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ABSTRACT Skin disorders encompass a wide range of conditions that affect the skin, a vital organ of
the human body. Early detection of skin diseases is difficult due to a lack of awareness, subtle symptoms,
similarities, inter-individual heterogeneity in symptoms, limited access to dermatologists, and difficulties
in imaging techniques. In this article, we propose a clinical decision support model for detection and
classification of skin diseases (DermCDSM) through productive improvement of division capabilities and
a cross-breed profound learning procedure. The division cycle is expected to be further developed using
an improved chameleon swarm optimization (ICSO) method that takes into account a more accurate and
proficient identification of the main cause of the disease. By employing the ICSO algorithm, we aim
to enhance the overall accuracy and reliability of disease detection methods. Multi-strategy seeking
optimization (MSSO), which is used to optimize feature selection by identifying the most significant features
for the task at hand, has been introduced to handle the tests connected to data dimensionality. Convolutional
deep spiking neural networks (CD-SNN), a deep learning method, have been implemented to improve the
precision of skin cancer diagnosis andmulti-class classification. The benchmark ISIC 2017 dataset is utilized
to validate the efficacy of our proposed framework, DermCDSM, and its superiority over existing approaches
in terms of accuracy, dependability, and efficiency is demonstrated.

INDEX TERMS Decision support system, deep learning, eczema, digital healthcare, image segmentation.

I. INTRODUCTION
Skin disease refers to any condition or disorder that affects the
skin, which is the body’s major organ [1]. There are numerous
types of skin diseases, ranging from common conditions like
acne, eczema, and psoriasis to more serious diseases such as
skin cancer and infectious diseases like fungal or bacterial
infections [2]. Skin diseases manifest in various ways, includ-
ing rashes, itching, redness, inflammation, discoloration, and
the formation of lesions or bumps on the skin. Therapy for
skin conditions can vary depending on the particular con-
dition and may involve skin prescriptions, oral medications,
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lifestyle changes, or surgical procedures [3]. Skin diseases
can be diagnosed using a variety of methods, including
visual examination by dermatologists or other healthcare
professionals and clinical considerations. Dermoscopy is an
imaging technique, and there have also been innovative
improvements, including PC-assisted diagnostic systems [4],
[5]. Recently, significant progress has beenmade inmanaging
skin diseases using computerized reasoning approaches [6].
Computerized reasoning systems can discover patterns in
massive datasets, learn from them, and make extremely
precise predictions. This enables early detection, diagnosis,
and treatment of various skin conditions [7].

Clinical decision support for skin disorders plays a crucial
role in accurate diagnoses, facilitating appropriate treatment

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 47319

https://orcid.org/0000-0002-6607-5107
https://orcid.org/0000-0002-8511-8002
https://orcid.org/0000-0003-4997-0203
https://orcid.org/0000-0003-4921-9591
https://orcid.org/0000-0003-1505-9163
https://orcid.org/0000-0002-2370-9384
https://orcid.org/0000-0001-8911-727X


R. Mittal et al.: DermCDSM: Clinical Decision Support Model for Dermatosis

plans, and monitoring the progress of skin conditions [6],
[8]. Dermatologists and healthcare professionals can visually
analyze high-resolution images, identifying distinct patterns,
textures, colors, and other visual characteristics associated
with different skin diseases [9]. In addition to visual
examination, image processing methods are successful in
locating hotspots in skin images [10]. Relevant features such
as shape, texture, color, and lesion size can be extracted
using specialized algorithms. These extracted features act
as significant discriminative factors [11] for distinguishing
between different types of skin diseases. By quantifying
and analyzing these features, image processing aids in the
automated classification and diagnosis of skin conditions,
enabling more accurate and efficient detection [12]. Another
advantage of image processing in skin disease detection is
its capability to preprocess and enhance the quality of skin
images [13]. Often, noise, artifacts, and varying lighting
conditions distort skin imagery. To address these issues,
image processing algorithms can perform tasks such as
noise reduction, image enhancement, and normalization [14].
By applying these preprocessing techniques, the quality
of skin images is improved, ensuring more accurate and
consistent analysis. Image segmentation is a critical step
in skin disease detection, and image processing techniques
excel in this area as well [15], [16], [17].For separating
damaged skin from healthy skin, segmentation algorithms
are used. Image processing techniques, in conjunction with
machine learning and pattern recognition [18], also contribute
to computer-aided diagnosis systems for skin diseases.
These technologies can help dermatologists make decisions
by offering computer-aided diagnosis [36], [37], providing
another perspective, and leading to more accurate and
consistent diagnoses [19]. We propose a novel technique
to enhance the early detection and classification of skin
diseases, by combining efficient segmentation and feature
optimization with a hybrid deep learning approach. The
proposed technique offers several significant contributions,
which are summarized as follows:

1. An improved Chameleon Swarm Optimization (ICSO)
algorithm that aims to improve the segmentation process
for more efficient and precise identification of the targeted
disease region. This algorithm addresses the challenges
associated with data dimensionality and provides better
results.

2. Introduced the Multi-Strategy Seeker Optimization
(MSSO) technique to address the issue of high-
dimensional data. MSSO optimizes feature selection by
identifying the most relevant and informative features
specifically tailored to the given task.

3. Integrated a Convolutional Deep Spiking Neural Network
(CD-SNN) into our framework to enhance the accuracy of
skin cancer detection and enablemulti-class classification.

Overall, our proposed approach utilizes the ICSO algorithm
for improved segmentation, employs theMSSO technique for
feature selection, and incorporates the CD-SNN model for

accurate skin cancer detection and multi-class classification.
These advancements aim to enhance the efficiency, precision,
and overall performance of skin disease analysis, ultimately
benefiting healthcare professionals and patients in diagnosing
and treating skin conditions. The structure of the remainder
of this article is as follows: Section Two presents the detailed
analysis of the benchmarked works for the identification
of skin infections. Section Three presents the evolution
of the research problem and the methodologies adopted.
Section Four presents the results of the experiments and a
comparative analysis of the proposed and existing techniques,
and Section Five concludes.

II. RELATED WORKS
This section offers a thorough analysis of the most recent
publications that are significant in identifying and classifying
skin diseases. This section’s goal is to lay out developments
and research initiatives in this field while emphasizing the
important contributions and findings of each work. We obtain
useful insights into the current state-of-the-art techniques and
methods utilized for skin disease detection and classification
by reviewing this related literatures. Table 1 summarizes the
research gaps identified in these works.

