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ABSTRACT It is still a challenging task to perform the semantic segmentation with high accuracy due
to the complexity of real picture scenes. Many semantic segmentation methods based on traditional deep
learning insufficiently captured the semantic and appearance information of images, which put limit on their
generality and robustness for various application scenes. Thus, in this paper, we proposed a novel strategy
that reformulated the popularly used convolution operation to multi-layer convolutional sparse coding block
in semantic segmentation method to ease the aforementioned deficiency. To prove the effectiveness of our
idea, we chose the widely used U-Net model for the demonstration purpose, and we designed CSC-Unet
model series based on U-Net. Through extensive analysis and experiments, we provided credible evidence
showing that the multi-layer convolutional sparse coding block enables semantic segmentation model to
converge faster, extract finer semantic and appearance information of images, and improve the ability to
recover spatial detail information. The best CSC-Unet model significantly outperforms the results of the
original U-Net on three public datasets with different scenarios, i.e., 87.14% vs. 84.71% on DeepCrack
dataset, 68.91% vs. 67.09% on Nuclei dataset, and 53.68% vs. 48.82% on CamVid dataset, respectively.
In addition, the proposed strategy could be possibly used to significantly improve segmentation performance
of any semantic segmentation model that involves convolution operations and the corresponding code is
available at https://github.com/NZWANG/CSC-Unet.

INDEX TERMS U-Net, semantic segmentation, deep learning, convolution operation, convolutional sparse
coding (CSC).

I. INTRODUCTION
In reality, the increasing application scenarios require
inferring relevant knowledge or semantics from images,
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as a result, the importance of semantic segmentation for
scene understanding is gradually increasing. Semantic seg-
mentation gives us more detailed understanding of images
than image classification [1], [2], [3], [4], [5] or object
detection [6], [7], [8], [9], [10], [11], [12], [13], [14]. This
understanding is crucial in many different domains such
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as autonomous driving [15], [16], [17], robotics [18], [19],
[20], image search engines [21], [22], [23], etc. Recently,
many semantic segmentation methods have emerged. For
example, fully convolutional networks (FCN) [24], at an
end to end form, has firstly implemented the pixel-wise
prediction task based on convolution operation, achieving
relatively better results in natural scene image segmentation.
SegNet [25] makes the model more efficient than FCN
by introducing more skip architectures and max-pooling
indexes. PSPNet [26] used dilated convolution and pyramid
pooling to improve SegNet. U-Net [27] was proposed in
the 2015 ISBI competition, which consists of contracting and
symmetrically expanding sub-networks to form a U-shaped
architecture. This model was originally designed to solve
biomedical image segmentation. Since it requires a small
number of training samples to achieve good segmentation
results. There are also many variants of the U-Net. For
example, Unet++ [28] concatenates U-Net models with
different layers that share weights in encoding blocks and
features from different layers are also fused through skip
connections to achieve better segmentation results. Based on
U-Net, FPN [29] and Resnet [5], the U2-Net [30] model
is proposed, which achieves surprising results on saliency
detection tasks with good real-time performance. Other
excellent semantic segmentation models include DeepLab
series. For example, Deeplabv1 [31] uses VGG16 [3] with
atrous convolutions as the backbone, and adds conditional
random fields (CRFs) in post-processing to further improve
segmentation performance. Deeplabv2 [32] replaces the
backbone in Deeplabv1 with ResNet and proposes atrous spa-
tial pyramid pooling (ASPP) for multi-scale segmentation.
Deeplabv3 [33] increases the depth of the backbone without
CRFs. It also replaced the convolution with atrous rate of
24 in the ASPP with a 1 × 1 convolution and added average
pooling and batch normalization layers [34]. Deeplabv3+
[35] designs Deeplabv3-based encode-decode models and
modifies Xception [36] as the backbone.
All the above semantic segmentation models are based on

convolution operations, which have strong feature representa-
tion capabilities to extract semantic (global) and appearance
(local) information of images. In fact, for the segmentation
task of complex image, it is usually limited by the semantic
and appearance information extracted from the shallow
convolution layers. As a rule, they mostly choose to deepen
the network layers so that the semantic segmentation network
can better capture the semantic and appearance information
of the images to improve the segmentation performance.
However, if the network keeps deepening indefinitely, there is
a tremendous challenge for both the computational power and
the optimizer. Therefore, the main motivation of this study
is to address the problem of insufficient feature extraction
of convolution operation at the root by optimizing instead of
deepening them.

