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ABSTRACT To address the challenges posed by nonlinear tire characteristics in trajectory tracking control
of active four-wheel steering (4WS) vehicle or fire-fighting robot, a novel control method is proposed. This
method incorporates time-varying corrected cornering stiffness to enhance adaptability. Initially, the impact
of friction coefficient and vertical load on tire lateral force nonlinearity is analyzed. Key input features
are identified, and a cornering stiffness estimation model is developed using a Back Propagation (BP)
neural network. Subsequently, the trajectory tracking state equation is established based on the 2-degree-of-
freedom (2-DOF) dynamic model and trajectory tracking error model. An active front-wheel steering (AFS)
trajectory tracking sliding mode controller (SMC) is designed, augmented by a Radial Basis Function (RBF)
neural network, forming an RBF-SMC AFS controller capable of real-time correction of cornering stiffness.
Additionally, an active rear-wheel steering (ARS) controller is designed based on fuzzy control theory,
considering the influence of center of gravity lateral deviation on vehicle stability. Finally, Simulation
tests under varied speed conditions on icy and dry asphalt surfaces, using the Matlab/Simulink-Carsim co-
simulation platform, demonstrate that the proposed method dynamically adjusts front and rear axle cornering
stiffness, enhancing trajectory tracking accuracy and maneuvering stability, particularly in high-speed or
low-friction road conditions.

INDEX TERMS 4WS, trajectory tracking, cornering stiffness estimation, neural network, sliding mode
control, fuzzy control.

I. INTRODUCTION
The trajectory tracking capability of a wheeled intelligent
fire-fighting robot plays a crucial role in determining its fire-
fighting speed. Therefore, the research focus has consistently
been on the trajectory tracking control of it. The wheeled
fire-fighting robot can be considered as a specialized oper-
ational vehicle. Consequently, the research on its trajectory
tracking control can still be categorized within the field of
vehicle trajectory tracking control. Presently, the global vehi-
cle population is continually increasing, leading to frequent
traffic congestion and automobile collisions. The major-
ity of these incidents are closely associated with drivers’
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poor driving habits [1], [2]. Therefore, the development of
advanced driver assistance systems or autonomous driving
technologies is deemed crucial to enhance traffic flow effi-
ciency and reduce the occurrence of traffic accidents [3],
[4], [5], [6]. In comparison to traditional front-wheel steering
vehicles, four-wheel steering (4WS) vehicles offer increased
control degrees, providing conditions conducive to enhanc-
ing trajectory tracking control accuracy under extreme
conditions. Although the application of 4WS technology
in conventional fuel-powered vehicles incurs higher costs,
the continuous breakthroughs in electric vehicle technol-
ogy and hub motor technology have significantly lowered
its implementation costs. This has rendered the prospects
of 4WS technology increasingly promising in various
applications [7].
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4WS technology can be further classified into two main
types based on the control of the rear-wheel steering:
Active Rear Wheel Steering (ARS) and Passive Rear Wheel
Steering (PRS). In comparison to PRS, ARS can auto-
matically adjust the rear-wheel steering angle according to
changes in vehicle speed and driving conditions, significantly
enhancing vehicle stability, maneuverability, and cornering
performance [8]. Therefore, this work primarily focuses on
researching a 4WS control based on ARS. The 4WS tra-
jectory tracking control process can be further decomposed
into front wheel trajectory tracking steering control (AFS)
and ARS. Currently, various methods have been employed in
tra-jectory tracking control research based on AFS, including
PID [9], fuzzy logic [10], sliding mode [11], robust con-
trol [12], and model predictive control [13]. Among these, the
sliding mode control algorithm demonstrates strong adapt-
ability to uncertainties, disturbances, and unmodeled dynam-
ics in control systems, making it particularly suitable for
complex environments like vehicle trajectory tracking [14].
Wang and Li [15], using lateral deviation and heading angle
deviation as control target quantities, designed two sliding
surfaces and developed an intelligent vehicle trajectory track-
ing controller based on fast reaching law to achieve accurate
vehicle trajectory tracking control. Sun et al. [16], aiming
to enhance control system robustness, designed an adaptive
terminal sliding mode trajectory tracking controller, showing
superior control performance under different vehicle speeds
and road conditions compared to a regular sliding mode
controller. He et al. [17] proposed an inverse sliding mode
trajectory tracking controller, which, while actively tracking
the reference trajectory, effectively improved the safety and
robustness of trajectory tracking. Tagne et al. [18] presented a
vehicle lateral displacement control method based on a high-
order super-twisting sliding mode controller, which not only
ensured convergence of lateral displacement error but also
effectively suppressed vibrations near the sliding surface.