Gavrilov et al. [20] have proposed an innovative approach
for automatic diagnostics of skin neoplasms by means of
a convolutional deep learning neural network. Their model
demonstrates more accuracy in the qualitative diagnosis of
skin melanoma, achieving a minimum accuracy of 91%.
Chen et al. [21] developed a real-time, flexible, and adaptable
system for detecting skin diseases. The method used in this
procedure requires constant data flow between the client and
a clinical server, which stores a variety of information, such
as images of the client’s skin, the patient’s overall health state,
and model requirements. By selecting significant information
at the edge node, the system increases model generalization
and data quality in the remote cloud database. To demonstrate
the adaptability of their algorithm, three learning models
(LeNet-5, AlexNet, and VGG16) were trained on the cloud.

Bu et al. [22] have developed a skin disease taxonomy
based on cytology and pathology and compared it to
the ICD-10 system in terms of its predictive power. The
taxonomy consists of six levels and organizes individual
diseases in a hierarchical tree structure. The study’s findings
demonstrated that the developed taxonomy outperformed
the ICD-10 system in predicting skin diseases.Likewise,
Mijwil [23] proposed a deep learning network for the analysis
of a large dataset consisting of over 24,000 skin cancer
images. The results showed that the InceptionV3 architecture
achieved highly satisfactory outcomes, demonstrating its
ability to generalize the detection of cancer in the images.
Diagnostic accuracy was 86.90%, accuracy was 87.47%,
sensitivity was 86.14 percent, and specificity was 87.66% for
the InceptionV3 architecture.

Khan et al. [24] proposed a fully automatic computer-aided
diagnosis system for skin scratch analysis using a deep
learning framework. The MASK-RCNN algorithm is then
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TABLE 1. Summary of research gaps.

employed for lesion segmentation, resulting in segmented
images. Feature extraction involves utilizing both regular
pool and fully associated layers, which are combined to
generate a feature vector. Goceri [25] introduces a lightweight
network architecture made for mobile applications that use
color photography to diagnose skin conditions. ShuffleNet,
which is known for shuffle channels during convolution to
exchange information between classes, does not performwell
in classification. Yu and Reiff-Marganiec [26] propose a
practical solution for remote skin disease diagnosis appli-
cations in the IoT context. The study encompasses two key
aspects. The dynamic AI model configuration is presented,
which is supported by an IoT-Fog-Cloud distant diagnosis
building and exemplified through hardware implementations.
An evaluation survey is conducted to assess the performance
of machine learning models for skin disease identification.
Srinivasu et al. [27] propose a computerized approach for
classifying skin diseases using deep learning techniques,
specifically MobileNet V2 and LSTM. The MobileNet V2
model is chosen for its efficiency and accuracy, making
it suitable for deployment on lightweight computational
devices. The model efficiently retains stateful information,
enabling precise predictions.

Khan et al. [28] offer a crossover skin condition clas-
sification method that blends a 16-layer CNN model with
high-layered contrast change-based framework. The multiple
images produced by the CNN model are combined with
the HDCT technique’s sectioned RGB image. The pre-
trained DenseNet201 model is fitted to images of fragmented
lesions using transfer learning. A stochastic neighbor-nailing
approach is used to assess the discarded features of the
two entirely associated layers. Nigat et al. [29] present a
CNN-based approach for the classification of four common
forms of fungal skin diseases. The studies were designed to
obtain ideal performance, and it was discovered that an image
size of 224 224, ReLU, and RGB color channel may achieve
an accuracy of 93.3%. The CNNmodel is compared to similar
structures such as MobileNet V2 and ResNet 50.

III. MATERIALS AND METHODS
Traditional methods of detecting skin problems are fraught
with difficulties and limitations, resulting in erroneous
and inaccurate diagnoses. Different specialists may decode
and analyze a skin issue differently. Dermatologists may
have limited knowledge, particularly in remote or under-
developed areas. This limitation hinders access to specific
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disease examinations and treatments. Misdiagnoses and false
negatives are also causes for concern, as human error
and the intricate nature of individual skin illnesses can
lead to misdiagnosis or misinterpretation [38]. By relying
on huge datasets, such calculations may overlook critical
information for accurate analysis. These models discern
specific requirements by learning from particular data
sources, enabling them to familiarize themselves with the
signs of various skin diseases. Since ML and DL algorithms
have access to more detailed skin images, their accuracy
will improve over time [39]. Because of their scalability
and accessibility, ML and DL models can be used in a
variety of healthcare applications, including locations with
limited access to dermatologists. They can conduct basic
tests, assist general practitioners, and facilitate telemedicine
consultations, thereby enhancing access to quick and accurate
diagnoses. Challenges in ML/DL techniques for skin disease
detection include limited and imbalanced datasets, a lack
of interpretability in deep neural networks, sensitivity to
variations in image quality, limited generalizability to diverse
populations, ethical and privacy concerns, and the need
for proper validation and evaluation in clinical practice.
To address these issues, the proposed framework is intended
to do the following:

• Utilizes data preprocessing to increase the quantity of
input data and mitigate the dataset’s data imbalance
problem;

• Optimizes the segmentation process to accurately cap-
ture the target portion, thereby achieving the highest
detection rate;

• Introduces the feature optimization technique to select
the best features by addressing data dimensionality
issues.

• Utilize a deep learning model to classify skin disorders
into multiple classes.

A. PROPOSED METHODOLOGY
Figure 1 depicts the conceptual framework of the proposed
work, which consists of a series of operations. Patients with
skin disorders contribute images to a database depicting
various skin conditions relevant to skin disease diagnosis.
These images are frequently stored in databases like the
ISIC 2017, which serve as useful resources for research and
development in this field. Image preprocessing techniques
are used to remove undesirable artifacts and improve image
quality to ensure accurate analysis. As a result, an improved
chameleon swarm optimization (ICSO) algorithm has been
designed to accurately recognize and extract the affected area
from the images. This facilitates the specific examination
and extraction of feature elements from the affected area.
Features associated with surface characteristics, variations,
and unevenness are isolated from the fragmented region
during the mining of the infected section. These features
provide critical information about the specific characteristics
of the skin condition, aiding in its precise classification
and analysis. A multi-strategy seeking optimization (MSSO)

algorithm is employed to enhance feature space by elim-
inating insignificant feature dimensions. Following that,
a convolutional deep spiking neural network model makes
use of the most significant features. Finally, the test set of
images is classified into various categories of skin diseases
using the trained CD-SNNmodel. Through this classification
process, common skin conditions such as eczema, psoriasis,
vitiligo, melanoma, carcinoma, and blue nevus can be
accurately diagnosed, and treatment options can be proposed.
This section presents the detailed working process of the
proposed method, which includes a series of steps such
as data preprocessing and augmentation, target segmenta-
tion, feature extraction, feature optimization, detection, and
classification.

