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ABSTRACT This paper presents a robust subject-wise sequential dictionary learning (swsDL) algorithm
named rswsDL for functional magnetic resonance imaging (fMRI) data where the negative impact of
dimensionality reduction in the form of information loss and sensitivity to anomalous observations due
to the assumption of Gaussian prior has been resolved by rotating the reduced dimensions to optimal
direction and replacing the quadratic loss in the data fidelity term with α-divergence based loss function
to counter the outliers, respectively. While dimensionality optimization guaranteed robustness to model
order by maximizing signal intensity and smoothness, the robust loss function guaranteed decomposition
stability against deviations from theGaussian noisemodel. The proposed algorithmwas derived by deploying
spatial and temporal bases from the computationally fast sparse spatiotemporal blind source separation
(ssBSS) method and solving a sequence of rank-1 matrix decomposition problems, where the l1/l0-norm
penalty/constraint promoted sparsity, and the estimation of sparse representation matrices was accomplished
using a block coordinate descent approach. This strategy allowed the utilization of multi-subject fMRI
data to enhance the subject-wise source separation in a robust manner. It, therefore, can be considered
a promising alternative to the state-of-the-art robust consistent adaptive sequential dictionary learning
(rACSD) algorithm. The rswsDL and existing robust dictionary learning based source separation algorithms
were applied to synthetic and experimental fMRI datasets to validate its performance. The rswsDL algorithm
manifested a 16.7% increase in the mean correlation value over the rACSD algorithm.

INDEX TERMS Robust subject-wise analysis, fMRI, sparse representation, group-level analysis, dictionary
learning, representation matrices, signal intensity maximization, α-divergence.

I. INTRODUCTION
Detecting the activated brain region during cognition and
functionally connected brain regions during rest is chal-
lenging due to the fMRI signal’s poor signal-to-noise ratio
(SNR) [1]. Functional MRI data is traditionally analyzed by
deploying the computationally expensive seed voxel-based
cross-correlation analysis [2], or statistical parametric map-
ping (SPM) toolbox [3], which employs a hypothesis-driven
methodology by modelling the hemodynamic response
function (HRF) for the univariate general linear model.
In contrast, data-driven approaches like blind source sepa-
ration (BSS) have provided many effective results for fMRI
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analysis in recent years [4], [5], [6], [7], [8], [9] when
experimental responses diverge from the expected response
and cannot be accurately replicated due to differences among
subjects and brain regions [10]. Particularly, resting state
functional connectivity analysis and task-based activation
detection have benefited greatly from using multivariate data
matrix decomposition techniques [11], [12], [13], [14], [15],
[16], [17].

Principal component analysis (PCA) is used as a pre-
processing step for dimensionality reduction in mixing
matrix-based BSS algorithms like ICA [18], canonical
correlation analysis (CCA) [19], and partial least square
(PLS) [20]. While keeping too many PCs may lead to unre-
liable separation results by BSS algorithms such as ICA that
may generate phantom source signals consisting of spikes and
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FIGURE 1. A) Generated spatial and temporal sources, B) spatial and temporal sources recovered by rswsDL2 (rswsDL with l2 data fidelity
term), and C) spatial and temporal sources recovered by rswsDL1 (rswsDL with α-divergence based data fidelity term). The absolute
temporal and spatial correlation values (γ ) are shown against each source, along with the sum of correlation values on the left. The red
circles on the temporal sources obtained from rswsDL2 represent the outliers that were successfully suppressed by rswsDL1, but were not
attenuated by rswsDL2. In contrast, green circles on the temporal sources recovered by rswsDL1 suggest those outliers that both methods
failed to suppress.

bumps [21], strict reduction leads to information loss andmay
seriously compromise the performance of the subsequent
source separation algorithm [2]. Thus, anymismatch between
the retained dimension and the actual model order can
significantly impact the source retrieval results. Recently, this
has been addressed using the signal intensity maximization
(SIM) technique [22], [23] to increase the resilience of BSS
models to the order number. In particular, more information
is retained using PCA, while SIM helps the ensuing BSS
algorithm steer clear of the overfitting issue. In order to
reduce the sensitivity of ssBSS to the model order, the
proposed algorithm incorporates dimensionality optimization
via basis expansion.

The traditional DL methods assume the Gaussian prior for
noise that leads to a quadratic loss function as a maximum
likelihood estimate (MLE). Due to its susceptibility to
outliers, l2 norm data fitting term is usually replaced
with least absolution deviation, Huber loss, or truncated
l1 norm error according to the assumptions made about
the outlier statistics [24]. By deploying these tools from
robust statistics [25], the effect of outliers can be mitigated
for dictionary learning. For instance, the online dictionary
learning algorithm is incorporated with robust function
through l1 data fidelity term, where an update for each
dictionary sample is obtained using weighted correlation
matrices and conjugate gradient method for various computer
vision tasks [26], a capped l1 norm-based loss function
is used for robust DL to iteratively solve the re-weighted
least square problem for face recognition [27], a robust
DL algorithm handles outliers based on each atom’s update
frequency through confidence-weighted sparse code and fine-
tuned dictionary [28].

Instead of developing an outlier identification framework
for the fMRI data [29], [30], [31], [32], our goal is to fully
utilize the statistical information of the outliers and design
an algorithm that would diminish their effects on the data
representations in the form of a dictionary [33], [34], [35].
Therefore, we define an outlier problem as the time points
in the fMRI series containing high noise/artifacts/outliers
levels due to magnetic field instabilities, head movement,
physiological effects, and fMRI data complex preprocessing
steps. We aim to design an outlier removal scheme that has an
automatic suppression ability while estimating the unknowns
to down-weigh all those datapoints that are far from the bulk
of the data. One way to approach this is by assuming noise as
non-Gaussian and deploying class of divergences other than
Kullback-Leibler such as α-divergence [34] that will provide
a loss function that is adapted to address robustness against
anomalous observations. For the synthetic fMRI data in this
paper, we attempted to generate these outliers in the form of
a Laplacian noise.

A. INTRODUCTORY EXAMPLE
Outliers are generally acknowledged to occur in fMRI data
and are not entirely removed even after the pre-processing
stages [29], [30], [31], [32]. Thus, we characterize an outlier
problem as the presence of time points in the fMRI time
series that exhibit elevated amounts of noise, artifacts, and
outliers. These anomalies might arise from magnetic field
instabilities, head movement, physiological effects, and the
many preprocessing procedures for handling fMRI data.