Although trajectory tracking control based on slidingmode
control algorithms generally performs well in most driving
conditions, it still faces challenges in terms of adapt-ability.
This is because the vehicle/tire dynamic models used in
the field of vehicle control are often simplified, and a sin-
gle sliding mode control method may struggle to adapt to
diverse control requirements. For instance, during actual
vehicle operation, factors such as road friction coefficients
and the vertical loads borne by each wheel are constantly
changing, leading to a strong nonlinear relationship between
tire lateral force and slip angle. While a linear cornering
stiffness constant can be used when the vehicle is driven
with small tire slip angles on a normal road surface, rapid
changes in driving conditions often bring the tires close to
or even into the nonlinear working range. Adopting a linear
cornering stiffness value at such times can result in signif-
icant model errors, making it challenging for the controller
to ensure the accuracy and stability of vehicle trajectory
tracking. Therefore, trajectory tracking controllers designed

based on linear cornering stiffness values struggle to meet the
requirements of trajectory tracking in complex road condi-
tions. Consequently, many researchers are currently working
on integrating various optimization algorithms with sliding
mode control algorithms to approximate modeling errors and
improve the accuracy and stability of a single sliding mode
control method. Kobayashi et al. [19] provided a compre-
hensive overview of the application of neural networks in
autonomous vehicle motion controllers. They proposed the
use of radial basis function (RBF) neural networks to approx-
imate unknown disturbances, enhancing the precision and
robustness of the control algorithm by establishing a neural
network algorithm relating in-puts to unknown disturbances.

Numerous scholars have devoted their efforts to ARS
research. Considering the im-pact of road friction coefficient
changes on the controller, Zhang et al. [20] introduced vari-
ableweighting coefficients for parameter adaptive adjustment
to enhance the performance and applicability of the optimal
controller. Xie et al. [21] designed an ARS sliding mode
con-troller to track the ideal yaw rate, overlooking the fact
that the center of gravity lateral deviation is also affected
by the rear wheel steering angle. Addressing the limitation
of using only yaw rate as a control variable, Qiu et al. [22]
proposed a novel structure based on active rear wheel steer-
ing to avoid the deterioration of vehicle motion posture
during abrupt reverse steering. While the aforementioned
ARS control method exhibit good control performance in
the vast majority of driving scenarios, achieving satisfac-
tory control effects under extreme driving conditions remains
challenging. This is because establishing an accurate math-
ematical model to represent the vehicle’s steering system
is highly difficult. Fuzzy control offers advantages such
as applicability to nonlinear and complex control systems,
independence from control models, and strong resistance to
disturbances [23], [24]. Therefore, this work will utilize fuzzy
control theory to design the ARS controller.

To this end, this work proposes an 4WS trajectory tracking
control method based on time-varying corrected cornering
stiffness. A front-wheel steering angle trajectory tracking
controller is constructed based on RBF-SMC. In this con-
troller, the cornering stiffness is real-time corrected using
the BP cornering stiffness estimation model proposed in this
work. The aim is to improve the poor adaptability of the tra-
jectory tracking controller caused by errors in the vehicle/tire
dynamic model. Additionally, considering the influence of
the center of gravity lateral deviation, a rear-wheel steering
angle controller is de-signed based on fuzzy control theory,
avoiding the use of the rear-wheel steering system model
and addressing the issue of poor control performance due to
system modeling errors. In summary, the main contributions
of this work can be summarized as follows:

1) Based on the tire magic formula, the nonlinear char-
acteristics of tire lateral force are analyzed, and a
cornering stiffness estimation model based on BP neu-
ral net-work is proposed.
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2) A sliding mode variable structure front-wheel steer-
ing trajectory tracking control method is designed,
analyzing modeling errors in the sliding mode vari-
able structure control algorithm. The neural network
approximation principle is applied to optimize the
control method, further reducing lateral errors in the
controller.

