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ABSTRACT Fetal heart sounds is measured to follow the developing status of fetus. The used database
of fetal heart sounds is obtained from Physionet challenge. In this paper, novel models are created to
extract features from fetal heart sounds; to identify the gender of fetus (male or female), using modified
Mel-Frequency Cepstral Coefficients (MMFCC). The high pass filter which is used in the pre-emphasis
step of MMFCC, used to remove noise from fetal heart sounds. These models are compared; to obtain
high classification parameters (i.e. the accuracy rate and the area under curve). Classification method is
based on deep learning, using recurrent neural networks (RNN) based on bidirectional long short-term
memory (BiLSTM). The programming code of 13 models is created by the author, using Matlab software
environment. Both accuracy rate and area under curve (AUC) are obtained usingMMFCCbased on fractional
discrete cosine transform (FRDCT), overperform the same results of other models. So, this model is selected
to extract features of fetal heart sounds. The contribution here is using novel model. FRDCT is new fractional
transform, which is decomposed from fractional Fourier transform (FRFT) and discrete cosine transform
(DCT). The secret behind selecting FRDCT based on MMFCC as a model; FRDCT decomposes signals
perfectly in time-frequency domain. The best model can be programmed on a portable device; to know the
gender of fetus by a caregiver in rural areas, without needing to use ultrasound.

INDEX TERMS DL, MFCC, MMFCC, DCT, FRFT, FDM, DCT.

I. INTRODUCTION
Fetal heart sounds used for many years to detect murmurs in
fetal heart sounds [1]. Fetal heart sounds before birth used to
detect any change about the status of the fetus. The abnormal
fetal heart sounds may refer to lack of oxygen in fetus.
Fetal heart sounds are important to monitor the developing
of the fetus through the maternal gestation. Many researches
are conducted about signal processing of fetal heart sounds
and fetal electrocardiography (ECG). In 2010, Sameni and
Clifford made review about signal processing of fetal ECG
signal [2]. In 2015, Samieinasab and Sameni used empirical
mode decomposition and non negative matrix factorization to
extract features of fetal phonocardiogram (PCG) [3]. In 2017,
Sutha and Jayanthi obtained feature extraction of fetal ECG
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(FECG) using two methods, least mean square and wavelet
transform; to cancel noise for fetal QRs detection [4]. In 2021,
Ponsiglione et al. made a review about techniques for analyz-
ing signals of fetal heart rate [5]. In 2021 Khanmohammadi
et al. obtained features of fetal PCG to get the gender of
fetal using deep learning [6]. They obtained accuracy percent
of 91%, which is less than the calculated accuracy rate in
this paper. In 2021, Namazi and Krejcar made analysis of
pregnancy development based on signals of fetal PCG [7].
In 2022, Farahi et al. used portable device and wavelet trans-
form to made heart rate fetal analysis [8]. In 2022, Alkhodari
et al. used deep learning to identify cardiac coupling between
mother and fetus during gestation [9]. In 2023, Abburi and
others used artificial intelligence algorithms for remote fetal
heart rate monitoring and classification [10]. In 2023, Alkho-
dari and his colleagues used deep learning to extract features
of fetal PCG [11].
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II. MATERIAL AND METHODS
A. DATABASE
The database of fetal heart sounds is collected from Phys-
ionet challenge [12]. The gender of fetus in this database is
male or female. Twin and non-identifying cases are excluded.
The number of female and male cases is 47 and 53 cases
respectively. The ratios 50%, 40%, 10% of the database
are used for training percent, testing percent and validation
percent respectively. All the database of training, validation
and testing are separated from each other. There is no overlap
between them. In this database, the mean of pregnancy weeks
ofmothers is 36.5weeks. Themaximum andminimumweeks
of pregnancy are 41 and 26 weeks respectively.