To verify how data fidelity term’s modification address
the negative impact of outliers, we conducted an experiment
in which anomalies were introduced in the synthetic dataset
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by means of a Laplacian noise. The proposed rswsDL
algorithm with data fidelity term derived from α-divergence
(rswsDL1) was successfully able to learn dictionary atoms
from synthetic datasets that were contaminated by strong
Laplacian noise, and so was rswsDL with l2 data fidelity term
(rswsDL2), however rswsDL1 performed better. To highlight
the difference between these two competing algorithms,
we tried to recover twelve different source signals and
maps from the datasets generated using Laplacian noise
and some outliers that were manually added at time points
60, 120, 180, 240.
For an unbiased comparison, all tuning parameters, dictio-

nary size, and algorithm iterations were set the same for both
algorithms. One is encouraged to read this paper’s section
IV-D for more details on generating these datasets, selecting
values for the parameters, and extracting the sources. From
Fig, 1C, one can conclude that rswsDL1 is successful in
eliminating 95% of the outliers and in the process of doing
so it came out with the higher overall temporal correlation
strength than rswsDL2.

II. RELATED WORK
In this paper, the robustness of the proposed algorithm was
enhanced by reducing the information loss using the SIM
technique and attenuating the effect of anomalous obser-
vations using the α-divergence based loss function. While
a SIM-based dimensional optimization allowed retaining
more information from the data without any concern about
overfitting, α-divergence provided robustness against noise
by down-weighing the anomalies in the data. Moreover,
motivated by the recent approach that utilized autoencoder
to project multi-subject fMRI data to a shared space before
subject-specific decoders reconfigured it [36], the robust
dictionaries were trained using a mixing model where the
mixing matrices were adapted to the subject-wise training
data as discussed in [37]. This approach enhanced the
statistical significance of the recovered sources by combining
the spatiotemporal diversities from multiple subjects.

The proposed model for robust loss function differs
from the existing models [34] as it is characterized by i)
data utilization in reduced dimension space for computa-
tional efficiency, ii) subject-wise dictionary that embodies
multi-subject spatiotemporal diversity, and iii) dictionary
with discrete cosine transform (DCT) bases and spatiotem-
poral mixing matrices. A two-level strategy is used for the
proposed dictionary training, where the first level trains a base
dictionary and the base sparse code using an efficient ssBSS
method with the SIM approach. The second level estimates
mixing matrices using the sequential approach with α-
divergence directed rank-1 decomposition, soft thresholding,
autocorrelation maximization, and paired minimization.

The rest of the paper is divided into four sections.
Section III describes the proposed preliminaries, the proposed
model, and the proposed algorithm, followed by section IV,
presenting the synthetic and experimental studies consisting
of comparisons and performance metrics. The paper ends

with section V, which provides concluding remarks. This is
followed by a section on acknowledgement.

III. MATERIALS AND METHODS
While retaining the simplicity of l2 minimization [38], the
robust ACSD algorithm [34] has shown superior source
recovery performance in the presence of non-Gaussian noise.
However, its limited applicability to subject-wise analysis
produced spatiotemporal dynamics that lacked strength due to
its inability to exploit statistical dependencies among groups
of subjects. In this paper, hemodynamic variations from
multiple subjects are utilized computationally efficiently to
increase the accuracy and strength of subject-wise robust
analysis.

A. ROBUST ssBSS
Recently, a novel optimization model for source separation
of single-subject fMRI signals was presented [39]. This led
to the development of the sparsity-based source separation
method (ssBSS), which uses alternating least squares and
soft thresholding to solve for the unknown model variables
via Neumann’s alternating projection lemma. Using multi-
subject data, the proposed rswsDL algorithm in this paper
builds a spatial and temporal base dictionary by means of
the subject-wise ssBSS method due to its computational
efficiency.

It is noteworthy at this point that the rswsDL model
defined by equation (16) gains from the shared inherent
structures across brains while performing subject-wise source
extraction. In order to get those inherent structures, we could
either rely on predefined paradigms that do not possess
experimental variations across brains and their regions or
use DCT/spline bases that also could not provide any
experimental variations. The issue lies in the fact that both
of them are static priors and are incapable of adapting to
variations. One way variations across brains and regions
and shared structures across brains could have been con-
sidered was to deploy two rounds of dictionary learning
or data matrices as a base matrix. Both strategies would
make the resultant algorithm computationally expensive and
impractical. Hence, utilizing ssBSS’s temporal and spatial
components to construct the base spatial and temporal
matrices turned out to be computationally very convenient
due to its numerical efficiency, as discussed and shown
in [39].

The ssBSS method seeks to decompose the m-th subject
fMRI whole-brain dataset Ym into the temporal source matrix
Tm ∈ RN×P and the spatial source matrix Sm ∈ RP×V as
follows

min
Cm,Sm

∥∥Ym − TpCmSm
∥∥2
F + λ1 ∥Sm∥1 ,

sub.to.
∥∥Tpcm,p∥∥2 = 1,

∥∥cm,p∥∥0 ≤ ζ1 (1)

where m = {1, . . . ,M}, M is the number of subjects,
Tm = TpCm, the DCT bases are stored in Tp ∈ RN×Kp

to realize the smoothness of the BOLD signal, Cm is the
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sparse representation matrix and cm,p is its p-th column.
Sparsity is promoted via ∥.∥0 and ∥.∥1 norm that counts the
number of non-zero elements and the sum of absolute values,
respectively, and λ1/ζ1 are the sparsity hyperparameters.
An efficient solution can be produced by disintegrating
equation (1) into a pair of spatial and temporal sources as

min
Cm,Qm

∥∥�m,t − TpCmQm
∥∥2
F ,

sub.to.
∥∥Tpcm,p∥∥2 = 1,

∥∥cm,p∥∥0 ≤ ζ1 (2)

min
Sm,Zm

∥∥�m,s − ZmSm
∥∥2
F + λ1 ∥Sm∥1 (3)

where Qm ∈ RP×K and Zm ∈ RK×P are the mixing
matrices, and �m,t ∈ RN×K and �m,s ∈ RK×V obtained
after dimensional optimization consist of the temporal and
spatial features in the reduced dimension, respectively. They
are obtained as �m,t = Xm,tW and �m,s = WXm,s using
the demixing matrix W ∈ RK×K , which consists of the
eigenvectors of U + U⊤, and U can be computed as