FIGURE 1. Overall conceptual structure of the proposed work.

B. DATA PREPROCESSING AND AUGMENTATION
Data preprocessing plays a crucial role in preparing skin
disease images for analysis. It involves several important
steps that aim to enhance the quality and suitability of
the images for subsequent analysis. The first step in data
preprocessing is image cleaning, where techniques such as
noise reduction filters or smoothing algorithms are applied to
remove unwanted noise and artifacts from the images. This
is helpful for reestablishing, by and large, picture quality
and lessening the opportunity for a mistaken investigation.
Another significant step is picture resizing, which includes
changing the size and goal of pictures to a normalized
design. This guarantees consistency and lessens compu-
tational intricacy during the examination cycle. Resizing
procedures, for example, bilinear or bicubic addition, are
generally used to resize a picture while saving significant
detail. Picture improvement is one more significant part of
information preprocessing. Methods such as contrast change,

47322 VOLUME 12, 2024



R. Mittal et al.: DermCDSM: Clinical Decision Support Model for Dermatosis

histogram smoothing, or versatile upgrade strategies are
utilized to work on the visual qualities of skin infection
pictures. These methods make it all the more likely to
imagine significant elements and surfaces, making it simpler
to recognize and investigate explicit skin conditions. At long
last, district of interest extraction is performed to concentrate
and concentrate significant areas of skin infection pictures.
This step consists of distinguishing and eliminating areas of
skin sores or anomalies of interest. By excluding these areas,
further examination can be performed more precisely and
productively.

Data augmentation methods are normally utilized in skin
disorder image analysis to expand the size and variety of the
collection, which can build the vigor and disentanglement
of the models. The following information-scaling techniques
are frequently used: pivot, scaling, equal flip, and vertical
flip. Pivot includes turning the picture through a convincing
point, like 90 degrees or 180 degrees. This assists with
distinguishing contrasts in the direction of skin sores, which
can be helpful for preparing models to be pivot-invariant.
Scaling includes increasing or decreasing a picture equally
or unevenly. This assists with reenacting various degrees of
nearness to a skin sore, which can be helpful for preparing
models to perceive and group injuries at various scales.
Vertical flip includes reflecting the picture along the upward
pivot, while vertical flip includes reflecting the picture
along the straight hub. These techniques assist with making
variations in the appearance and area of skin sores, permitting
models to gain according to alternate points of view and
directions. By applying these data augmentation techniques,
the informational collection is really extended with new
variations of the initial images. This can help overcome
the restrictions of the predetermined number of images
accessible and reduce the chance of overfitting when the
model turns out to be excessively specific for the training
data.

FIGURE 2. Process of skin disease segmentation.

C. TARGET SKIN DISEASE SEGMENTATION
Improved chameleon swarm optimization (ICSO) is a
technique used to cluster skin diseases using clinical imaging.
Segmentation plays a key role in identifying evidence and
the significance of explicit areas of interest in the image,
such as skin cancers or affected areas. The ICSO algorithm
uses standards of cross-disciplinary expertise to enhance
the division cycle and is inspired by how the chameleon
species behaves. It will most likely improve the visual impact
and accuracy of the segmentation by iteratively adjusting
boundaries and guiding to find optimal combinations.
It combines the beneficial characteristics of a chameleon’s
ability to adapt to its present situation with a multitude of
insights. The algorithm begins with an underlying populace
of potential arrangements (chameleons), which goes through
a progression of cycles. Each chameleon evaluates its fitness
based on predefined criteria, such as similarity to ground
truth or consistency of segmented regions. During the
optimization process, chameleons interact with each other,
sharing information and updating their positions based on
local and global search strategies. As shown in Figure 2, this
collaboration allows the algorithm to explore the solution
space effectively and converge towards a more accurate
segmentation result. In a d-layered searching space, every
chameleon addresses the solution for the target segment
portion, so we can characterize a two-layered n×d layered
y lattice as populace of chameleons.

bHt =

[
bHt,1, b

H
t,2, . . . b

H
t,d

]
(1)

where H equals 1, 2, 3, Iterations with valid positions
for the d-th dimension are q and T . The following is a
mathematical model that can be used to optimize the behavior
and movement of chameleons in search of food.

bH ,Gt+1 =


bH ,Gt + X1

(
xH ,Gt − jGt

)
R2 + X2

(
jGt − xH ,Gt

)
R1Rh ≥ xX

bH ,Gt +µ
(
UG

− LG
)
(R3+L

G
N )sgn (Rand − 0.5)

RH < xX
(2)

Here, bH ,Gt+1 is the novel location of the H-th dilettante in
the iteration step’s G-th dimension. The chameleon’s current
state at the G-th iteration of iteration T . jGt represents the
best position any chameleon has ever held in the G-th
measurement in the T-th repetition. The RH , an uniform
random number indexed from 0 to 1. For this reason, the
length of the tongue can be increased by two times, which
should update the position of the chameleon.

VH ,G
t+1 =ωVH ,G

t +C1

(
jGt − bH ,Gt

)
R1+C2

(
xH ,Gt − bH ,Gt

)
R2

(3)

where VH ,G
t+1 characterizes the new rapidity of the trimmer in

J . In iteration, size T+1 signify the current speed of VH ,G
t .

ωVH ,G
t represents the chameleon’s ideal spot in the T-th
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dimension. xH ,Gt is the current chameleon’s most popular
area and jGt is the most popular circle molded position at
any point perceived to chameleons, R1 and R2 is the current
chameleon’s xH ,Gt most popular position C1 and C2 is the
best worldwide position at point perceived to chameleons,
and jGt are the two positive constants controlling the impact
of and falls into the chameleon’s tongue and is two erratic
measurements dispersed some place in the scope of 0 and 1,
xH ,Gt and jGt ω is the inertial sub-instance. Assuming we add
the past change to this part, the turn frameworks of the
comparing tomahawks are communicated in R.

V = r
(
8, bH ,Gt

)
(4)

The rotation matrix V can be described as an accurate perfect
as shadows, where 8 is used to represent it.