3) A rear-wheel steering fuzzy control method, taking into
account the influence of the center of gravity lateral
deviation, is designed. On the basis of eliminatingmod-
eling errors in the steering system to improve tracking
accuracy, the stability of the vehicle is comprehensively
considered.

The rest of this work is organized as follows. In Section II,
the method of construction of the cornering stiffness estima-
tion model based on the BP neural network is introduced.
In Section III, showing the derivation of the formula for the
vehicle trajectory tracking model. In Section IV, the con-
troller for AFS and ARS is designed and integrated into 4WS
controllers. In Section V, the 4WS integrated controller per-
formance is validated using the Matlab/Simulink-Carsim co-
simulation platform. Conclusions are provided in Section VI.

II. CORNERING STIFFNESS ESTIMATION MODEL
A. NONLINEAR CHARACTERISTICS OF TIRE
LATERAL FORCE
The magic formula tire model is the most widely used tire
model at present. It is obtained by fitting tire test data
with a combination formula of trigonometric functions and
accurately describes the nonlinear relationship between tire
forces, slip angles, friction coefficients, and slip ratios. The
tire lateral force in the magic formula can be expressed as
below [25]:

fyi (αi) = di sin
[
ci tan−1

{
bi (1 − ei) αi + ei tan−1 (biαi)

}]
(1)

where fyi represents tire lateral force; αi denotes tire slip
angle; bi, ci, di, and ei are constant coefficients influenced
by tire characteristics, road surface conditions, and vehicle
operating conditions. To account for the influence of the
friction coefficient µ on lateral force, the coefficients bi, ci,
and di need to be modified to (2-µ)bi, (5/4-µ/4)ci, and µdi.
The influence of vertical load and friction coefficient

on tire lateral force is analyzed using the magic formula.
As shown in Fig. 1, when the vertical load on the tire varies,
the trend of lateral force with respect to slip angle also differs.
When the vertical load is 3 kN, the linear lateral force value
and nonlinear lateral force value corresponding to a slip angle
of 7◦ are represented by points A and B, respectively, and the
discrepancy between them is quite significant. It can be seen
from Fig. 2 that when the road friction coefficient changes,
the tire lateral force curve exhibits different trends. When
the road friction coefficient is 0.5, the linear lateral force
value and nonlinear lateral force value corresponding to a slip
angle of 7◦ are represented by points C and D, respectively,

FIGURE 1. Relationship of vertical load and tire lateral force.

FIGURE 2. Relationship of friction coefficient and tire lateral force.

indicating a significant numerical difference between them.
Hence, controllers designed based on linear stiffness calcula-
tions for tire forces are unable to adapt to driving conditions
where significant changes occur in vertical load and road
friction coefficient. Therefore, adaptive adjustments to the
cornering stiffness in the controller are necessary based on
variables such as vertical load and friction coefficient.

B. ESTIMATION OF CORNERING STIFFNESS BASED ON BP
NEURAL NETWORK
1) SELECTION OF ESTIMATION MODEL AND
INPUT FEATURES
Tires represent a typical nonlinear system, making it chal-
lenging to establish a mathematical expression for the rela-
tionship between cornering stiffness and input features using
conventional mathematical methods. Neural networks are
tools capable of handling nonlinear problems, with BP neural
networks being particularly adept at addressing regression
problems associated with nonlinear issues. A three-layer BP
neural network can approximate any nonlinear equation [26].
Therefore, in this work, a three-layer BP neural network
is employed to establish the relationship between cornering
stiffness and input features.
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The expression for the linear tire model f̆yi is as follows:

f̆yi = Kiαi (2)

whereKi represents the linear cornering stiffness. Combining
the information from the previous section and (2), it is evident
that the primary influencing factors for cornering stiffness are
vertical load, friction coefficient, and slip angle. Therefore,
these three variables are chosen as input features. Several
scholars have proposed methods for estimating road friction
coefficient [27] and slip angle [28], thus, these two factors
are considered as known quantities in this work. Additionally,
vertical load can be obtained through (3) below.