B. MODELS OF FEATURE EXTRACTION
1) MEL FREQUENCY CEPSTRAL COEFFICIENTS (MFCC)
Mel Frequency Cepstral Coefficients (MFCC) is used widely
in getting features of speech. It is used also to get the features
of fetal heart sounds. It composed from eight steps. Pre-
emphasis is applied in the first step using high pass filter
(HPF). The coefficients a and b are used for HPF. a equals
1. The matrix of b is [1, -0.97]. Then framing is applied in
the second step. Duration of frames is 0.025 seconds. The
used sampling frequency is 16000 Hz. Number of samples
per frame is 320. The time-step of each frame is 0.01 second.
The hamming window is used during the third step. X (k) is
used fast Fourier transform (FFT), which is applied in the
fourth step. Number of FFT points is 64. In the fifth step,Mel-
scale is calculated from the frequency f in the linear scale,
as shown in equation (1). 20 filter banks are created. In the
sixth step, S(m) is the output log of multiplied power spectral
energy and Mel filter banks, as shown in equation (2). Then
discrete cosine transform (DCT) is obtained in the seventh
step, as shown in equation (3). Finally, thirteen coefficients
of MFCC are obtained including log frame energy as the first
coefficient [13], [14].

Mel (f ) = 2595 ∗ log(1 +
f

700
) (1)

S (m) = log(
∑N

k=1
|X (k)|2 Hm(k)) (2)

C (n) = DCT (S (m)) , n = 0, 1, . . .M (3)

DCT can be calculated, as shown in equations (19)-(20).
Where Hm(k) is the transfer function of filter-banks and m
is the number of filter-banks. M is the total number of filter-
banks, which equals 20.

2) METHOD OF STOCKWELL TRANSFORM
Stockwell Transform (ST) is mixed between wavelet trans-
form and short-time Fourier transform (STFT). It gathers
between the advantages of wavelet transform and STFT.
Fixed window in STFT is replaced with Gaussian function
in the frequency domain as shown in equation (4). Where
τ is time index. ST is suitable for feature extraction of fetal
heart sounds because it is non-stationary signals. ST describes
signals in time-frequency domain [15]. The inverse ST is

shown in equation (5).

S (τ, f ) =

∫
∞

−∞

x (t)
|f |

√
2π

e
−f 2(t−τ )

2

2 e−2π iftdt (4)

x (t) =
√
2π

∫
∞

−∞

S (τ, f )
|f |

e+2π iftdf (5)

3) METHOD OF MODIFIED STOCKWELL TRANSFORM
Modified Stockwell Transform (MST) is a novel method for
feature extracting of fatal heart sounds. MST is the same as

ST, but the Gaussian function is replaced with e
−f p(t−τ )p

2 as
shown in equation (6). Index p is changed, which values are
0.5, 1, 1.5, 2.5 and 3 [15].

S (τ, f ) =

∫
∞

−∞

x (t)
|f |

√
2π

e
−f p(t−τ )p

2 e−2π iftdt (6)

4) METHOD OF FRACTIONAL FOURIER TRANSFORM
Fractional Fourier Transform (FRFT) represents signal in
frequency domain and fractional domain [16], [17]. It is more
suitable for non-stationary signals as fetal heart sounds than
Fourier transform (FT). FRFT overcomes some disadvan-
tages of FT. FT represents signals in the frequency domain
only. So, FT is not suitable for non-stationary signals. FRFT
of x(t) is Fα(u) as shown in equation (7). Discrete FRFT of
x(n) is shown in equation (8). The fractional domain is u.
Where 0 < |α| < 2. csc(8)=1/sin(8). cot(8)=1/tan(8). α

is the order of FRFT. Kα(t,u) is the kernel function of FRFT
as shown in equation (9).

Fα (u∅) =

∫
∞

−∞

K∝ (t, u∅) x (t) dt (7)

F∝
x (k,m) =

∑N

n=−N
x (n)K∝ (n,m) (8)

K∝ (t, u∅) =



√
1 − i.cot(∅)

2π
ei.