In this paper, we proposed a novel strategy in semantic
segmentation model which reformulated convolution oper-
ation to multi-layer convolutional sparse coding (ML-CSC)

block. Taking the U-Net as an example, we demonstrated
the effectiveness and robustness of ML-CSC block strategy
in the designed CSC-Unet model series, and it can also
be potentially applied to other excellent convolution-based
semantic segmentation networks, such as SegNet, U2-Net,
etc. Actually, in theAppendix part, we have also implemented
the CSC-Unet++, CSC-Unet3+, and CSC-DeepLabv3+
models corresponding to Unet++, Unet3+ [37], and
DeepLabv3+, respectively. Benefit from the advantages of
ML-CSC block in information representation compared to
convolutional operation, we hypothesize that the CSC-Unet
model series has the superiorities of better captured semantic
and appearance information of original images, better spatial
detail information, and better convergence efficiency without
increasing the trainable parameters.

As far as we are aware, it is the first work to explore
semantic segmentation based on convolutional sparse coding.
We hope that our strategy can provide new insights for design-
ing semantic segmentationmodels. Themain contributions of
this paper are summarized as follows:

1) We proposed a novel strategy in semantic segmentation
networks that used the multi-layer convolutional sparse cod-
ing blocks instead of the traditional convolution operations;

2) We extended the ML-CSC block to U-Net as CSC-Unet
model series, and further demonstrated the advantages and
feasibility through extensive experiments;

3) We explored the impact of the number of unfoldings
in the ML-CSC block on the performance of the semantic
segmentation model.

The rest of this paper is organized as follows. Section II
will give a brief introduction of sparse coding, ML-CSC and
block of ML-CSC. In Section III, we will present the design
details of CSC-Unet model series. The procedure and results
of the experiments are presented in Section IV. Section V is
the conclusion and future work that we will carry out.

II. REVIEW OF MULTI-LAYER CONVOLUTIONAL SPARSE
CODING
In this section, we firstly reviewed the sparse coding, multi-
layer convolutional sparse coding and its solution algorithms,
then we presented the details of the designed ML-CSC block.

A. SPARSE CODING
Sparse coding represents the signal with few non-zero
coefficients as possible and has been used in a wide variety
of applications [38], [39], [40], [41], [42], [43]. In which, the
image y is considered as a linear combination of a set of basis
vectors di, where most of the coefficients γi are zero.

y = D0 =
[
d1 d2 · · · dK

]


γ1
γ1
...

γK

 (1)

However, when processing image signal, sparse coding
first decomposes the whole image into a set of overlapping
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image blocks and then operates these blocks independently,
which leads to that the sparse representation of the image
is highly redundant and loss of detailed information during
image recovery [44].

B. MULTI-LAYER CONVOLUTIONAL SPARSE CODING
Assumes that the input image y satisfies ML-CSC model,
it can be denoted as:

y = D101,

01 = D202,

...

0L−1 = DL0L . (2)

where {Di}
L
i=1 are special dictionaries, each Di is a transpose

of a convolutional operator matrixWi.

Di = WT
i (3)

Convolutional sparse coding (CSC) [45] applies convolu-
tional filters to reconstruct the whole image. Since the image
is processed as a whole, it bridges the above gap in sparse
coding.ML-CSC is an extension of convolutional CSCwhich
sets that the {0i}

L
i=1 also satisfy CSC model to form multi-

layer representation method about original image.

C. THE SOLVER OF MULTI-LAYER CONVOLUTIONAL
SPARSE CODING MODEL
The process of solving the {0i}

L
i=1 in ML-CSC model can

be formulated as an optimization problem as Equation 4.
Where 0̂0 = y, and ∥∥0 is sparsity regularization term [46].
{λi}

L
i=1 are regularization parameters to balance the sparsity

and accuracy of {0i}
L
i=1.