Fz1 = M · g
b

2 (a+ b)
−Max

hg
2 (a+ b)

−May
hg
d

b
(a+ b)

Fz2 = M · g
b

2 (a+ b)
−Max

hg
2 (a+ b)

+May
hg
d

b
(a+ b)

Fz3 = M · g
a

2 (a+ b)
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hg
2 (a+ b)
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hg
d

a
(a+ b)

Fz4 = M · g
a

2 (a+ b)
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hg
2 (a+ b)

+May
hg
d

a
(a+ b)

(3)

where hg represents height of the center of gravity, d denotes
the wheelbase, g stands for gravitational acceleration, ax
represents longitudinal acceleration, ay represents lateral
acceleration, and a, b represent the distances from the vehi-
cle’s center of gravity to the front and rear axles, respectively.
The network topology structure of the cornering stiffness
estimation model is illustrated in Fig. 3.

FIGURE 3. Network topology of BP cornering stiffness estimation model.

2) MODEL TRAINING
The training data input matrix as Tin = [ αin Fzinµin] is
defined, where αin, Fzin, and µin represent the input matrices
for slip angle, vertical load, and friction coefficient. The
output matrix is defined as Tout = Cout, where Cout is
the cornering stiffness output matrix. To reduce numerical
disparities among the parameters and enhance estimation
accuracy, normalization of the input and output matrices is
required. The normalization formula employed in this work
is as follows:

χnorm =
χ − χmin

χmax − χmin
(4)

where χ represents the value to be normalized, and χmin and
χmax denote the maximum andminimum values in the dataset
to be normalized. The expression of the normalized input
matrix Tinnor, after passing through the hidden layer transfer
function, can be expressed as:

hj = σ

∑
i=1

wijTinnor + ϕj

 , (j = 1, 2, · · · , n)

σ (ξ) =
2

1 + e−2ξ − 1

(5)

where hj represents the hidden layer output vector,—λ denotes
the number of input layer nodes, which is 3 in this case, wij
corresponds to the weights from the respective input layer
to the hidden layer, ϕj represents the threshold of the hidden
layer, σ (·) represents the transfer function of the hidden layer,
and n represents the number of hidden layer nodes. The
range of n is initially determined through empirical formulas,
expressed as:

n =
√
κ + ν + ψ (6)

where κ represents the number of input layer nodes, ν repre-
sents the number of output layer nodes, and ψ is a constant
ranging from 0 to 10. The most suitable number of nodes
is determined through a trial-and-error approach, with the
minimum network error as the measure. The information
from hidden layer output nodes is ultimately converged into
the output layer nodes, representing the normalized value of
cornering stiffness. It can be expressed as:

Co = ∂

 n∑
j=1

wjohj + τo

 , o = 1

∂ (ξ) =
1

1 + e−ξ

(7)

where Co represents the output vector of the output layer,
which is the normalized cornering stiffness value. wjo corre-
sponds to the weights between the hidden layer and the output
layer, τo represents the threshold of the output layer, and ∂(·)
represents the activation function of the output layer. The
actual output error is calculated based on Co and compared
with the expected output. If the error meets the criteria, the
training process stops; otherwise, the weights and thresholds
are updated, and the training process is repeated until the error
meets the requirements. Finally, the estimative values need to
be reverse-normalized to obtain the actual cornering stiffness
value. The expression of reverse-normalization χdeno can be
expressed as:

χdeno =
(χmax − χmin) (χnorm + 1)

2
+ χmax (8)

3) TEST SET ESTIMATION RESULTS
In total, 1664 data sets are collected, with 70% used as the
training set and 30% as the test set. To provide a clearer
presentation of the test results, 127 sets of the test data
are randomly selected for result evaluation. As illustrated
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in Fig. 4, the curve of actual cornering stiffness values and
the estimation curve from the BP model highly coincide,
demonstrating a significant alignment. Fig. 5 indicates that
the estimation model yields estimation errors within almost
10% for the test set, with a mean estimation error percentage
of 2.52%. This result indicates that the proposed corner-
ing stiffness estimation model can provide highly accurate
cornering stiffness values for subsequent adaptive trajectory
tracking controllers.

FIGURE 4. Cornering stiffness test set estimation results.

FIGURE 5. Percentage of estimation error of cornering stiffness test set.