8 = Rsgn(rand − 0.5) × 180 (5)

where R is a generated accidental amount between 0 and 1.
The measure functions’ weight factors (−2) are also added as
product to the pairs of objective functions.

of11 =

∑Q

H=1

(
wC1

directivityH

)2

(6)

of 12 =

Q∑
H=1

(
wC2

−S11H

)2

(7)

We define the objective function of optimal solution pair,
modified from the exponential perfect, is as shadows:

of21 =

∑Q

H=1
ZC1 ∗ E−directivityH (8)

of22 =

∑B

h=1
Wd2 ∗ ET11h (9)

A pair of goal capabilities fitted to a Fourier model is
characterized as follows.

of31 =

∑Q

H=1
ZC1 ∗ cos(directivityH ) (10)

of32 =

∑Q

H=1
ZC2 ∗ cos(S11H ) (11)

where H = 1, 2, . . ., 4 each addresses the thunderous
recurrence. The first is gotten by social event the sets of not
entirely settled in itself and is characterized as follows.

cos t1 = ofG1 + ofG2G = 1, 2, 3 (12)

To provide a general comparison of the objective functions,
the following definition of a second cost function is provided.

cos t2 =

Q∑
H=1

ZC1

directivityH
+

ZC2

−S11H
,H = 1, 2, . . . .4 (13)

The working process of optimal segmentation using ICSO is
outlined in Algorithm 1.

Algorithm 1 Optimal Segmentation Using ICSO
Input: Number of images, ground truth images, maximum
iteration
Output: Target disease portion-segment
1 Initialize the random populace
2 If we describe it as a vector: bHt =

[
bHt,1, b

H
t,2, . . . b

H
t,d

]
3 If i=0, j=1
4 While Do
5 Define revolution mediums on the pertinent axis are

articulated with R.
V = r

(
8, bH ,Gt

)
6 Compute power model using

of11 =
∑Q

H=1

(
wC1

directivityH

)2
7 If not discard then
8 Compute objective function

cos t2 =

Q∑
H=1

ZC1
directivityH

+
ZC2

−S11H
,H = 1, 2, . . . .4

9. End if
10 Update the final values
11 End

D. FEATURE EXTRACTION
Feature extraction is critical step, where relevant information
is extracted from medical images to characterize different
skin conditions. Texture, color, and asymmetry are common
features used in this process [30]. Texture refers to the spatial
arrangement of pixels in an image and provides information
about the surface characteristics of skin lesions. Various
texture analysis techniques, such as gray-level co-occurrence
matrix (GLCM) [31] and local binary patterns (LBP) [32] are
employed to quantify the textural properties of skin lesions.
These methods capture patterns, variations, and structures in
the image, which can be indicative of specific skin diseases.
Color is an essential visual cue in skin disease analysis
as different skin conditions often exhibit distinct color
variations. The distribution and strength of various features
like RGB or HSV in the affected region are included in
variation-based feature extraction [33]. Statistical measures,
such as the mean, standard deviation, and histograms, are
commonly used to summarize data and classify different
categories of skin disorders [34]. Nonuniform distribution
signifies the variation between the different angles of a
lesion or skin region [35]. In the treatment of skin diseases,
unevenness can help distinguish between moderate and dan-
gerous lesions. Possible abnormalities can be identified by
examining unusual features of skin lesions, such as contrasts
in shape, surface, and variance. Shape-based descriptors, such
as balancing ratios or shape assessment, can be used to assess
skin imbalance. As shown in Figure 3, a full view of skin
lesions can be obtained by recognizing surface, diversity,
and dispersion features. These features offer a variety of
information that can be used in clustering algorithms to
distinguish between various types of skin disorders and aid
in a precise diagnosis and treatment plan.
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FIGURE 3. Process of feature extraction and optimization.

E. FEATURE OPTIMIZATION
Feature optimization is the process of selecting and preparing
features from a given set of data elements to work on the
mathematical representation of an AI model. MSSO (multi-
strategy seeker optimization) is an algorithm that can be
used for optimization. MSSO is a metaheuristic development
strategy inspired by the behavior of chameleons in a city
which combine various hunting techniques to effectively
learn and maximize hunting space.MSSO can be used to
find an optimum subset of features that increase the visual
appearance of a skin disease location when it comes to
incorporating improvement. The algorithm employs multiple
techniques, for example, irregularity study, neighborhood
search, and universal search, to iteratively assess distinct
subsets of elements and modify the arrangement based
on the results. MSSO examines the quality of different
feature subsets during the optimization process using an
objective function that measures the model’s classification
performance. The algorithm dynamically adjusts its search
behavior by adaptively switching between different search
strategies based on the exploration-exploitation trade-off.
The egotistic measurement can yield the direction,

−→
F H ,E (T )

the altruistic direction,
−→
F H ,M (T ) and the preventative

H -separation direction
−→
F H ,x(T )

−→
F H ,E (T ) =

−→
X H ,Best −

−→
P H (T ) (14)

−→
F H ,M (T ) =

−→
J H ,Best −

−→
P H (T ) (15)

−→
F H ,x(T ) =

−→
P H (T1) −

−→
P H (T2) (16)

To determine search focusing on, the web index employs an
irregular weighted average technique.
−→
F H (T )=sign(ω

−→
F H ,x (T )+ ψ1

−→
F H ,E (T )+ψ2

−→
F H ,M (T ))

(17)

here, T, T1, T2,
−→
P H (T1) and −→p h(s2) are superior to

−→
P H (T − 2),

−→
P H (T − 1),

−→
P H (T )} each other; JH ,best is the

authentic ideal situation in the local where the H-th search

component is found; XH ,best ideal area from the h-th search
component to the ebb and flow area; and [0, 1] are random
numbers. ω is the inertial weight. A Gaussian conveyance
capability is utilized to depict the size of the hunt step.

µ (α) = E−
α2

2δ2 (18)

where α and δ are the boundaries of the enrollment
capability. Be that as it may, this record contains µMax set to
0.9 to speed up the convergence speed and obtain a suitable
individual for the uncertain step size.

µH = µMax −
S − hH
T − h

(µMax − µMin) , H = 1, 2, . . . S

(19)

µH ,G = Rand(µH , 1),G = 1, 2, . . . d (20)

Here hH is the ongoing individual’s PH (T ) stream count,
requested from most elevated to least movement esteem.
In any division, (µH , 1) the scar function is a real number
[µH , 1]. The size is determined in light of the g-layered
search space as follows.

αHG = δHG(T)−
√

− ln(µHG) (21)

where, δHG is a structure of the Gaussian distribution, which
is calculated as follows.

δHG = ωP ∗ ABS(
−→
P Min −

−→
P Max) (22)

Here, ω is the inertial weight. As the evolutionary algebra
increases, ω decreases linearly from 0.9 to 0.1.

−→
P Min and

−→
P Max are the minimum and maximum value variation of
the function, respectively. After receiving the person’s scout
direction and scout step measurements, a location update is
indicated.

PHG (T + 1) = PHG (T )+ αHG (T )FHG (T )

H = 1, 2, . . . .S;G = 1, 2, . . . .d (23)

where searcher H and G denotes the independent value
FHG(T ) nd αHG(T ) are the searchers direction for the search
and the step to the size of the search time T , PHG(T ) and
PHG(T + 1) respectively, and (T + 1), denotes the site and
fixed the range X∈ [0, 1] is probability of the probe being
fixed by PH the triple black hole system and the status is
calculated as follows.