U = gX⊤
m,t X̃m,t + (1 − g)02/γ1 (4)

In order to assign weight to the autocorrelation terms and
signal existence terms, a parameter g that exists in the interval
of (0, 1) was used. Here, matrix 0 contains the eigenvalues of
YmY⊤

m , γ1 is the most significant eigenvalue, and X̃m,t is one
time-sample delayed version of the following problem

min
C̃m

∥∥∥Xm,t − TpC̃m
∥∥∥2
F
,

sub.to.
∥∥Tpc̃m,k∥∥2 = 1,

∥∥c̃m,k∥∥0 ≤ ζ2 (5)

and Xm,t and Xm,s are obtained using singular value
decomposition (SVD) i.e. Y = 601⊤ as

Xm,t = Y10⊤, Xm,s = 6⊤Y

In summary, a high reduction number was chosen when
performing SVD, indicating that a larger number of dimen-
sions were preserved through the process of dimensionality
reduction. This decision was made in order to maintain
a greater amount of valuable information. Then, the SIM
technique was used to mitigate the issue of overfitting
effectively, which achieves this by aligning the reduced
dimensions towards the optimal orientation, enabling it to
maximize the presence of interesting signals. Consequently,
it can differentiate between genuine existing components and
non-existent artifacts, particularly when an incorrect number
of principal components are chosen. This is equivalent to the
estimation of demixing matrix using equation (4).
The ssBSS method was applied individually to all partic-

ipating subjects in the study to learn spatial and temporal
components that very precisely resemble the underlying
ground truth sources as explained in [39]. The extracted
temporal components are concatenated horizontally to build
up a base dictionary matrix, and extracted spatial components
are concatenated vertically to build up a base sparse code
matrix. Both multi-subject base matrices will be utilized

by the rswsDL method to perform subject-wise source
separation and they are given as

Dq = [T1,T2, . . . ,TM ]

Xq = [S⊤

1 ,S
⊤

2 , . . . ,S
⊤
M ]⊤ (6)

B. ROBUST SUBJECT-WISE swsDL
1) α-DIVERGENCE
Conventional dictionary learning (DL) algorithms assume a
Gaussian noise prior, leading to the maximum likelihood
estimate producing a squared l2 term. This loss term is
vulnerable to outliers and does not provide any protection
against them. From probabilistic point of view, we also
know that maximizing the likelihood is equivalent to min-
imizing the statistical distance between the true probability
distribution and the estimated one, which is the definition
of Kullback-Leibler divergence (KLD). Instead of KLD,
we can consider a different type of divergence, such as α-
divergence [34]. This lets us have a loss function that is better
at handling anomalous observations than the quadratic loss
function.

As described in [34], consider an independent identically
distributed data sample r1, . . . , rV , where i-th ri ∈ RN is
sampled from a probability distribution G(r, ω̂) with ω ∈

� ⊂ Rκ . Let G(r, ω), ω ∈ � corresponds to the family
of approximating probability distributions parameterized
by ω. For the corresponding probability density functions
g(r, ω) and g(r, ω̂), the α-divergence [40], which is a
measure of similarity between two probability distributions
offers protection against anomalous observations unlike the
Kullback-Leibler divergence, and is given as

Dα
(
g(r, ω̂) ∥ g(r, ω)

)
=

1
α(α − 1)

( ∫
g(r, ω̂)αg(r, ω)1−αdr − 1

)
(7)

This is the generalization of KLD indexed by the parameter
α, which can be observed by deriving Dα in terms of the α-
logarithmic function as

logα(x) =
x(1−α) − 1
1 − α

(8)

and minimizing the α-divergence with respect to ω is the
same as maximizing the following

ω̂ = argmax
ω

1
n

n∑
i=1

logα{g(ri, ω)} (9)

Its detailed derivation is described in [34]. Now, considering
the probabilistic swsDL model yi = DABxi + ηi, where
ηi ∈ RN is a zero mean Gaussian white residual vector with
variance σ 2. Considering its j-th entry ηji as r

j
i then

g(ηji, ω) = g(yji − djABxi) ∝ exp
(

−
(yji − djABxi)2

2σ 2

)

= exp
(

−
η
j
i
2

2σ 2

)
(10)
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TABLE 1. Algorithm for solving the minimization problem (16).

where dj is the j-th row of D and xi is the i-th column of X
and ω represents either D or xi based on the sparse dictionary
learning stage. Using the definition of logα from equation
(8) and replacing the probability density function in (10) by
equation (9) we get

ω̂ = argmax
ω

1
N

N∑
i=1

exp
(

−
τ

2σ 2
η2i

)
− 1

τ

= argmin
ω

1
N

N∑
i=1

1
τ

(
1 − exp

(
−
τ

2

(ηi
σ

)2))

FIGURE 2. The block diagram of the proposed rswsDL algorithm showing
all the steps from preprocessing to subject-wise and group-level
inferences.

= argmin
ω

1
N

N∑
i=1

ℓτ (νi) (11)

where νi = ηi/σ and ℓτ (νi) is given as

ℓτ (νi) =
1
τ

(
1 − exp

(
−
τν2i

2

))
(12)

When τ → 0, ℓτ (νi) → ℓ0(νi) = ν2i /2 and the
well-known quadratic loss related to the Frobenius norm
is recovered, which is quite susceptible to the presence of
outliers in the data. The τ > 0 refers to a weighted estimator
that tends to down-weight errors that deviate significantly
from the nominal density, eliminating outliers and promoting
inference stability during the learning process. The weights’
structure automatically down-weighs anomalous data or
outliers that are remote from the majority of the data and
have no bearing on the final estimate, making the DL resilient
against outliers.
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More specifically, consider the function exp
(

− (ekm,i −

dm,kxkm,i)
)
from equation (16), which are the entries of the

square weight matrix Wi of size N × N, and this appears
everywhere (equation (18) and (20) because new estimates
are solved using a weighted least squares). Assume if entries
of ekm,i are far from dm,kxkm,i then a low value is assigned to
the weight matrix compared to the entries that are close to
dm,kxkm,i. Thus, by down-weighing all the large numbers, all
data points far from the bulk of the data will automatically
be down-weighted and will have no impact on the estimates,
making rswsDL robust to outliers.