(u∅
2
+t2)cot(∅)
2 −i.u∅.t.csc(∅)

δ (t − u∅) if ∅ = 2Nπ

δ (t + u∅) if ∅ = (2N + 1)π

if ∅ ̸= Nπ (9)

∅ = απ /2. Where ∅ is rotational angle of FRFT. If it equals
π /2, FRFT will convert to FT. In this paper, the fractional
power is changed between 0.5 and 1.

5) METHOD OF FRACTIONAL STOCKWELL TRANSFORM
Fractional Stockwell Transform (FRST) is decomposed from
FRFT and ST. It has the advantages of both transforms.
It avoids the disadvantages of ST (fixed Gaussian function)
and FRFT (power spectrum is not available in time-domain)
[18]. The equation which describes FRST is presented in
equation (10). Discrete FRST is shown in equation (11).

FRST α
x (τ, u∅) =

∫
∞

−∞

x (t) g(τ − t, u∅)K∝ (t, u∅) dt (10)
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where Kα (t,u∅) is defined in equation (9). The fractional
power of FRST is α.

FRST∝
x (k,m) =

N∑
n=−N

x (n) g (k − n,m)K∝ (n,m) (11)

g (t, u∅) =
|u∅csc∅|

p

q
√
2π

e
−t2(u∅csc∅)

2p

2q2 (12)

∅ = απ /2. 0< |α| < 2. If ∅ is π /2, FRSTwill be converted to
ST. The parameters of p and q are used for controllingwindow
shape of FRST. The value of p or q in this paper is 1. g(t,u)
is Gaussian function, which depends on time t and fractional
domain u, as shown in equation (12).

6) METHOD OF EMPIRICAL FOURIER DECOMPOSITION
(EFD)
In Empirical Fourier Decomposition (EFD), the signal is
decomposed in the Fourier domain using zero-phase filter
banks. It is based on Fourier theory [19]. In the first step
of EFD, discrete Fourier transform is calculated for signal
f(m), as shown in equation (13). Then zero phase filter bank
is calculated, as shown in equation (14). Where k is the
boundary of improved segmentation technique, which is built
on Fourier transform. kn−1 and kn, are cutoff frequencies
of bandpass filter for the zero-phase filter bank. The signal
X̌n (k) is Fourier transform of f (m) between γn and γn+1,
as shown in equation (15). In zero-phase filter bank [γ1 . . . γn]
are the descending orders in the sorting process, for the series
of the frequency spectrum magnitudes. γ0 = 0,γn+1 = π .
Then filtered Fourier Transform is obtained, as shown in
equation (16). Inverse Fourier Transform is obtained for fil-
tered Fourier Transform; to obtain decomposed components
fn(m), as shown in equation (17). Finally, the reconstructed
signal is computed, as shown in equation (18).

F (k) =

N∑
k=1

f (m) e−jkm (13)

µn (k) =

{
1 kn−1 ≤ |k| ≤ kn

0 otherwise

}
(14)

kn =

 argmin
(
X̌n (k)

)
0 ≤ n ≤ N and γn ̸= γn+1

γn 0 ≤ n ≤ N and γn = γn+1

(15)

F̂n (k) = F (k) µn (k) =

{
F (k) kn−1 ≤ |k| ≤ kn

0 otherwise

}
(16)

fn (m) =

N∑
k=1

F̂n (k) ejkm (17)

f̃ (m) =

N∑
n=1

fn(m) (18)

7) METHOD OF EMPIRICAL DISCRETE COSINE
DECOMPOSITION
In empirical discrete cosine decomposition (EDCD), the
signal is decomposed in the discrete cosine domain using
zero-phase filter banks. It is a new method of empirical
decomposition methods. It is based on DCT theory [20], [21].
In the first step of EDCD,DCT is calculated for signal f(m), as
shown in equation (19). Where w(k) is calculated, as shown
in equation (20). Then zero-phase filter bank is calculated as
shown in equations (14). The signal X̌n (k) is presented in
equation (15). It is DCT of f (m) between γn and γn+1. Then
filtered DCT is obtained, as shown in equation (21). Inverse
DCT is obtained for filtered DCT; to calculate obtained
decomposed components fn(m), as shown in equation (22).
Finally, the reconstructed signal is computed, as shown in
equation (23).