PHG(T + 1) =


(Jbest(T ) + PMin)/2 + RR3, L1 > X1
Jbest(T ) + RR3 X2 ≤ L1X1
(Jbest(T ) + PMax)/2 + RR3, L1 < X2

(24)

where: H denotes the H th individual and g denotes the
dimension Jbest(T ) and the T is the optimal solution to
the entire population PMax/PMin is the upper/lower bound of
the search region, a fixed range, X1, X2 ∈ [0, 1], and X1 < X2,
R3 The termination strategy is adopted in the random value
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for each dimension K∈ [0, 1]. If k ≤ XX, and the fixed range
XX∈ [0, 1].

PHG(T + 1) = PHG(T ) + (1 + ψR4) (25)

Here: ψ is the measure of interference, R4 is a random
number [−1,1]. Since the position of the searchers is
reset, they are randomly distributed around, Jbest(T ) the
probability of deviating from the local optimum, i.e.

|fJ (T + 1) − fJ (T )| < 0.01 · |fJ (T + 1) (26)

PHG(T + 1) = (Jbest ′(T + 1) + Jbest(T )) · RM (27)

where: fJ (T )/fJ (T−1) are the upsides of the qualities relating
to the worldwide individual optimality of the gathering
T/T−1, and is an irregular number [−1, 1]. Jbest ′(T + 1)
is the ongoing ideal clarification for the T + 1 companion.
The means associated with upgrading capabilities using the
MSSO algorithm is shown Algorithm 2.

Algorithm 2 Feature Optimization Using MSSO
Input: Number of features, maximum iteration and termina-
tion condition
Output: Optimal best features
1 Initialize the random population
2 Define the random prejudiced normal to obtain the search

alignment.
−→
F H (T )=sign(ω

−→
F H ,x(T )+ψ1

−→
F H ,E (T )+ψ2

−→
F H ,M (T ))

3 If i=0, j=1
4 While Do
5 Generate the search direction
6 Addition the triple black hole system
7 If not discard then

8 The Gaussian distribution function is µ(α) = E−
α2

2δ2

9 Perform location update
PHG(T + 1) = PHG(T ) + αHG(T )[scale =

0.98]FHG(T )H=1, 2, . . . .S;G
= 1, 2, . . . .d

10 Compute possibly jump out of local optimality
|fJ (T + 1) − fJ (T )| < 0.01 · |fJ (T + 1)

11 Find the best output values
12 End if
13 End

F. SKIN DISEASE DETECTION AND CLASSIFICATION
Finally, the Convolutional Deep Spiking Neural Network
(CD-SNN) model is employed to classify test images into
specific categories of skin diseases. This classification
process plays a crucial role in accurately identifying common
skin diseases such as Eczema, Psoriasis, Vitiligo, Melanoma,
Carcinoma, andBlueNevus. By applying the CD-SNNmodel
to the testing images, we can obtain reliable predictions
and assist in making informed decisions regarding diagnosis
and treatment. The CD-SNN model leverages its learned
knowledge and understanding of skin disease patterns and
features to classify the testing images. Each image is analyzed

and compared to the patterns and characteristics learned
during the training phase. Based on these comparisons,
the CD-SNN model assigns the testing images to specific
skin disease categories with a high degree of accuracy.
As shown in Figure 4, by automating the classification
process through the trained CD-SNN model, the diagnosis of
skin diseases becomes more efficient and reliable, leading to
improved patient care and outcomes. The proposed CD-SNN
algorithm’s basic algebraic equations for the scaling function
and activation function are derived as follows:

FIGURE 4. Process of SNN model.

Let f denote the wavelet frequency over which the
empirical wavelet transforms (EWT) should be decomposed.
Its Fourier transform is denoted as f̂ , and its inverse Fourier
transform is denoted as f̂ . In signal space l2(r), the empirical
frequency spectrum ψ̂q(δ) and the empirical scaling function
spectrum ψ̂b(δ) can be expressed mathematically as:

ψ̂q(δ) =



1 if (1 − η)δq ≤ (1 − η)δq+1

cos
[
π

2
β

(
2

2ηδq+1
(|δq| − (1 − η)δq+1

)]
if (1 − η)δq+1 ≤ |δq| ≤ (1 + η)δq+1

sin
[
π

2
β

(
2

2ηδq
(|δq| − (1 − η)δq

)]
if (1 − η)δq ≤ |δq| ≤ (1 + η)δq

0 otherwise

(28)

ϕ̂q(δ) =



1 if |δ| ≤ (1 − η)δq

cos
[
π

2
β

(
2

2ηδq
(|δq| − (1 − η)δq

)]
if (1 − η)δq ≤ |δ| ≤ (1 + η)δq

0 otherwise

(29)

In the above, is the q-th most noteworthy of the Fourier range,
η ∈ [0, 1]. The reason (P) ∈ Ck ([0, 1]) is usually used as
follows:

β(P) =


0 if P < 0
P4(35 − 84P+ 70P2 − 20P3)

if P ∈ [0, 1]
1 if P > 1

(30)
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The inner product is used to calculate the specific coefficients
between empirical wavelets and signals, which is similar to
how the traditional wavelet transform is built.

W ε
f (q, T )=

〈
f , ψq

〉
=

∫
f (τ )ψq(τ − T )Dτ

(
f̂ (δ) ψ̂q(δ)

)V
(31)

where τN = η·δN is the half length of the progress stage.
Besides, the assessed coefficients between the observational
motions and the not entirely set in stone by the internal item
scale capability as follows:

W ε
f (0, T )=⟨f , ϕ1⟩ =

∫
f (τ )ϕ1 (τ − T )Dτ

(
f̂ (δ) ϕ̂1(δ)

)V
(32)

We define the decomposed signal and final experiential mode,
is uttered as follows:

FK =

{
Z εf (0,T ) ⊗ ϕ1 (T ) if K = 0

Z εf (q,T ) ⊗ ψq (T ) if K > 0
(33)

Let pT be the Kth subseries-generated input trajectory at time
S. The inform gate at time S is determined by the contribution
and activation at time T-1.