0̂1 = argmin
01

1
2

∥∥∥0̂0 − D101

∥∥∥2
2
+ λ1 ∥01∥0 ,

0̂2 = argmin
02

1
2

∥∥∥0̂1 − D202

∥∥∥2
2
+ λ2 ∥02∥0 ,

...

0̂L = argmin
0L

1
2

∥∥∥0̂L−1 − DL0L

∥∥∥2
2
+ λL ∥0L∥0 . (4)

Finding {0i}
L
i=1 at once is NP-hard and challenging in

computation and concept because of the inclusion of the 0-
norm [47]. Candes et al. [48] have shown that the 0-norm
can be deflated to 1- norm, turning Equation 4 into a convex
optimization problem, as shown in Equation 5.

0̂1 = argmin
01

1
2

∥∥∥0̂0 − D101

∥∥∥2
2
+ λ1 ∥01∥1 ,

0̂2 = argmin
02

1
2

∥∥∥0̂1 − D202

∥∥∥2
2
+ λ2 ∥02∥1 ,

...

0̂L = argmin
0L

1
2

∥∥∥0̂L−1 − DL0L

∥∥∥2
2
+ λL ∥0L∥1 . (5)

1) LAYERED THRESHOLDING ALGORITHM
Papyan et al. [49] proposed the layered thresholding
algorithm, that use thresholding algorithm [46] to solve the
sparse vectors {0i}

L
i=1 step by step in different layers. The

solver can be written as follow:

0̂1 = hθ1

(
DT
1 y

)
,

0̂2 = hθ2

(
DT
2 0̂1

)
,

...

0̂L = hθL

(
DT
L 0̂L−1

)
. (6)

The soft non-negative threshold operator
{
hθi

}L
i=1 can be

viewed as a translation of the activation function rectified
linear unit (ReLU) activation function [50] by {θi}

L
i=1

units [49]. Combined with Equation 3, the above equation can
be written as follow:

0̂1 = ReLU (W1y + θ1) ,

0̂2 = ReLU
(
W20̂1 + θ2

)
,

...

0̂L = ReLU
(
WL 0̂L−1 + θL

)
. (7)

where and {θi}
L
i=1 are trainable parameters.

2) MULTI-LAYER ITERATIVE SOFT THRESHOLDING
ALGORITHM
An attractive approximate solver of Equation 5 is the multi-
layer iterative soft thresholding algorithm (ML-ISTA) [51],
which uses an iterative soft thresholding algorithm [52] at
each layer.

0̂1 = 0̂
k+1
1 = ReLU

(
0̃1 − µ1DT

1
(
D10̃1 − 0̂0

)
+ θ1

)
,

0̂2 = 0̂
k+1
2 = ReLU

(
0̃2 − µ2DT

2
(
D20̃2 − 0̂1

)
+ θ2

)
,

...

0̂L = 0̂
k+1
L = ReLU

(
0̃L − µLDT

L
(
DL 0̃L − 0̂L−1

)
+ θL

)
.

(8)

It is well known that the layered thresholding algorithm is the
simplest and dumbest pursuit algorithm for ML-CSC [49],
[53]. This is because it only uses the thresholding algorithm
independently at each layer and does not take into account
the connection between layers. In contrast, ML-ISTA solves
the above problem by constructing 0̃i = DiDi+1 · · ·DL0̂

k
L

in each layer which takes full account of the connections
between the different layers.

D. MULTI-LAYER CONVOLUTIONAL SPARSE CODING
BLOCK
In the ML-CSC model, we summarize the solving process as
shown in Figure 1, and name it as ML-CSC block. {Wi}

L
i=1

denotes the convolution operation, and
{
WT

i=1

}L
i=1 denotes
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FIGURE 1. The ML-CSC block.
{
Wi

}L
i=1 denote the convolution operation,

{
WT

i

}L

i=1
denote the deconvolution operation, L denotes the number

of layers, and k denotes unfolding number.

the deconvolution operation, where {µi}
L
i=1 and {θi}

L
i=1 are

trainable parameters. Solving {0i}
L
i=1 can be seen as the

process of extracting features from multi-layer convolution
operation as follow:

0L= ReLU (WL · · ·ReLU (W2ReLU (W1y))) (9)

When the number of unfoldings is set to 0, the layered
thresholding algorithm is performed in the ML-CSC block.
When the unfolding number is greater than 0, the ML-ISTA
algorithm is executed. From the sparse point of view, due to
ML-ISTA algorithm is superior to the layered thresholding
algorithm, the ML-CSC block will extract more accurate
feature compared with multi-layer convolution operation,
which is beneficial to the forward propagation of the
neural network, and also can better capture the semantic
and appearance information of the image to improve the
segmentation performance.