It must be noted that instead of computing Wi as exp
(

−

α(ekm,i − dm,kxkm,i)
2/2

)
, (i = 1, . . . ,V ) for each atom/sparse

code update of the proposed algorithm, we computed a single
Wi as exp

(
− α(ym,i − Dmxm,i)2/2

)
, (i = 1, . . . ,V ) for

all K updates during each algorithm iteration. This resulted
in some computational gain by a factor of K , and only little
variations in performance regarding algorithm convergence
and final results were observed.

2) swsDL
The proposed algorithm utilizes the multi-subject fMRI data
by means of base matrices Dq/Xq that store spatial and
temporal components from ssBSS method and representation
matrices Am/Bm that mix and demix those components.
This mixing and demixing allows the combining of common
variations and the separating of unique ones. Combining
common variations frommultiple subjects for a single subject
data decomposition gives statistical strength to subject-wise
dictionary learning. This is because it allows subject-wise
data to be decomposed into multi-subject dictionary and
sparse code.

The subject-wise dictionary learning algorithm, in general,
as discussed in [37], endeavours to solve the following
optimization problem based on the Frobenius norm by
considering all observed signals given as

min
Am,Bm

∥∥Ym − DqAmBmXq
∥∥2
F + λ

∥∥∥bkmXq

∥∥∥
1
,

sub.to.
∥∥Dqam,k

∥∥
2 = 1 (13)

where it was assumed that fMRI dataset Ym ∈ RN×V

from m-th subject can be decomposed into a subject-wise
dictionary Dm ∈ RN×K and subject-wise coefficient matrix
Xm ∈ RK×V . These subject-wise matrices are estimated
using multi-subject smooth dictionary Dq ∈ RN×MP, the
multi-subject sparse code Xq ∈ RMP×V and their respective
representation matrices Am ∈ RMP×K and Bm ∈ RK×MP

that encourage overfitting. This leads to Dm = DqAm and
Xm = BmXq. However, instead of directly decomposing
the observed data matrix or error matrix of all signals,
which may lead to the K-SVD algorithm [41] that has
comparatively poor recovery and convergence rate, the rank-
1 minimization that takes error matrix of all signals into
account and promotes adaptive sparse penalty term for a

fairer assignment of penalty to each entry in bkmxq,j was
considered.Moreover, the representationmatrices Am andBm
were updated column-wise and row-wise, respectively, in a
sparse manner to discourage overfitting given as

{am,k , bkm} = arg min
am,k ,bkm

∥∥∥Ekm − Dqam,kbkmXq

∥∥∥2
F

+

V∑
j=1

λk2,j|b
k
mxq,j|, sub.to.

∥∥am,k∥∥0 ≤ ζ2,∥∥∥bkm∥∥∥
0

≤ ζ3,
∥∥Dqam,k

∥∥
2 = 1 (14)

where each entry of bkmXq has a data-driven regularization
parameter λk2,j assigned to it, sparsity for representation
matrices was promoted through l0 norm with ζ2/ζ3 their
sparsity controlling parameters, and the error matrix for
updating the representation matrices for k-th dictionary
atom/sparse code was equated as

Ekm = Ym −

K∑
i=1,i̸=k

dm,ixim (15)

3) PROPOSED MODEL
The proposed rswsDL algorithm is a promising alternative to
rACSD because it utilizes diversities across brains. There are
some variations to the ACSD method, such as ShSSDL [42]
and sgBACES [43] that do allow capturing cross-subject and
subject-specific variations, but the main drawback of these
methods is their applicability being limited to task-related
data only and inability to handle outliers. The proposed
method can handle both, although we do not provide
resting-state data analysis in this paper to avoid increasing
the paper length.
The loss function derived in equation (12), developed in

the previous subsection, was employed in the fidelity term in
place of the Frobenuis norm in equation (14) to produce the
proposed robust DL model as

{am,k , bkm} = arg min
am,k ,bkm

V∑
i=1

ℓτ

(ekm,i − Dqam,kbkmxq,i
σ

)

+

V∑
i=1

λk2,i|b
k
mxq,i|, sub.to.

∥∥am,k∥∥0 ≤ ζ2,∥∥∥bkm∥∥∥
0

≤ ζ3,
∥∥Dqam,k

∥∥
2 = 1

where ekm,i is the i-th column of Ekm. To account for the lag-
1 error minimization for the dictionary to train atoms with
maximum autocorrelation, two variables Fm ∈ RN×K and
Zm ∈ RK×V were introduced. Each column of Fm was one
time-sample delayed version of atoms, and the respective
sparse code estimate was stored in them-th coefficient matrix
Zm. After taking this into account, and assuming that the
transformed variates are uncorrelated Z⊤

mF
⊤
mFmZm = I, the

above equation can be modified to obtain the proposed model

35962 VOLUME 12, 2024



M. U. Khalid, B. M. Albahlal: Robust Subject-Wise Dictionary Learning for fMRI

for the robust swsDL given as

{am,k , bkm, z
k
m} = arg min

am,k ,bkm,zkm

V∑
i=1

ℓτ

(ekm,i − Dqam,kbkmxq,i
σ

)
+

∥∥∥Dqam,kbkmXq − FmZm
∥∥∥2
F

+

V∑
i=1

λk2,i|b
k
mxq,i|,

sub.to.
∥∥am,k∥∥0 ≤ ζ2,

∥∥∥bkm∥∥∥
0

≤ ζ3,∥∥Dqam,k
∥∥
2 = 1, Z⊤

mF
⊤
mFmZm = I (16)

We suggest using iterative optimization to solve the
objective in (16), which attempts to estimate one rank-1
matrix out of K at a time. For this particular case, update for
am,k , bkm, and zkm was obtained by first finding the updates
for dm,k and xkm. These two variables are solved as a pair by
performing K penalized rank-1 approximations of (16).