ZTGate = σ (Wz · pT + uz · iT−1
State) (34)

where Wz and uz the weight matrices ZTGate and iT−1
State,

respectively. An update gate ZTGate determines how much a
GRU unit refreshes its substance or execution, and is like a
LSTM unit entryway that takes a straight total between the
new information and the present status. The reset gate, just
like the update gate, is calculated as follows:

rT = σ (Wz · pT + uz · iT−1
State) (35)

Through reset entrance as rT , the applicant activation ĩT is
calculated as follows:

ĩT = tan i(W · pT + u(rT2iT−1
State)) (36)

In the abovementioned, W and U are the comparing weight
frameworks, and ⊙ is the basic abundance. Also, rT it
indicates whether the update ĩT is considered the last one
implemented iT−1

State. Here r
T

→ 0, the remaining gate GRU
units are constructed without experience and experience rT =

1, the up-and-comer enactment definition deteriorates to
the essential RNN competitor actuation detailing. At long
last, the transient enactment of the GRU unit is register by
direct addition between the applicant initiation and the past
actuation as follows.

iT = (1 − ZTGate) · iT−1
Gate + ZTGate · ĩT (37)

The error series represents Errork (T ) = ik (T ) = Fk (T ) the
actual fK (T ) observation at time S and ik (S) the anticipated
result at time S acquired by the GRU model. Allow the
information be a spiking to prepare. In this paper, the
Maximum Pooling strategy is embraced, for this situation,
hands down the biggest elements of recently executed secret

impacts are held. The maximum pool can be modeled as
follows with depth c in the previous feature graph:

bD
A′′
,q′′ = Max(PH ),PH ∈ hfmhfmDA′,q′ (38)

where A′ and q′ are the extents of the info ear map
for the HFM, and A′′ and q′′ are the extents of the creation of
the maximum combining process. The steps associated with
the course of skin disease discovery and arrangement utilizing
CD-SNN is summed up in Algorithm 3.

Algorithm 3 Skin Disease Detection and Classification
Using CD-SNN
Input: Optimal best features, ground truth images, training
and testing set
Output: Classes-Eczema, Psoriasis, Vitiligo, Melanoma,
Carcinoma, and Blue Nevus
1 Initialize the random population
2 Define inner product with a scaling function

W ε
f (0,T )=

〈
f ,ϕ1

〉
=

∫
f (τ )ϕ1(τ − T )Dτ(

f̂ (δ) ϕ̂1(δ)
)V

3 If I =0, j=1
4 While Do
5 Compute candidate activation

ĩT = tan i(W · pT + u(rT2iT−1
State))

6 Perform energy updates
DvM (T ) = DT τmem((VLeak − VM (T )) + hMsyn(T ))

7 If not discard then
8 Define convolutional layer

hfm(1)
=F(W (1)

∗ aA,q+bias(1))
9 Find the best output value
10 End if
11 End

IV. RESULTS AND DISCUSSIONS
This section focuses on reporting the findings and comparing
the proposed CD-SNN technique to existing skin disease
detection techniques. The performance of the CD-SNN tech-
nique is validated using the benchmark ISIC 2017 dataset,
which is widely used in the field of dermatology. The
implementation of the proposed technique is carried out
in the Google Colab simulation environment, utilizing the
Python programming language. The CD-SNN implementa-
tion results are compared to various cutting-edge algorithms,
for example, the basic ABCDE rule(asymmetry, border,
color, diameter and evolving), the support vector machine
(SVM), and data gravitation-based classification with naive
Bayes (DGC-NB). The findings of this study provide crucial
information on the strengths and weaknesses of the proposed
method in comparison to existing methods. This correlation
enables the detection of the potential benefits and advance-
ments given by the CD-SNN technique for identifying skin
diseases. In general, the results and benchmarking shown in
this section demonstrate the significance and adequacy of
the CD-SNN approach. By establishing its superiority over
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existingmethodologies, this studymakes a contribution to the
field of dermatology and allows for future improvements in
the detection and treatment of skin disorders.

A. DATASET DESCRIPTION
The ISIC 2017 dataset, officially known as the International
Skin Imaging Collaboration Challenge 2017 dataset, serves
as a valuable resource for the evaluation and classifica-
tion of skin disorders. Specifically designed to advance
computer-assisted skin disease research, this publicly avail-
able repository features a wealth of dermoscopy images—
high-resolution captures of skin lesions obtained through
the specialized imaging technique known as dermoscopy.
Dermoscopy enables an in-depth examination of the skin,
unveiling subsurface and color patterns not visible to the
naked eye. The dataset is instrumental in fostering original
research, providing detailed descriptions of image properties
for various skin diseases. These descriptions play a pivotal
role in the construction and evaluation of data models
for disease diagnosis. The dataset is characterized by skin
disease classes, and its training and test sample sizes are
outlined in Table 2 . To ensure standardized inputs for model
training and evaluation, the dataset undergoes meticulous
preprocessing, encompassing normalization, resizing, label
encoding, and data splitting. Additionally, data augmentation
techniques such as rotation, flipping, zooming, brightness
and contrast adjustments, and shearing are employed to
diversify the training set, enhancing the model’s robustness
and performance. Together, these steps contribute to the
effectiveness and reliability of the proposed DermCDSM
in the context of skin disease detection and classification.
Figure 5 shows test images from each skin disease class in the
ISIC 2017 dataset. The segmentation results of our suggested
ICSO technique are shown in Figure 6.

TABLE 2. Dataset description.

B. RESULT ANALYSIS OF PROPOSED CD-SNN TECHNIQUE
The results for eczema disease detection in the training case
are presented in Figure 7. The training process was conducted
over multiple epochs, with each epoch representing a
complete pass through the training dataset. In the initial
epoch, the accuracy of eczema disease detection is 95.236%,
with precision, recall, specificity, and F-measure values of

FIGURE 5. Test samples from ISIC 2017 dataset (a) Eczema (b) Psoriasis
(c) Vitiligo (d) Melanoma (e) Carcinoma (f) Blue Nevus.

94.896%, 94.875%, 95.031%, and 94.885%, respectively. For
the 100th epoch, we observe a performance increase with
a precision of 96.348%. Similarly, testing was performed
over different epochs, with each stage increasing the total
number of test data. In the 100th epoch, we observe a
noticeable increase in performance, with a precision of
96.568%. Additionally, accuracy, recall, specificity, and
F-measure values improved to 96.124%, 96.090%, 95.744%,
and 96.106%, respectively.