III. VEHICLE TRAJECTORY TRACKING MODEL
A. VEHICLE DYNAMICS MODEL
Assuming constant vehicle speed and neglecting the influ-
ence of air resistance on the vehicle, the work also ignores
the lateral, pitch, and vertical movements of the suspension
system. The vehicle dynamics model shown in Fig. 6 is
established, which can describe the lateral and yaw dynamic
characteristics of the vehicle. In this model, the dynamic
coordinate system xoy is fixed on the vehicle body, where
the positive x-direction represents the vehicle’s forward direc-
tion, and the positive y-direction points from the right side
to the left side of the vehicle, representing the longitudinal
and lateral directions of the vehicle, respectively. In addition,
in Fig. 6: u and v represent the longitudinal and lateral
velocities of the vehicle, ωr is the yaw angular velocity, β is
the sideslip angle, and δf represents the front-wheel steering
angle.

FIGURE 6. Vehicle dynamics model.

The dynamic equations of vehicle can be expressed as
follows: {∑

Fy = m (ωru+ v̇)∑
Mz = Izω̇r

(9)

where Fy represents the total lateral force at the vehicle’s
center of mass, Mz denotes the total moment at the vehicle’s
center of mass, m is the vehicle mass, and Iz denotes the
moment of inertia about the z-axis of the vehicle. Assuming
a linear relationship between lateral force and slip angle, the
two resultant forces in (9) can be expressed as:{∑

Fy = K1α1 + K2α2∑
Mz = aK1α1 − bK2α2

(10)

where K1 and K2 represent the front and rear tire cornering
stiffness, α1 and α2 represent the front and rear tire slip angle,
respectively, and β represents the sideslip angle. Considering
the small values of the sideslip angle β during vehicle motion,
α1 and α2 can be further expressed as:

α1 = β + a
ωr

u
− δ1

α2 = β − b
ωr

u

(11)

Combining (9) to (11), the matrix description of the linear
2-DOF vehicle model can be derived as follows:

[
v̇
ω̇r

]
=


K1 + K2

mu
aK1 − bK2

mu
− u

aK1 − bK2

uIz

a2K1 + b2K2

uIz

[ v
ωr

]

+

[
−
K1
m

−
aK1
Iz

]
δf (12)

B. LATERAL MOTION STATE MODEL
The vehicle tracking model serves as the foundation for
studying trajectory tracking, and the tracking error model
is one of the commonly used models in intelligent vehi-
cle trajectory tracking. In intelligent vehicle systems, the
lateral error and heading angle error between the vehicle
and the target trajectory are obtained. These errors are then
utilized to adjust the vehicle’s operating posture by control-
ling the accelerator pedal, brake pedal, and steering wheel
angle, thereby meeting driving requirements. The trajectory
planning incorporates road information, and the lateral error

VOLUME 12, 2024 36087



L. Zhong et al.: 4WS Intelligent Fire-Fighting Robot Trajectory Tracking Control

model is applied to achieve trajectory tracking [29]. Fig. 7
illustrates the vehicle tracking error model.

FIGURE 7. Schematic diagram of the vehicle tracking error model.

In Fig. 7, the point o’ represents the projection of the
vehicle’s center of mass on the centerline of the reference
path. The lateral error, denoted as ed, is the distance from
the vehicle’s center of mass to the projection point. At this
moment, the heading angle deviation eφ and the road curva-
ture ρr at the point o’ can be expressed as:

eφ = φ − φr (13)

ρr =
2 sin (δf)
a+ b

(14)

where φ represents the heading angle of the current vehicle
position, φr is the reference heading angle of the vehi-
cle at the time corresponding to the reference trajectory
point o’.