4) DICTIONARY REPRESENTATION MATRIX UPDATE
With bkm and zkm fixed, an update for akm was obtained by
solving the Lagrangian of (16) with respect to akm as

am,k = (D⊤
q Dq)−1D⊤

q dm,k

By considering the l0 constraint on akm above equation as a
constrained problem becomes

am,k = argmin
am,k

∥∥dm,k − Dqam,k
∥∥2
2 sub.to.

∥∥am,k∥∥0 ≤ ζ2

(17)

where the unknown dm,k was solved by considering

dm,k = min
dm,k

V∑
i=1

(
1
τ

−
1
τ
exp

(
−
τ (ekm,i − dm,kbkmxq,i)

2

2σ 2

))
and differentiating it w.r.t dm,k to obtain

V∑
i=1

1
σ

(
dm,k (bkmxq,i)

2
− ekm,ib

k
mxq,i

)

exp
(

−
τ (ekm,i − dkbkmxq,i)

2

2σ 2

)
= 0

Thus, the solution for dm,k was obtained as

dm,k =

( V∑
i=1

Wi(bkmxq,i)
2
)−1( V∑

i=1

Wiekm,ib
k
mxq,i

)
(18)

This was followed by l2 normalization of dm,k . Here Wi ∈

RN×N is a square weight matrix with values exp(−τ (ekm,i −
dm,kxkm,i)

2/2σ 2) on the diagonal, and for simplicity σ was
assumed as 1.

5) SPARSE CODE REPRESENTATION MATRIX UPDATE
With akm and zkm fixed, and solving the Lagrangian of (16) with
respect to bkm, its update was obtained as

bkm = xkmX
⊤
q

(
XqX⊤

q

)−1

Above equation can be rewritten as a constrained problem
when the l0 constraint on bkm was considered

bkm = argmin
bkm

∥∥∥xkm − bkmXq

∥∥∥2
2

sub.to.
∥∥∥bkm∥∥∥

0
≤ ζ3 (19)

where the i-th entry of the unknown xkm was solved by
considering

xkm,i = min
xkm,i

V∑
i=1

(
1
τ

−
1
τ
exp

(
−
τ (ekm,i − Dqam,kxkm,i)

2

2σ 2

))
and taking its derivative w.r.t xkm,i and setting it to zero to
obtain

1
σ
a⊤
m,kD

⊤
q Wi(ekm,i − Dqam,kxkm,i) + λk2,isgn(x

k
m,i)) = 0

where Wi is a square weight matrix as described in the
previous subsection and the solution for xkm,i was obtained
as

xkm,i = sgn(β) ◦ (|β| − λk2,i/2)+ (20)

where β = a⊤
m,kD

⊤
q Wiekm,i/a

⊤
m,kD

⊤
q WiDqam,k and λk2,i =

λ2/a⊤
m,kD

⊤
q WiDqam,k .

6) COEFFICIENT MATRIX UPDATE
By fixing akm and bkm, a block update of Z from (16) that uses
the whole dictionary and coefficient matrices rather than just
the most recent modified atom/sparse code was obtained by
solving the Lagrangian of

Zm = argmin
Zm

∥∥DqAmBmXq − FmZm
∥∥2
F ,

sub.to. Z⊤
mF

⊤
mFmZm = I

and the closed form solution was obtained as

Zm =
1

µ+ 2

(
(F⊤
mFm)

−1F⊤
mDqAmBmXq

)
. (21)

where µ is the Lagrangian multiplier. A variation of
the iterative re-weighted least squares method for rank-
1 matrix approximation can be observed in the resulting
dictionary/sparse code update.

C. ROBUST GROUP-LEVEL swsDL
The suggested model was applied to multiple subjects;
hence, group-level analysis was conducted in addition to
the subject-wise data decomposition. For this purpose,
canonical HRF from the SPM toolbox and task stimuli
were used to create modelled HRFs (MHRs) for task-
related analysis, and resting-state network templates (RSNs)
were obtained from [44] for resting-sate analysis. While
equation (6) was used to prepare base dictionary and sparse
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FIGURE 3. All spatial sources of the first subject in the first subfigure, whereas the location, shape, and
variability of some spatial sources across subjects and unique spatial sources are shown in the rest of the
subfigures.

FIGURE 4. Respective temporal sources of Fig. 3 where the first subfigure contains the timecourses of the first
subject and some of the common sources having temporal variability with unique temporal sources shown in rest of
the subfigures.

code, equation (17), (18), (19), (20), and (21) were used
to obtain subject-wise dictionary and sparse code. This was
followed by group analysis, where firstly, the task-related
group components were estimated by concatenating dic-
tionary atoms/sparse codes according to the neuroscience
knowledge as Dr = [d1,j1(r), d2,j2(r), . . . , dM ,jM (r)] and Xr =[
xj1(r)

⊤

1 , xj2(r)
⊤

2 , . . . , xjM (r)⊤

M

]⊤

. Secondly, the rank-1 decom-
position was applied on the concatenated dictionary atoms
and sparse codes as 1

M [DrXr ] = ωrδrγ
⊤
r , dg,r = ωr , and

xrg = δrγ
⊤
r . Here r = {1, . . . ,R}, R represents the number

of MHRs, jm(r) signifies the indices of the most correlated
atom in m-th dictionary with r-th MHR, m = {1, . . . ,M},
M is the number of subjects, Dg is the group-level dictionary,
and Xg is the group-level sparse code. In contrast, only sparse

codewas assembled for the resting-state components as5r =[
xj1(r)

⊤

1 , xj1(r)
⊤

2 , . . . , xjM (r)⊤

M

]⊤

and xrg =
1
M

∑M
m=1 π

m
r . The

robust swsDL algorithm for estimating robust dictionary and
sparse code is described in Table 1, and its block diagram is
shown in Fig. 2.

IV. EXPERIMENTS
In this section, the proposed algorithm was assessed to
determine how well it performed compared to the most
advanced robust dictionary learning based data-driven algo-
rithms already in use. In this regard, two distinct fMRI
datasets, one synthetic and one experimental, were used for
the data analysis. The synthetic fMRI dataset of six subjects
was produced using the Simtb toolbox [45]. In contrast, the
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FIGURE 5. Moderate to large spatial overlaps were formed by altering the size of twelve unique
activation blobs using seven different values of the spread parameter ρ, of which only 6 are
shown here.

block design fMRI dataset for eight subjects was acquired
from the quarter 3 release of the Human Connectome Project
(HCP) [46], [47].