III. METHOD
A. U-NET MODEL
The architecture of U-Net model [27] is displayed in
Figure 2(a). For convenience, we use 3 × 3 convolution
layer with padding to keep the same size before and after

convolution operation, thus the input size of model is
equal to the output size. The up-sampling is performed by
3 × 3 transposed convolution operation. Batch normaliza-
tion [34] is after convolution operation and before ReLU
activation function.

B. CSC-UNET MODEL SERIES
In the encode and decode side of the U-Net model, both of
which can be seen as a composition of blocks containing
two layers of convolution operation, as shown in Table 1.
To fairly demonstrate our strategy, we set the number of
layers in the ML-CSC block to 2 as well. According to the
characteristics of encoding and decoding structure in U-Net,
we designed the CSC-Unet-model series including CSC-
Unet-Encode, CSC-Unet-Decode, and CSC-Unet-All model.
The details of the CSC-Unet model series were also shown
in Table 1.

1) CSC-UNET-ENCODE MODEL
The encoding side of U-Net is used to extract the semantic
and appearance information of the input image. In order to
explore this kind of ability of ML-CSC block, we replaced
the convolution operations of the encoding side of the
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FIGURE 2. Structures of (a) U-Net, (b) our CSC-Unet-Encode, (c) our CSC-Unet-Decode, and (d) our CSC-Unet-All, respectively.

TABLE 1. The details of models.

U-Net with the ML-CSC blocks to form CSC-Unet-Encode
model, and the corresponding architecture was shown
in Figure 2(b).

2) CSC-UNET-DECODE MODEL
In the expanding sub-network of U-Net model, it firstly uses
skip connection to combine appearance information from
the shallow layers and semantic information from the deep
layers. Then, the decoding side of U-Net precisely locates
the segmentation boundary and gradually recovers the spatial
detail information of the image. To explore the ability of
ML-CSC block to recover the spatial detail information of
image, we introduced the ML-CSC block into the decoding
side of U-Net to form CSC-Unet-Encode model, and the
corresponding architecture was shown in Figure 2(c).

3) CSC-UNET-ALL MODEL
To explore the impact of ML-CSC block on the overall
segmentation performance of U-Net model, we added this
block to both the encoding and decoding side of the
U-Net to form CSC-Unet-All model, and the corresponding
architecture was shown in Figure 2(d).

IV. EXPERIMENT AND ANALYSIS
In this study, the computing platform are Ubuntu 18.04.5 LTS
64-bit OS, 32G RAM, and Nvidia GeForce GTX 1080 Ti
GPU with 11 GB memory. The deep learning framework is
based on PyTorch [54] and the program language is Python.

A. DATASETS
For perform a fair evaluation, we select different scenarios
datasets for testing to obtain evaluationmetrics of comparison
models. CamVid dataset [55] is one of the first datasets
used for autonomous driving. It is assembled from 5 video
sequences taken by the on-board camera from the driver’s
perspective. DeepCrack dataset [56] is a public benchmark
dataset containing cracks at multiple scales and scenarios
to evaluate crack detection systems. Nuclei dataset1 is the
dataset in the 2018 Kaggle Data Science Bowl which is
acquired under a variety of conditions and variations in the
cell type, magnification, and imaging modality. The details
of the datasets were shown in Table 2.

1https://www.kaggle.com/c/data-science-bowl-2018/overview

35848 VOLUME 12, 2024



H. Tang et al.: CSC-Unet: A Novel CSC Strategy Based Neural Network for Semantic Segmentation

TABLE 2. The details of datasets used in the experiment.

TABLE 3. Result on DeepCrack, Nuclei and CamVid test set of U-Net and CSC-Unet-Encode models with different unfolding number.

FIGURE 3. Training and validation on DeepCrack. Fine curves indicate the
loss of training, and thick curves indicate the loss of validation. Unfolding
number is uniformly set to 2 and the trainable parameters are same for
all models.