F (k) = w(k)
N∑
m=1

f (m) cos
(

π (2m− 1) (k − 1)
2N

)
k = 1, . . . ,N (19)

w (k) =


1

√
N

k = 1√
2
N

2 ≤ k ≤ N
(20)

F̂n (k) = F (k) µn (k) =

{
F (k) kn−1 ≤ |k| ≤ kn
0 otherwise

}
(21)

fn (m) =

N∑
k=1

w (k) F̂n (k) cos(
π (2m− 1) (k − 1)

2N
)

m = 1, . . . ,N (22)

f̃ (m) =

N∑
n=1

fn(m) (23)

8) METHOD OF FACTIONAL DISCRETE COSINE TRANSFORM
Fractional discrete cosine transform (FRDCT) is a new frac-
tional transform. It is decomposed from FRFT and DCT.
It has the advantages of both transforms. It avoids the dis-
advantages of both DCT (it represents the high frequency
components of signals poorly) and FRFT (the power spec-
trum of FRFT is not available in time-domain) [16]. FRDCT
is presented in equation (24). Discrete FRDCT is shown in
equation (25).

FDCTα
x (u∅) =

∫
∞

−∞

x (t)L∝ (t,u∅) dt (24)

FDCT∝
x (k,m) =

N∑
n=−N

x (n)L∝ (n,m) (25)

L∝ (s, u∅) =



√
1 − i.cot(∅)

2π
cos(

(u∅
2
+ s2)cot(∅)

2
−u∅.s.csc (∅))

δ (s− u∅) if ∅ = 2Nπ

δ (s+ u∅) if ∅ = (2N + 1)π

48160 VOLUME 12, 2024



M. M. Azmy: Gender of Fetus Identification Using Modified Mel-Frequency Cepstral Coefficients

if ∅ ̸= Nπ (26)

where Lα(t,u∅) is defined in equation (26). The fractional
power of FRDCT is α. Where s=ktπ /N. If ∅ is π /2, FRDCT
is converted to DCT. The value of p or q in this paper is 1.

9) MODIFIED MEL FREQUENCY CEPSTRAL COEFFICIENTS
(MMFCC)
Modified Mel Frequency Cepstral Coefficients (MMFCC) is
used to get the features of fetal heart sounds using different
methods. These several methods replace FFT in the fourth
step, as described later [13], [14].

C. CLASSIFICATION METHODS
Deep learning is used as a classification method. It is a
subclass of machine learning. It overcomes the disadvantages
of conventional neural networks; which needs a lot of data for
training. The large number of artificial neurons is applied; so
the word ‘deep’ is used. The most famous used network of
deep learning is recurrent neural network (RNN). It suitable
for analysis sequence data as heart sounds. It contains a
memory unit, which has three gates (i.e. input, output and
forget gates). Here, the input gate receives the information
of extracted features of fetal heart sounds. The number of
input gates is 13. In this paper, the output layer describes the
gender of fetus (i.e. male or female). So, the number of output
gates is 2. Bi-directional long short-term memory (BiLSTM)
is used. It is a sequence model, which takes two long short-
term memories, one in the forward direction and the other in
the backward direction. Number of nodes in each hidden layer
is 100. Fully connected, softmax, dropout and classification
layers are used. In fully connected layer, each neuron of the
input is connected to each neuron in the output layer. In the
softmax layer, the real numbers are converted into probability
distribution; to accelerate the training process. Dropout layer
is used after softmax layer; to avoid over-fitting. There are
nine options, used through learning process. The first option
is Adam (adaptive moment estimation) optimizer. It adjusts
the first and the second moment of weights of RNN. The
second option is applying maximum number of epochs to be
100; to minimize errors. In the third option, the minimum
batch size is 150. Where the batch size is the number of
samples propagated through the network. In the fourth option,
the initial learning rate is 0.01; to control the updating errors
of weights. In the fifth option, the gradient threshold is 1. The
gradient is the changing in weights regarding to changing in
errors. In the sixth option, the plotting of training process is
applied. Validation process is used in the seventh option; to
avoid over-fitting. The frequency of validation process is 10,
which is chosen in the eighth option. Validation process isn’t
a part of testing process. Verbose is false in the ninth option;
to disappear the training progress for each epoch [22].