The comparative study consisted of the robust sparse group
ICA (rsgICA) [23], [48], [49], robust group ssBSS using
residual matrices (sRMSSE) [50], robust KSVD (rKSVD)
[33], robust ACSD (rACSD) [34], and the proposed robust
swsDL (rswsDL) algorithm. Each algorithm’s performance
was evaluated in terms of how well it could recover the
ground truth using the aforementioned datasets.

A. SYNTHETIC DATASET GENERATION
Same as the other studies [37], [39], [50], the Simtb
toolbox was used to generate a dataset of six subjects
in MATLAB that mimicked the experimental fMRI data.
Twelve different temporal sources, consisting of 300 time-
points with a repetition time of TR = 1 sec, and twelve
different spatial sources, consisting of 50 × 50 voxels
each, were used to construct the fMRI dataset for six
subjects. For the generation of spatial components, we used
{3, 6, 8, 10, 22, 23, 26, 30, 4, 12, 5, 29} as the source IDs,
which allowed mapping the synthetic brain. Among all
source signals, seven spatiotemporal sources were utilized
to generate the fMRI data for each individual. While the
last 6 sources were distinct, and one was assigned to each
subject, the first six spatiotemporal sources were common
and present in all six participants with some degree of
intersubject variability, as shown in more detail in [37].
Regarding common temporal sources, the HRF parame-

ters, such as delay, response dispersion, and undershoot, were
changed to induce heterogeneity among subjects. Similar
to this, the Gaussian distribution parameters (mean (µ) and
standard deviation (std) (σ )) were used to establish the
intersubject variability for the common spatial maps. These
parameters allowed for control over the activations’ position,

TABLE 2. Group-level extraction results in terms of mean correlation
values for twelve spatiotemporal sources (ST1 -ST12) over 30 trials and
different values of ρ with the highest results highlighted in bold.

orientation, and spread. This was accomplished using the
random translation (µ = 0, σ = 1) in both the x and y
directions, random rotation (µ = 0, σ = 0.9), and random
scaling (µ = ρ, σ = 0.05) as illustrated in Fig. 3. Here,
the spread parameter empowered to govern the spatial extent
of the activations and produced seven distinct examples of
spatial overlaps as ρ = {5, 7, 9, 11, 13, 15, 17}, the mean of
the Gaussian distribution. Fig. 5a-f displays the most relevant
spatial maps with moderate to large spatial dependence.

The common and unique spatiotemporal sources of the first
subject and five additional unique spatiotemporal sources
from the remaining five subjects were used to assemble the
ground truth time courses (TCs) and spatial maps (SMs) for
group-level analysis, as shown in Fig. 3 and 4 as all source
TCs/SMs. The remaining subfigures display some of the
temporal and spatial sources that were utilized to create each
of the six datasets, which was expressed as Ym =

∑7
i=1(tci+

ψi)(smi
+φi). The Laplacian distributions∼ L(0, 0.9) and∼

L(0, 0.01) were used to create the noise-generating matrices,
9 ∈ R300×7 and8 ∈ R7×2500, respectively. Then, depending
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FIGURE 6. Subject-wise analysis’ mean values of (a) cTC and (b) cSM computed across 7 components, 30 realizations, and
6 subjects with noise variance 0.9 and 7 values of spread parameter. Error bars represent the departure from the mean
values.

on the values of ρ and trial number, the datasets YM
m=1 (where

M = 6) were composed and used by all source retrieval
algorithms.

B. SYNTHETIC DATASET DICTIONARY LEARNING
The parameter values were kept the same for all algorithms
to create an unbiased comparison wherever possible. The
total number of components needed to be retrieved was
12 since the rsgICA was applied to the grouped data.
For other algorithms, however, it was considered that the
precise number of underlying sources for real fMRI data is
unknown. Therefore, more components were permitted to
be trained for the simulated dataset rather than learning the
same number of components as the number of generating
sources. The components were set to 14 for rssBSS/sRMSSE
and 10 for rKSVD/rACSD/rswsDL, which were applied
subject-wise. All algorithms were run for 30 iterations. The
ideal initialization for each algorithm was provided after the
initialization scenario was assessed using the data, random
number generator, and DCT bases separately. For rssBSS,
rKSVD, and rACSD, random numbers derived from the
standard normal distribution, observed data, and DCT bases
were used, respectively.

We experimented with many combinations of the tuning
parameters. The ones that yielded the best results regarding
the similarity between the ground truth and the retrieved
sources were considered. In the instance of rsgICA, twelve
components were retained following the second PCA reduc-
tion, where the first PCA produced 18 components for each
subject. It was discovered that 0.3 and 5000 were the optimal
smoothing and sparsity values for rsgICA. The tuning settings
for robust ssBSS were ζ1 = 60, λ1 = 12, Kp = 150,
g = 0.6, and ζ2 = 30. The same settings from rssBSS
were applied for sRMSSE, and other parameters were set as
λ2 = 10, external loop to 10 iterations for subject-specific
component extraction, ζ3 = 30, ζ4 = 6, Pm = 7, Pc = 7,
and λ2 = 5 for common component extraction. The optimal
sparsity parameter for rKSVD and rACSD was 8 and 4,

respectively. The inner iteration for rKSVD was set to 10 and
for rACSD to 5. For rACSD and rswsDL, parameter α was set
to 3. In the case of rswsDL, parameter µ was set to 3, and the
best sparsity parameters were found to be ζ2 = ζ3 = 24 and
λ2 = 16.

C. SYNTHETIC DATASET RESULTS
The creation of multi-subject datasets and the learning
procedure were conducted several times to show the proposed
algorithm’s robustness and consistency. In this regard, the
experiment was run for i) thirty distinct trials and ii) seven
values of ρ from 5 to 17 to progressively increase activation
overlaps as seen in Fig. 5a-e.