When the results of psoriasis detection are studied, it is
discovered that there is a steady rise in performance as the
number of epochs increases during training. The test phase,
like the training phase, was divided into stages, with each
stage using a different sample of the test data. Upon analyzing
the results, it is observed that there is consistent improvement
in performance as the number of epochs increases during the
testing phase, as shown in Figure 8.
The learning curve of vitiligo disease is given in

Figure 9(a). The accuracy of Vitiligo diagnosis is 95.398%
in the initial stage, with precision, recall, specificity, and
F-measure values of 95.148%, 95.680%, 94.895%, and
95.413%, respectively. However, this information fluctuates
during training. The testing setup, like training, includes
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FIGURE 6. Segmentation results (a) test input (original) (b) After
transformation (c) segmented output from ICSO algorithm.

various stages and performance indicators. The accuracy of
vitiligo detection is 94.978% at the standard, and the scores
for precision, recall, specificity, and F-measure are 95.345%,
95.678%, 94.963%, and 95.511%, respectively. By the 100th
epoch, the accuracy of vitiligo detection declines to 92.686%.
Figure 10 depicts the outcomes of the training and test
phases of melanoma disease detection. In the initial stage,
melanoma diagnosis detection showcases an accuracy of
96.235%, with precision, recall, specificity, and F-measure
values of 96.147%, 95.897%, and 95.978%, respectively.
The accuracy of melanoma disease detection improves to
97.182% in the final stage. Upon examining the results,
it is observed that the performance metrics continue to
improve as the number of epochs increases during the testing
phase.

Figure 11 depicts the learning curve for detecting carci-
noma. We observe a gradual decline in performance metrics
as the number of epochs increases during the testing phase.
At the 100th epoch, the accuracy of identifying carcinoma
disease has dropped to 92.692%. Similarly, Figure 12 depicts
the training and test results for detecting blue nevus disease.

FIGURE 7. Result of Eczema disease detection (a) training case (b) testing
case.

FIGURE 8. Result of Psoriasis disease detection (a) training case
(b) testing case.

A small decline is noticed while training. The same trend is
also observed during testing.

C. COMPARATIVE ANALYSIS OF PROPOSED AND
EXISTING SKIN DISEASE DETECTION TECHNIQUES
Table 3 presents the results of the comparison of different
skin disease detection techniques for the ISIC 2017 original
dataset. Table 4 presents the results of the comparison of
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FIGURE 9. Result of Vitiligo disease detection (a) training case (b) testing
case.

FIGURE 10. Result of Melanoma disease detection (a) training case
(b) testing case.

different skin disease detection techniques for the ISIC
2017 augmented dataset. Figure 10 shows the comparative
analysis of the proposed CD-SNN with existing detection
techniques for eczema disease, revealing interesting findings.
In terms of accuracy, the CD-SNN technique demonstrates a
significant improvement, achieving an increase of 15.955%
and 14.955% in the training and testing cases, respectively,

FIGURE 11. Result of Carcinoma disease detection (a) training case
(b) testing case.

FIGURE 12. Result of Blue Nevus disease detection (a) training case
(b) testing case.

compared to the ABCD rule. The accuracy of the CD-SNN
approach is improved by 10.970% and 5.985% in the
training case and 9.950% and 5.965% in testing, respectively,
compared to SVM and DGT-NB. Likewise, the CD-SNN
approach significantly improves the estimation of F-measure.
It attains an increase of 14.955% and 14.955% in training
and testing, respectively, compared to the ABCD rule.
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In comparison to SVM and DGT-NB, CD-SNN improves
F-measure by 10.970% and 4.985% for training and 9.950%
and 5.965% for testing, respectively.

Figure 13 presents a comparative analysis of CD-SNN and
existing techniques for psoriasis detection. In terms of accu-
racy, the CD-SNN method has shown significant improve-
ment, with a respective increase of 19.617% and 18.617% in
the quantity of training and experiments when compared to
the ABCD rule. Notably, the CD-SNN approach outperforms
SVM and DGT-NB in precision, exhibiting improvements of
13.078% and 6.539% in training, and 13.078% and 6.539%
in testing, respectively. The CD-SNN technique demonstrates
substantial enhancements over current methods, surpassing
SVM and DGT-NBwith precision improvements of 13.078%
and 6.539% in training, and 13.078% and 6.539% in testing,
respectively.

FIGURE 13. Results comparison of Eczema skin disease detection
techniques for ISIC 2017 augmented dataset with (a) training case
(b) testing case.

Figure 14 shows a performance analysis of CD-SNN
in comparison with existing psoriasis detection algorithms.
In terms of accuracy, the CD-SNN approach has made
significant improvements, with an increase of 19.617% and
18.617% in training and tests, respectively, when compared
to the ABCD rule. Also, the CD-SNN technique outperforms
SVM and DGT-NB in accuracy by 13.078% and 6.539%,
respectively, for training and testing. In the training and
testing cases, the CD-SNN outperforms ABCD Rule, SVM,
and DGT-NB in terms of precision, recall, and specificity.
Furthermore, the CD-SNN approach shows significant gains
in F-measure. When compared to the ABCD rule, it achieves

FIGURE 14. Results comparison of Psoriasis skin disease detection
techniques for ISIC 2017 augmented dataset with (a) training case
(b) testing case.

increases of 19.617% and 18.617% in the training and testing
scenarios, respectively. The CD-SNN method excels over
SVM and DGT-NB in terms of F-measure increases of
13.078% and 6.539% in the training case and 13.078% and
6.539% in the testing case, respectively.

Figure 15 presents a comparative analysis of proposed
and existing detection techniques for Vitiligo disease.
The CD-SNN technique demonstrates the highest values
for accuracy, precision, recall, specificity, and F-measure
among all the techniques, both in the training and testing
phases. It outperforms the ABCD rule, SVM, and DGT-
NB techniques. While the SVM and DGT-NB techniques
show improvements in accuracy, precision, recall, specificity,
and F-measure compared to the ABCD rule, the CD-SNN
technique exhibits the highest performance across all metrics.

The comparative analysis of proposed and existing
detection techniques for Melanoma disease is presented in
Figure 16. The CD-SNN technique exhibits the highest values
for accuracy, precision, recall, specificity, and F-measure
among all the techniques, both in the training and testing
phases. It outperforms the ABCD rule, SVM, and DGT-
NB techniques. While the SVM and DGT-NB techniques
demonstrate improvements in accuracy, precision, recall,
specificity, and F-measure compared to the ABCD rule,
the CD-SNN technique consistently achieves the highest
performance across all metrics.

The comparative analysis of proposed and existing
detection techniques for Carcinoma disease is presented
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TABLE 3. Comparative analysis of proposed and existing skin disease detection techniques for ISIC 2017 original dataset.

in Figure 17. The CD-SNN technique demonstrates the
highest values for accuracy, precision, recall, specificity, and
F-measure among all the techniques, both in the training
and testing phases. It outperforms the ABCD rule, SVM,
and DGT-NB techniques. While the SVM and DGT-NB
techniques show improvements in accuracy, precision, recall,
specificity, and F-measure compared to the ABCD rule,
the CD-SNN technique consistently achieves the highest
performance across all metrics.

