x, . . . , x) ,R)k

) (30)

for M = 2 andR = {0◦, 90◦, 180◦, 270◦
}.

b: EXPERIMENTAL RESULTS
In Fig. 6, we observed that for both Alternative 1 and Alterna-
tive 2, the AGG accuracy is at least the AGG16 accuracy, even
though AGG16 requires 12 more forward passes than AGG.
Similarly, our method also showed higher AGG accuracy
compared to AGG16 accuracy. Furthermore, in Fig. 6,
we compared AGG accuracies of our method, Alternative 1,
and Alternative 2. The AGG accuracy of our method was
higher by 0.896% than that of Alternative 1 and by 0.649%
higher than Alternative 2.

VI. CONCLUSION
The key concept of our method is the integration of the
benefits of self-supervised learning into a multi-input multi-
output structure, enabling both rotation-wise and classifier-
wise predictions for inference to boost the ensemble effect.
This structure shows that a multi-input multi-output structure
can synergize with self-supervised learning techniques.
Specifically, our method not only improves performance in
wider networks compared to previous works but also achieves
higher performance while using an architecture with nearly
half the number of parameters.

Currently, our objective is centered on integrating benefits
from rotation-based self-supervised learning into a multi-
input multi-output structure. However, in our future works,
we plan to develop an implicit deep ensemble method
capable of robust inference across all degrees of rotation
transformation.
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