The source recovery was performed with respect to both
group-wise and subject-wise analysis; however, only the
results from the subject-wise analysis were plotted, while
group analysis results were placed in a table. Following the
correlation of each algorithm’s trained dictionary atoms/parse
code with the ground truth TCs/SMs, underlying source
TCs/SMs were obtained by keeping the indices with the
highest correlation value. These correlation values, expressed
as cTC/cSM, were calculated in reference to ground truth
(GT) spatial maps. The mean of the cTC/cSM values over
seven spatiotemporal sources were recorded as mcTC/mcSM
for each of the seven spatial overlap cases, and their mean
over 30 trials and 6 subjects were plotted in Fig. 6 for
subject-wise analysis. Fig. 7 displays the convergence rate
and the evolution of correlation values for all participating
algorithms as function of algorithm iterations. In addition to
this, the mean correlation values for group-level extraction of
12 sources are shown in Table 2.

Fig. 6 indicates that for all source recovery situations
(spatial/temporal feature and spatial overlap instances),
the rswsDL consistently performed better than all other
algorithms. Despite high spatial dependence among sources
and high temporal noise levels, rswsDL had the best recovery
rate. Specifically, although its retrieval capabilities decreased
as spatial overlaps grew, it maintained its higher recovery per-
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FIGURE 7. For subject-wise dictionary learning, the mean of the a) correlation values and b) convergence rate as a
function of algorithm iterations across all subjects.

formance. In comparison, the sRMSSE algorithm emerged
as a runner-up but with higher deviations from the mean
correlation value for both spatial and temporal recovery
cases. Like rswsDL, the rKSVD algorithm exhibited lower
standard deviations, but its mean correlation results were not
impressive.

From Fig. 7b, it can be inferred that the rswsDL algorithm
converged more quickly and required fewer iterations to yield
the desired results than rKSVD. This pattern was also seen
in Fig. 7a, where the correlation strength for rswsDL almost
ceased increasing after the tenth iteration. On the other hand,
as the number of iterations rose, both rKSVD and rACSDc
continued to show progress in source recovery, whereas the
rKSVD method converged slowly.

Table 2 shows the source-wise group analysis results from
30 trials, 7 spatial dependency cases, and 5 algorithms.
Overall, it is evident from these results that rswsDL emerged
as a winner in source recovery of each spatiotemporal
component, with sRMSSE as a runner-up.

D. INTRODUCTION SECTION FIGURE GENERATION
As described in section IV-A, multi-subject synthetic datasets
were generated using Laplacian noise. However, different
parameter settings were used to generate dataset for sec-
tion I-A: Laplacian temporal noise variance of 0.6 and
spatial noise variance of 0.01, the spread parameter that
controls spatial dependence among sources was set to 8,
and the lag-1 error minimization term in equation (16) was
set to zero for both methods to ensure that autocorrelation
maximization does not influence this comparison. The rest
of the data generation settings were the same as described in
section IV-A.
For an unbiased comparison, tuning parameters, dictionary

size, and algorithm iterations were all given the same values
for both methods. The selected values for these parameters
were set the same as discussed in the section IV-B for rswsDL.
For rswsDL1 and rswsDL2, the best sparsity parameters were
found to be ζ2 = ζ3 = 24 and λ2 = 16, dictionary size of

10 was trained, and algorithm iterations were set to 30 with
α = 1, and internal iterations set to 4.

E. BLOCK DESIGN DATASET
The 3T MRI raw block design dataset for the motor task
was obtained from the HCP’s quarter 3 release, whose
experimental details are provided in the reference [37], [46],
[47]. This dataset, which maps the brain’s motor cortex,
was acquired in an experiment that lasted 204 secs. The
experiment involved giving the volunteers instructions to
respond to visual stimuli by tapping their right or left fingers,
pinching their right or left toes, or moving their tongues.
Subjects completed a 12-second particular movement activity
after receiving a three-second visual signal. Ten movement
tasks were considered, including two tongue motions,
left/right finger, and left/right toe movements. Consequently,
there were 13 blocks, of which three were fixation blocks of
15 secs. Six modelled HRFs (MHRs) were created utilizing
the canonical HRF and task stimuli linked to five different
movement types tongue (T), left toe (LT), right toe (RT), left
finger (LF), right finger (RF), and visual type cue (VC) in
order to get ground truth TCs.

Each subject’s fMRI scan was obtained using a Siemens
3 Tesla (3T) scanner. The following were the acquisition
parameters: With 72 contiguous slices and 2 mm isotropic
voxels, echo time (TE) = 33.1 ms, TR = 0.72 secs, field of
view (FOV) = 208× 180 mm, flip angle (FA) = 52o, matrix
size = 104 × 90, slice thickness = 2 mm, echo spacing =

0.58 ms, and 284 EPI volumes were gathered where initial
5 scans were discarded. The dataset used in our investigation
included eight subjects, ages ranging from 22 to 35.

F. BLOCK DESIGN DATASET PREPROCESSING
As discussed in [37], the SPM-12 toolbox [3] was used for
preprocessing the block design dataset. In-depth description
of the preprocessing procedures for this dataset, including
masking, realignment, normalizing, and spatial smoothing,
can be found in [43], [51], and [52]. In order to eliminate
motion artifacts, functional images were realigned to the first

VOLUME 12, 2024 35967



M. U. Khalid, B. M. Albahlal: Robust Subject-Wise Dictionary Learning for fMRI

FIGURE 8. For the A) visual cue, B) left toe, C) right finger, and D) tongue tasks in the block design dataset, thresholded common activation
maps produced using a) rsgICA, b) sRMSSE, c) rKSVD, d) rACSD, and e) rswsDL at a random field correction p < 0.001. Table 3 provides the
respective correlation values.

image. Then all images underwent spatial smoothing using a
6×6×6mm3 full-width at half-maximum (FWHM)Gaussian
kernel after being spatially normalized to a Tailarach template
and resampled to 2 × 2 × 2 mm3 voxels. This was followed
by an attempt to remove any data outside the scalp during
the masking stage. The four-dimensional dataset was then
reformatted and stored as a 2-dimensional matrix termed Y
for each m-th individual to be considered a full brain dataset.
This step produced dataset Y of size 279 × 236115 for the
m-th subject, where m = {1, . . . , 8}. Next, temporal filtering
was applied to this Y matrix from all subjects. This included
a low-pass filter based on FWHM to remove high-frequency
physiological noise and a high-pass filter based on DCT to
remove low-frequency trends. An FWHM cutoff of 1 sec
was used, and a DCT filter cutoff of 1/150 Hz. Following
the previously outlined steps, Y was normalized to have zero
mean and unit variance.