III. RESULTS
Thirteen methods are compared to obtain the features of fetal
heart sounds. The used first of these methods is MFCC;

FIGURE 1. Steps of feature extraction using the model 13.

FIGURE 2. Heart sound signals of fetus and maternal heart sounds.

FIGURE 3. The output of high pass filter in Pre-emphasizing step.

FIGURE 4. The output of hamming window step.

to calculate the features of fetal heart sounds. The applied
second method is MMFCC based on ST instead of FFT. The
used third method is MMFCC, using MST instead of FFT.
The value of the factor p is 0.5, as shown in equation (6).
The applied fourth method is MMFCC using MST instead of
FFT. Where p equals 1 in equation (6). The used fifth method
is MMFCC using MST instead of FFT. The value of p, which
is used in equation (6), is 1.5. The applied sixth method is
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FIGURE 5. The output of FRDCT step.

FIGURE 6. The output of Log Mel-scale filter step.

FIGURE 7. Coefficients of MMFCC based on FRDCT.

MMFCC using MST instead of FFT. Where p equals 2.5 in
equation (6). The used seventh method is MMFCC using
MST instead of FFT. Where p equals 3 in equation (6). The
applied eighth method is MMFCC using EFD instead of FFT.
The used ninth method is MMFCC using FRFT instead of
FFT. The fractional power is 0.5. The applied tenth method
is MMFCC using FRST instead of FFT. The fractional power
of FRST is 1. The used eleventh method is MMFCC using
FRFT instead of FFT. The fractional power of FRFT is 1. The
applied twelfth method is MMFCC using EDCD instead of
FFT. The used thirteenth method is MMFCC using FRDCT
instead of FFT. The fractional power of FRDCT is 1.

The feature extraction steps are represented at Fig.1.
FRDCT is used the fourth step; because it achieves the
highest AUC and accuracy rate, as described later. Female
fetus and her maternal heart sounds are represented against
time, as shown in Fig.2. The output of high pass filter in
the pre-emphasizing step is shown in Fig.3. The output of
hamming window step is presented in Fig.4. The output of
FRDCT step is shown in Fig.5. The output of log Mel-scale
filter is presented in Fig.6. As shown in Fig.7, coefficients of
MFCC based on FRDCT are presented.

TABLE 1. Tp, Fp, Fn and Tn of different models.

The number of true positive (Tp) cases predicts the positive
classification correctly. The number of true negative (Tn)
cases predicts the negative classification correctly. However,
the number of false positive (Fp) cases predicts the positive
classification incorrectly, and the number of false negative
(Fn) cases predicts the negative classification incorrectly.
These values are used for classifying the gender of the fetus.

As shown in Table 1, values of Tn, Fn, Fp and Tp, are
presented. Parameters of classification can be calculated,
as shown in equations (27)-(33).Where tpr is true positive rate
(sensitivity) and fpr is false positive rate (1-specificity). These
parameters are used to classify the gender of fetus. As shown
in Table 2, classification parameters rates of different models
are represented. They used to evaluate the presented models.
Acc, sens, spec, pres, Fm, Gm, and Au are accuracy rate,
sensitivity rate, specificity rate, precision rate, F-measure
rate, G-mean rate and AUC.