At this moment, the vehicle’s velocity υ̇ at point o’ can be
defined as:

υ̇ =
1

1 − ρr

[
u cos

(
eφ
)
− v sin

(
eφ
)]

(15)

At this juncture, the lateral error and heading angle error
of the vehicle can be expressed as:

ėd = u sin
(
eφ
)
+ v

ëd = uėφ + v̇
ėφ = φ̇ − ρrṡ
ëφ = φ̈

(16)

Setting e =
[
edėdeφ ėφ

]T, the state-space equations for
trajectory tracking error can be derived from (13) to (16) as
follows:

ė = Ae+ Bη + Cφ + D (17)

where A, B, and C can be further expressed as:

A =


0 1 0 0
0 a1 a2 a3
0 0 0 1
0 a4 a5 a6

 , B =


0
b1
0
b2

 , C =


0
c1
0
c2

 (18)

A, B, and C are determined by the vehicle’s inherent char-
acteristics, where each symbol is defined as follows:

a1 =
(K1 + K2)

mu
, a2 = −

(K1 + K2)

m
, a3 = −

aK1 − bK2

mu

a4 = −
aK1 − bK2

Izu
, a5 = −

bK2 − aK1

Iz
,

a6 = −
a2K1 − b2K2

Izu

b1 = −
K1

m
, b2 = −

aK1

Iz
, c1 =

aK1 − bK2

mu
− u,

c2 =
a2K1 + b2K2

Izu
(19)

In accordance with specific driving conditions, the vehicle
measures its pose information and reference pose informa-
tion. Utilizing a control algorithm, the front wheel steering
angle and longitudinal vehicle speed are determined to adjust
the actual pose of the vehicle. The objective of trajectory
tracking is tominimize both lateral distance error and heading
angle error, approaching zero, to meet the requirements of
planned trajectory tracking.

IV. CONTROLLER DESIGN
The designed four-wheel steering integrated controller with
adaptive cornering stiffness (A4WS) primarily consists of an
AFS controller and an ARS controller. The logic diagram of
the A4WS controller is illustrated in Fig. 8. It is noteworthy
that the values K1 and K2 in the final solution for δf should
be replaced with the corrected cornering stiffness parameters
K̂1 and K̂2 obtained from the cornering stiffness estimation
model using BP neural network.

A. AFS CONTROLLER DESIGN
As an inherently highly nonlinear and strongly coupled
system, automobiles operate in complex environmental con-
ditions, making them susceptible to influences such as lateral
wind and uneven road surfaces during lateral motion [30].
Sliding mode variable structure control, a form of nonlinear
control, involves the design of a sliding mode function u(t)
and a sliding mode surface s(t). The control principle is to
drive a certain spatial state of the controlled system under the
action of the sliding mode controller to a pre-designed sliding
mode surface. Under the influence of the control law, the
points transferred to the sliding mode surface move smoothly
on the surface, and the system reaches the origin in finite time.
The control is not affected by the inherent parameters of the
controlled object. Therefore, sliding mode variable structure
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FIGURE 8. A4WS controller logic block diagram.

control exhibits higher robustness compared to other com-
mon control systems. Successful implementation of sliding
mode variable structure control typically requires the rational
design of slidingmode surfaces and slidingmode functions to
achieve desirable dynamic performance and robustness [11].

Define a new system error model:

x1 = ed, x2 = ėd (20)

Eliminate lateral error through adjustments to the steering
wheel. As defined earlier:{

ẋ1 = x2
ẋ2 = f (x)+ g (x) η + dt

(21)

where dt represents the unknown disturbance term in vehicle
trajectory tracking. As deduced from the dynamic equations
derived in the preceding section:{

f (x) = a1ėd + a2eφ + a3eėφ + c1φ
g (x) = b1

(22)

The primary objective of trajectory tracking is to eliminate
lateral error and heading angle error to achieve tracking of the
desired trajectory. Therefore, the sliding surface function can
be defined as:

s = x1 + λx2 (23)

where λ represents the sliding surface coefficient. The slid-
ing mode motion comprises two processes: the approaching
motion and the sliding motion. Employing an approach-
ing law can enhance the dynamic performance of the

approaching motion. To ensure rapid convergence while
mitigating chattering, an exponential approaching law is
selected, expressed as:

ṡ = −ksgn (s) , k > 0 (24)

where k represents the approaching law coefficient. To ensure
that the system moves on the sliding mode surface, it is
necessary to satisfy the stability conditions of the system.
As derived from (22) and (23), along with the approaching
law, the output of the vehicle’s front wheel steering angle can
be expressed as:

δf = −g−1
[
λ−1x22 + f (x)+ ksgn (s)+ d (t)

]
(25)