B. THE SETTING OF TRAINING PARAMETERS
The number of all epochs were empirically set to 200 in
this experiment. To improve the generalization ability of
the model, before each epoch, we randomly disrupted the
training data to make it more consistent with the sample
distribution under natural conditions. The batch size was set
to 4. The loss function was negative log-likelihood, and the
input parameters were activated by the log-SoftMax function.
The model used Adam [57] algorithm as the optimizer, each
50 epochs, and the learning rate dropped by half. In the
CamVid dataset. The initial learning rate was set to 10−4, for
the DeepCrack and Nuclei, the initial learning rate was set to
10−5, respectively.

C. EXPERIMENT AND ANALYSIS
1) THE SPEED OF MODEL CONVERGENCE
We investigated the effect of ML-CSC blocks on the con-
vergence speed of segmentation models. On the DeepCrack
dataset, we compared the training and validation loss of
CSC-Unet model series in the training phase, and the results
were shown in Figure 3. We found that ML-CSC blocks

can accelerate the convergence of the semantic segmentation
model and reduce the loss value. Adding ML-CSC blocks at
the decoding side of the U-Net model converged faster than
adding them at the encoding side, and the model converged
fastest when ML-CSC blocks were added at both sides
of U-Net.

2) THE EXTRACTION OF SEMANTIC AND APPEARANCE
INFORMATION
We have assessed the influence of ML-CSC block on CSC-
Unet model series compared with U-Net to extract semantic
and appearance information, and the results were shown in
Table 3, where the number after the model indicated the
unfolding number of ML-CSC block. When the number of
unfoldings was zero, the CSC-Unet-Encode was equivalent to
the U-Net model. The results showed that CSC-Unet-Encode
models outperformed U-Net model on all three datasets when
the number of unfoldings was greater than 0. This indicated
that the ML-CSC block can indeed improve the ability of
the semantic segmentation model to capture the semantic
and appearance information of the image. Furthermore,
we found that it was not always true that the larger number of
unfoldings of theML-CSC block implied better performance.

Semantic segmentation model first extracts feature infor-
mation at the encoding side, and then based on feature
information, the model gradually recovers the spatial detail
information of the image at the decoding side. As the
number of unfoldings increases, the feature information
conveys in themodel becomes sparser, which is not beneficial
for the recovery process at the decoding side. Therefore,
we should find a balance point between the extraction of
feature information and the recovery process. According to
Table 3, we inferred that the balance point was reached when
the unfolding number was two among most datasets. For
the convenience of performance demonstration, in our all
experiments, the maximum number of unfoldings was set to
three.

3) THE ABILITY TO RECOVER SPATIAL DETAIL INFORMATION
Next, we explored the ability of ML-CSC block to recover
spatial detail information of image at the decoding side and
the results were shown in Table 4. CSC-Unet-Decode models
with unfolding number greater than 0 on different datasets
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TABLE 4. Result on DeepCrack, Nuclei and CamVid test set of U-Net and CSC-Unet-Decode models with different unfolding number.

TABLE 5. Result on DeepCrack and Nuclei test set of U-Net and CSC-Unet-All models with different unfolding number.

TABLE 6. Results on CamVid test set of CSC-Unet-All models (1) U-Net(CSC-Unet-All-0-0), (2) CSC-Unet-All-2-1, (3) CSC-Unet-All-1-1 and (4)
CSC-Unet-All-2-2.

TABLE 7. The computational cost of U-Net and CSC-Unet-model series
with different unfolding number.

were better than U-Net, which implied that ML-CSC block
improved the recovery of spatial detail information compared
to the convolution operation. The best unfolding was 1 in
DeepCrack and Nuclei, and in CamVid was 3, respectively.
We speculated that phenomenon was probably related to the
complexity of the image, where the categories of DeepCrack
and Nuclei were relatively few and the case of one unfolding
was enough, but CamVid was relatively more complex and
required a higher number of unfoldings.