The comparative analysis of proposed and existing
detection techniques for Blue Nevus disease is presented
in Figure 18. The CD-SNN technique demonstrates the
highest values for accuracy, precision, recall, specificity, and
F-measure among all the techniques, both in the training
and testing phases. It outperforms the ABCD rule, SVM,
and DGT-NB techniques. While the SVM and DGT-NB
techniques demonstrate improvements in accuracy, precision,
recall, specificity, and F-measure compared to the ABCD
rule, the CD-SNN technique consistently achieves the highest
performance across all metrics.

D. INTERPRETABILITY OF PROPOSED CD-SNN MODEL
In this study, we employ an innovative approach to enhance
the interpretability of the Convolutional Deep Spiking
Neural Network (CD-SNN) model in skin disease detection.

Utilizing the ISIC 2017 dataset, our proposed methodology
incorporates key components aimed at improving both
prediction accuracy and the transparency of the decision-
making process. The segmentation phase is optimized
using the Improved Chameleon Swarm Optimization (ICSO)
algorithm, refining the identification of crucial regions asso-
ciatedwith skin diseases. Additionally, we address challenges
related to data dimensionality through the application of
the Multi-Strategy Seeking Optimization (MSSO) algorithm,
optimizing feature selection to enhance the relevance of input
features for disease detection. The CD-SNN model, known
for its proficiency in skin cancer diagnosis and multi-class
classification, is employed to further enhance the precision of
disease detection. To enhance interpretability, we introduce a
dedicated eXplainable Artificial Intelligence (XAI) module
into our framework. This module is designed to provide
explanations for the predictions made by the CD-SNNmodel,
ensuring transparency in the decision-making process. The
integration of XAI techniques facilitates the creation of a
comprehensive user interface that presents both the predicted
outcomes and corresponding explanations. This user inter-
face serves as a valuable tool for healthcare professionals
and users, offering insights into the model’s predictions and
aiding in the decision-making process. In Figure 19, we show-
case the interpretability achieved through the XAI module.
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TABLE 4. Comparative analysis of proposed and existing skin disease detection techniques for ISIC 2017 augmented dataset.

TABLE 5. Accuracy comparison of proposed and state-of-art skin disease detection techniques.

The visualization demonstrates the synergy between our
proposed model, incorporating ICSO, MSSO, and CD-SNN,

and the XAI module, providing an intuitive representation
of the model’s decision rationale. The collected data,
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FIGURE 15. Results comparison of Vitiligo skin disease detection
techniques for ISIC 2017 augmented dataset with (a) training case
(b) testing case.

FIGURE 16. Results comparison of Melanoma skin disease detection
techniques for ISIC 2017 augmented dataset with (a) training case
(b) testing case.

comprising predictions and explanations, undergoes rigorous
validation by domain specialists, typically dermatologists or

FIGURE 17. Results comparison of Carcinoma skin disease detection
techniques for ISIC 2017 augmented dataset with (a) training case
(b) testing case.

FIGURE 18. Results comparison of Blue Nevus skin disease detection
techniques for ISIC 2017 augmented dataset with (a) training case
(b) testing case.

skin disease experts. Their expertise ensures the reliability
and accuracy of the model’s predictions, validating the
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FIGURE 19. Interpretability of CD-SNN model using explainable artificial intelligence (XAI).

TABLE 6. Results of proposed CD-SNN technique for skin disease detection using commonly-used public datasets.

real-world applicability of our proposed framework. This
comprehensive methodology not only improves prediction
accuracy but also establishes a transparent and interpretable
foundation for the CD-SNN model in skin disease detection.

E. GENERALIZABILITY OF PROPOSED MODEL
The assessment of the proposed CD-SNN technique extends
beyond the primary focus on the ISIC2017 dataset, aiming
to evaluate its generalizability across diverse datasets with
variations in skin types, ethnicities, and disease manifesta-
tions. Table 6 provides a comparative analysis that offers
valuable insights into the model’s adaptability to different
datasets. The evaluation on the ISIC 2016 dataset reveals the
CD-SNN’s nuanced understanding of diverse skin conditions.
Despite sharing similarities with ISIC2017, the dataset
presents distinct characteristics challenging the model’s
generalization. The marginal 0.62% improvement in testing
accuracy indicates the model’s ability to adapt to variations
in disease manifestations within this dataset. The inclusion
of the PH2 dataset, known for its unique skin conditions
and ethnicities, serves as a robust test for the CD-SNN’s
generalizability. The notable 1.676% improvement in testing
accuracy underscores the model’s capacity to handle diverse
skin types, emphasizing its potential application in broader
demographic contexts. Within the ISIC 2017 dataset, both
original and augmented, the CD-SNN exhibits consistent
performance, highlighting its generalizability. The 0.917%
improvement in testing accuracy for the original dataset and

the marginal 0.129% decrease for the augmented dataset
demonstrate the model’s resilience and adaptability to diverse
manifestations, even in the presence of augmented data
complexities. In summary, the analysis across these datasets
underscores the CD-SNN’s robustness and adaptability to
diverse skin conditions, ethnicities, and disease manifesta-
tions. These findings contribute to a comprehensive under-
standing of the model’s potential applicability in real-world
clinical scenarios, reinforcing its viability for dermatological
diagnostics across diverse patient populations.

V. CONCLUSION
By combining effective segmentation and feature optimiza-
tion with a hybrid deep learning technique, we present a
methodology for the early identification and classification
of skin disorders. The recently introduced ICSO algorithm
optimizes segmentation, resulting in more precise identifi-
cation of affected skin spots. The MSSO method has been
used to address data dimensionality problems, which opti-
mizes feature selection by determining the most significant
and insightful features for classification. Furthermore, the
CD-SNN has been introduced into the proposed method to
improve the accuracy of skin disease detection and multi-
class classification. The suggested method’s performance
is assessed using the benchmark ISIC 2017 dataset, which
serves as a reliable benchmark for skin disease detection.
According to the simulation results, our proposed CD-SNN
technique achieved maximum detection accuracy in both
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training and testing cases, with 93.235% and 95.070%,
respectively. Moreover, from Table 5, we conclude that our
proposed CD-SNN technique performs very effectively in
the case of skin disease detection and classification, which
achieves an average accuracy of 95.070% for the testing
scenario. Clinical validation of DermCDSM’s performance
in real healthcare settings is crucial for its adoption.
Overcoming the gap between research results and practical
clinical application is a significant challenge that requires
collaboration with medical professionals and regulatory
approval. Moreover, the lack of interpretability may limit
the acceptance of the model in clinical settings, where
understanding the rationale behind predictions is crucial.
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