The neural network-based sliding mode variable structure
algorithm can directly output control signals based on lateral
error and heading angle deviation state information. It can
also serve as vehicle state parameters, optimizing parameters
for other control algorithms to enhance control precision.
Consequently, it can approximate unknown modeling errors
and external disturbances, improving the robustness and
control accuracy of intelligent vehicle lateral control strate-
gies [31]. Regarding the sum of unknown errors andmodeling
errors, denoted as dt , it profoundly affects the accuracy of
vehicle lateral tracking. By minimizing the impact of dt
on lateral error, the controller achieves a relatively high
level of precision. The RBF neural network algorithm pos-
sesses strong nonlinear fitting capabilities, constituting a
three-layer feedforward network with simple learning rules
and rapid convergence. It is commonly employed to optimize
parameters for other control algorithms, enhancing algorithm
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precision [32]. The input-output algorithm for the RBF net-
work is expressed as:

hj = exp

(∥∥x− cj
∥∥

2b2j

)
(26)

f = W∗Th (x)+ ε (27)

where x represents the grid input, j denotes the j-th grid input
in the hidden layer of the network, h=[hj]T represents the
output of the Gaussian basis function,W∗ is the ideal network
weight, ε is the network approximation error with ε ≤ εN, f is
the grid output. When the grid input is set to x = [edėd]T, the
control law is given by:

ϑ = −g−1
[
λ−1x22 + f (x)+ ksgn (s)+ d̂

]
(28)

Substituting the new control law (28) into (23) yields:

ṡ = λx−1
2

[
−ksgn (s)− d̃

]
(29)

where, let d̃ (t) = W̃
T
h (x)+ ε, W̃ = Ŵ −W .

Define the Lyapunov function as:

L =
1
2
s2 +

1
2
ςW̃W̃

T
(30)

where, ς > 0. Choosing the adaptive law ˙̂W =
1
ς
h (x) sλ, the

expression can be obtained:

L̇ = sλx−1
2 (−ksgn (s)− ε) (31)

As the approximation error can be sufficiently constrained,
it can be deduced that L̇ ≤ 0. Therefore, the sliding mode
control system based on neural networks is stable. In other
words, under the optimization of the neural network for the
sliding mode control strategy, the front wheel steering angle
output can still reach the desired state.

B. ARS CONTROLLER DESIGN
The primary structure of the fuzzy control strategy for
rear-wheel steering utilizes vehicle speed (SD), front-wheel
steering angle, and center of gravity lateral deviation as input
parameters, with rear-wheel steering angle as the output,
as illustrated in Fig. 9.

FIGURE 9. Block diagram of the rear-wheel steering fuzzy controller
structure.

1) DEFINE THE VARIABLES
The typical speed of a vehicle during normal operation gen-
erally does not exceed 120 km/h. Therefore, the selected
speed range is [0, 120], divided into four intervals: {Zero,
Low, Medium, High}, denoted as {ZO, PS, PM, PB}. The
mechanical design range for the front-wheel steering angle

is usually −25◦ to 25◦. Hence, the defined range for the
front-wheel steering angle is [−25, 25], subdivided into five
intervals: {Negative Large, Negative Small, Zero, Positive
Small, Positive Large}, denoted as {NB, NS, ZO, PS, PB}.
The boundary of the center of gravity lateral deviation is
directly related to the road friction coefficient. The condition
producing the maximum center of gravity lateral deviation
is when the road has the maximum friction force. The sign of
the center of gravity lateral deviation is related to the vehicle’s
direction. To simplify the complexity of fuzzy rules, the input
center of gravity lateral deviation is taken as its absolute
value. Thus, the defined range for the center of gravity lateral
deviation is [0, 10], divided into four intervals: {Zero, Low,
Medium, High}, denoted as {ZO, PS, PM, PB}. As this work
focuses on high-speed limit conditions, when the speed is
greater than 35 km/h, the rear-wheel steering direction aligns
with the front wheels and does not exceed 5◦ [33]. Therefore,
the defined range for the rear-wheel steering angle is [−5 5],
subdivided into five intervals: {Negative Large, Negative
Small, Zero, Positive Small, Positive Large}, denoted as
{NB, NS, ZO, PS, PB}.

2) FUZZIFICATION
After analyzing the characteristics of each membership func-
tion, a trapezoidal membership function curve is selected,
as illustrated in Fig. 10.