4) THE OVERALL IMPROVEMENT OF MODEL PERFORMANCE
We first introduced the nomenclature of CSC-Unet-All-a-
b, where a denoted the unfolding number at the encoding

side and b denoted the number of unfoldings at the decoding
side. For example, CSC-Unet-All-0-0 was equivalent to
U-Net model, CSC-Unet-All-a-0 was represented as CSC-
Unet-Encode-a, and CSC-Uner-All-0-b can be represented as
CSC-Unet-Decode-b. Through Table 3 and 4, we found that
on the DeepCrack dataset the CSC-Unet-Encode-2 captured
more semantic and appearance information, and CSC-Unet-
Decode-1 maximized the ability of the model to recover
spatially detailed information. Thus, we argued that CSC-
Unet-All-2-1 could maximize the segmentation performance
of the U-Net model. Similarly, on Nuclei and CamVid, CSC-
Unet-All-2-1 and CSC- Unet-All-2-3 should achieve the
best segmentation performance. However, due to the GPU
memory size limitation (11 GB), if we use the CSC-Unet-
All-2-3 model on the CamVid dataset, the batch size needs
to be halved, or we can use GPU parallelism to maintain
the batch size. This is something that we do not expect to
see. We want to compare the performance of the models
under the same conditions; thus, we used CSC-Unet-All-2-2
instead of CSC-Unet-All-2-3. We also set CSC-Unet-All-0-0
(U-Net) and CSC-Unet-All-1-1 for performance comparison.
The results on the three datasets were shown in Table 5
and 6. Compared to U-Net we have improved by 2.43% (from
84.71% to 87.14% in DeepCrack), 1.82% (from 67.09% to
68.91% in Nuclei), and 4.86% (from 48.82% to 53.68% in
CamVid) on three datasets in terms of Mean Intersection
over Union (MIoU), respectively. To better illustrate the
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FIGURE 4. Examples of semantic segmentation results on CamVid, DeepCrack, and Nuclei test set. (a) Input images, (b) Ground truths, (c) Results
of U-Net, and (d) Results of CSC-Unet-All (best).
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TABLE 8. The model performance and computational cost of Unet++, Unet+ + +, DeepLabv3+ and their corresponding improved versions.

results, the visualizations on the three datasets were shown
in Figure 4.

V. CONCLUSION AND DISCUSSION
In this paper, we proposed a novel strategy, which used ML-
CSC block instead of convolutional operation to improve the
performance of semantic segmentation model. This strategy
could possibly apply to any semantic segmentation model
that involved convolutional operation. We used the U-Net
model as an example to validate this strategy and designed
CSC-Unet model series. We found that using ML-CSC
blocks instead of convolution operations could accelerate the
convergence of the semantic segmentation model, improve
the ability of the model to capture the semantic and
appearance information of the image, and improve the ability
to recover spatial detail information. We concluded that ML-
CSC block was a better operation compared to convolutional
operation in semantic segmentation.

The current CSC-Unet models have achieved significant
improvement in segmentation performance compared with
the original U-Net model. However, they still face great
challenges. Therefore, in the follow-up study, we will
consider the following aspects.

1) To fairly demonstrate our strategy, the added ML-CSC
block to the U-Net model was a two-layer convolutional
sparse coding model. We speculate that more layers will
be beneficial to improve the performance of semantic
segmentation. Thus, in the next study, we will design a new
type of semantic segmentation model based on multi-layer
global convolutional sparse coding block.

2) We found that there is a balance between the extraction
of feature information and the recovery process. Thus, how
to find the best balance between all the unfolding number
in separate encoder and decoder part will be one focus
of our future research. In addition, the presence of the
unfolding number in the solution algorithm slightly increases
the model’s computation cost, as shown in Table 7. So,
the solution algorithm without unfolding number will be
designed in our subsequent study.

3 ) The ML-CSC block can be extended to not only the
field of semantic segmentation, but also possibly to other
fields such as object detection [12], [13], [14], generative

adversarial networks (GAN) [58], natural language process-
ing (NLP) [59], etc.

APPENDIX
The results of improving Unet++, Unet3+, and deeplabv3+
are shown in TABLE 8, with the same training strategy
and input model sizes as CSC-Unet, and the code of CSC-
Unet++, CSC-Unet+ + +, and CSC-DeepLabv3+ is also
available at https://github.com/NZWANG/ CSC-Unet.
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