Although the accuracy rates in models 2, 6 and 13 are the
most accuracy rates, but the AUC of model 13 is the biggest;
so model 13 is selected.

After using deep learning as classification method, the
Receiver operating curve (ROC) is applied. The ROC is used
to measure the performance of the classification method in
different models. Since the ROC approaches from 1, as shown
in Fig. 8, the performance of this model is stable. It is pre-
ferred for classifying fetal heart sounds.

Accuracy rate = 100 ·
TP + TN

FP + FN + TP + TN
(27)
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TABLE 2. Classification parameters rates of different models.

Sensitivity rate = 100 ·
TP

FN + TP
(28)

Specificity rate = 100 ·
TN

FP + TN
(29)

Precision rate = 100 ·
TP

FP + TP
(30)

F_measure = 2 ·
precision ∗ sensitivity
precision + sensitivity

(31)

G− mean rate = 100.

√
Tp

Tp+ Fn
.

Tn
Tn+ Fp

(32)

AUC =

∫ 1

0
tpr

(
fpr

)
dfpr (33)

IV. DISCUSSION
Many researches are conducted using Stockwell transform of
fetal ECG or fetal heart sounds. Ulusar et al. used Stockwell
transform to analyze signals of brain activity [23]. Lui et
al. removed noise from fetal heart sounds using empirical
mode decomposition [24]. Krishna extracted features of fetal
ECG using Stockwell transform or Short Time Fourier Trans-
form (STFT). Results proved that using Stockwell transform
for feature extraction of fetal ECG overperform STFT [25].
Koutsiana et al. detected fetal heart sounds using fractal
dimention and wavelet transform [26]. Abduh and others
classified heart sounds using FRFT based on Mel-frequency
spectral coefficients [27]. Bajaj and others denoised ECG
signals using FRST [28]. Gupta and Mittal detected arrhyth-
mia in ECG signal using fractional wavelet transform with

FIGURE 8. ROC of MMFCC based on FRDCT using deep learning.

principal component analysis [29]. Jallouli and his colleagues
used Clifford wavelet entropy to extract features of fetal ECG
signals [30]. Krupa and his colleagues estimated fetal heart
rate using FRFT and wavelet transform [31]. Krupa et al.
used joint time-frequency analysis to extract fetal ECG [32].
Krupa and Dhanalakshmi made researches about automatic
detection of fetal QRS complex using ST based on deep
learning [33]. Krupa et al. detected fetal QRS using IoT-based
on deep learning [34]. Gupta et al. used Stockwell Transform
and empirical mode decomposition for detecting arrhythmic
of fetus [35].

In this paper, 13 methods are discussed. The success-
ful method, which achieves high accuracy and high AUC,
is selected using MFCC based on FRDCT. The model of
FRDCT decomposes fetal heart sound signals perfectly in
time and frequency domains; so this model achieves the
highest accuracy rate and highest AUC.

The drawback of this research is using small database
of fetal heart sounds. This database represents only weeks’
gestation between 26th and 36th week.
In future, novel fractional transformswill be used to extract

features of fetal heart sounds; they may achieve high accu-
racy rates. The used database of fetal heart sounds will be
increased. The measured fetal heart sounds during maternal
gestation will be obtained in earlier weeks.

V. CONCLUSION
Fetal heart sounds used to follow up development of fetus in
the uterus. Thirteen methods are compared to obtain features
of fetal heart sounds. Deep learning is used as a classifica-
tion technique. Model 13 is selected; to obtain features of
fetal heart sounds. The obtained accuracy rate is 97.5%. The
obtained AUC is 0.977. In future, novel fractional transforms
will be used to extract features of fetal heart sounds; they may
achieve high accuracy rates. The used database of fetal heart
sounds will be increased. The measured fetal heart sounds
during maternal gestation will be obtained in earlier weeks.
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