G. BLOCK DESIGN DATASET DICTIONARY LEARNING
We tried a wide range of tuning parameter combinations. The
ones that produced the best findings in terms of how closely
the recovered sources and the ground truth matched each
other were taken into consideration. Observed data, random
numbers, and DCT bases were used for rKSVD, rssBSS, and
rACSD dictionary initialization, respectively. All dictionary
learning algorithms ran for a total of 15 iterations, with
the exception of the rssBSS and sRMSSE algorithm, which
had a total of 30 iterations. After keeping 100 components
from the first PCA reduction and 60 from the second PCA
reduction, 60 components were retrieved using rsgICA, and
its smoothing parameter was set to 5000 while the sparsity
parameter to 0.3. In the case of rssBSS, 40 were trained
and 60 components from PCA were kept; the remaining
parameters were adjusted to λ1 = 16, ζ1 = 50, Kp = 60, g =

0.6, and ζ2 = 30. The same rssBSS settings were used for

the sRMSSE; the external loop was set to 15 iterations, with
λ2 = 8 for the extraction of the subject-specific component
and λ2 = 8 for the extraction of the common component. Its
other parameters were set as K = 100, ζ3 = 80, and ζ4 = 8,
Pm = 30, and Pc = 15. Using rACSD, 40 dictionary atoms
were trained for each subject with a sparsity parameter set to
20, inner iterations to 5, and α to 2. The inner iteration was
set to 10 and the sparsity parameter to 15 for rKSVD. For
rswsDL, 40 atoms were trained, and tuning parameters were
set to ζ2 = ζ3 = 48, λ2 = 25, α = 1, and internal iterations
to 5.

H. BLOCK DESIGN DATASET RESULTS
The absence of task-related activation maps in this section led
us to select temporal analysis with six constructed MHRs.
Similarly, we used Smith’s templates because resting state
networks do not have temporal profiles. Two methodologies
served as the foundation for the analysis: subject-wise and
group-level; however, we only discuss group-level analysis
for this paper. For the subject-wise analysis, the TCs/SMs
for each subject acquired by rKSVD, rACSD, and rswsDL
were taken into account, and both common and subject-
specific TCs/SMs were considered for sRMSSE. In contrast,
the individual TCs/SMs for rsgICA were obtained by
back reconstruction. In contrast, the group-level TCs/SMs
produced by each competing algorithm served as a reference
for group-level assessment. For group-level analysis, the
common TCs/SMs for rKSVD, rACSD, and rswsDL were
extracted according to the discussions in subsection robust
group-level swsDL, they are found in common TC/SM
matrices for sRMSSE, and in group-level matrices for
rsgICA. These common TCs were eventually correlated with
MHRs and averaged SMs with RSNs; the atoms/sparse codes
with the most significant correlation values were saved. One
can refer to [43] for more details on this extraction.
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FIGURE 9. Thresholded group-level activation maps derived using a) rsgICA, b) sRMSSE, c) rKSVD, d) rACSD, and e) rswsDL, at a random
field correction p < 0.001 for the A) medial visual template, B) occipital pole visual template, C) lateral visual template, and D) default
mode network template.

FIGURE 10. The average of the a) correlation values and b) convergence rate as a function of
algorithm iterations for three different subject-wise dictionary learning algorithms using block
design dataset.

TABLE 3. The highest correlation values between the averaged spatial maps and RSN templates and between group-level dictionary atoms and MHRs are
shown for five different algorithms, with the highest values highlighted in bold.

For the block design dataset, there were quite a few of
activation maps and temporal dynamics, but only a small
number have been shown to prevent the lengthening of the
study. Fig. 8 displays a sequence of 2D images combined to
depict 3D volume for various group-level movement tasks.
In the same way, just a portion of the resting-state analysis’s
findings are shown here. For example, Fig. 9 displays the SMs
for the first four resting state network templates. As shown
in Table 3, the proposed rswsDL approach performs better

than all other algorithms overall, producing atoms and sparse
codes with the highest correlation with the ground truth, with
sRMSSE coming in second. It is very clear from spatial
maps in Fig. 8 that, compared to the other techniques, the
activations found by rACSD and rswsDL are more specific
to the motor region. Based on Table 3, it can be said that,
in terms of correlation values, rswsDL outperformed all other
methods. Fig. 9 visually supports this as well, showing that
the spatial maps produced by rswsDL are more specific
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and consistent in terms of sensitivity than those produced
by other algorithms. The correlation strength accumulation
and convergence rate of the rKSVD, rACSD, and rswsDL
algorithms are shown in terms of iterations in Fig. 10.
Here, it can be seen that the rswsDL algorithm progressively
outmatches its competitors.

V. CONCLUSION
This paper proposes a novel dictionary learning algorithm
to train robust atoms from the dataset containing outliers.
This is accomplished by utilizing the loss function that is
more effective against the non-Gaussian noise. In place of
the Kullback-Leibler divergence, the suggested robust loss
function is constructed from the α-divergence. A benefit of
the suggested loss is that it is a member of the redescending
M-estimator class, which ensures that inferences will remain
stable even in the event of significant departures from the
Gaussian noise model [34]. Besides, the rotation of reduced
dimension to optimal direction avoids the problems associ-
ated with model fitting. Another benefit of the suggested
algorithm, in contrast to the conventional group analysis,
is that it can be used for both task-related and resting-state
fMRI data.

The approach used for the suggested algorithm is novel
in that it uses the underlying spatiotemporal dynamics
from multiple subjects to train dictionary atoms and sparse
codes. Because of the spatiotemporal heterogeneity provided
by other subjects, this technique enables the incorporation
of comparable components from the reduced-dimension
space across individuals, leading to higher statistical power.
Training the representation matrices and extracting the
base/dictionary sparse code solves the suggested model.
Synthetic and experimental fMRI datasets have been used
to demonstrate the effectiveness of the proposed algorithm,
and its performance is consistent and reliable across datasets.
The maintenance of the finite basis injective property and
a stringent sparsity pattern ensured the convergence of the
proposed algorithm [53].
In future, we will attempt to extend the proposed method

to hierarchical dictionary learning in order to reduce its
computational burden.
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