3) DEVELOPMENT OF FUZZY RULES AND DEFUZZIFICATION
The 4WS vehicle possesses the advantages of high maneu-
verability in low-speed working modes and stability in
high-speed working modes. Therefore, in low-speed turning
conditions, to enhance the vehicle’s agility, an inverse-phase
control mode with opposite steering directions of the front
and rear wheels is adopted, resulting in larger rear-wheel
steering angles. In extreme conditions, to ensure the stability
of the vehicle during turns, the front and rear wheels adopt an
in-phase control mode with the same steering directions, out-
putting larger rear-wheel steering angles. Ultimately, fuzzy
rear-wheel steering angle parameters are obtained. The spe-
cific fuzzy rules are presented in Table 1. In this study,
the commonly used center of gravity method is chosen for
defuzzification. Fuzzy inference is performed based on the
formulated fuzzy rules, and then, through defuzzification,
the corresponding rear-wheel steering angle value δr can be
determined.

V. DISCUSSION AND ANALYSIS OF SIMULATION
RESULTS
To validate the superiority of the proposed 4WS trajectory
tracking controller, a comparative study is conducted using
the Matlab/Simulink-Carsim co-simulation platform. A com-
parison is made with a 4WS trajectory tracking controller
employing constant cornering stiffness. The vehicle param-
eters involved are presented in Table 2. Three simulated test
scenarios are designed based on the vehicle’s typical driving
conditions in this work. Test scenario 1: The road surface is
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FIGURE 10. Membership Function Curves: a) Speed, b) Rear-wheel
steering angle, c) Front-wheel steering angle, and d) Sideslip angle.

covered with ice and snow, with a road friction coefficient
of approximately 0.3, and the vehicle speed is set at 60 km/h.
Test scenario 2: The road surface is dry asphalt, with a friction
coefficient of around 0.8, and the vehicle speed is maintained
at 60 km/h. Test scenario 3: The road surface remained dry
asphalt, but the vehicle speed is increased to 100 km/h.

TABLE 1. Fuzzy rule control table.

TABLE 2. Vehicle parameters.

This work primarily focuses on the trajectory tracking
control performance of the designed controller. Therefore,
the path planning component is not considered. Instead,
an existing trajectorymodel is directly chosen as the reference
trajectory, expressed as follows [15]:

yo (x) =
p1
2

[1 + tanh (γ1)] −
p2
2

[1 + tanh (γ2)]

σo (x) = arctan

 p1
(

1
cosh(γ1)

)2 (
1.2
τ1

)
−p2

(
1

cosh(γ2)

)2 (
1.2
τ2

)
 (32)

where yo is the reference value for the lateral position of
the vehicle during driving, and x is the reference value for
the longitudinal position, σo is the heading angle reference
value. Taking γ1 = 0.096(x-60)-1.2, γ2 = 0.096(x-120)-1.2,
τ1 = τ2 = 25 and p1 = p2 = 3.5.

A. TEST SCENARIO 1: LOW SPEED ICE AND SNOW ROAD
It can be seen from Fig. 11 that under the low-speed icy road
conditions, the proposedA4WS controller enables the vehicle
to achieve higher tracking accuracy. As depicted in Fig. 12,
the maximum lateral deviation obtained with the 4WS con-
troller is 0.2441 m, while with the A4WS controller, the
maximum lateral deviation is reduced to0.1607 m, a reduc-
tion of 34.17%. Fig. 13 reveals that the maximum yaw rate
based on the A4WS controller is 0.2309 rad·s−1, compared to
0.2605 rad·s−1 with the 4WS controller, indicating a decrease
of 11.36% in the maximum yaw rate.

Fig. 14 shows the real-time estimation of the front and
rear axle cornering stiffness by the BP cornering stiffness
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FIGURE 11. Lateral displacement under test scenario 1.

FIGURE 12. Lateral deviation under test scenario 1.

FIGURE 13. Yaw rate under test scenario 1.

estimator under test scenario 1. From this figure, it can be
seen that the two main correction points are at the two inflec-
tion points of the double shift peak, at which point the tire
nonlinearity is strongest. It is worth noting that both cornering
stiffness correction curves exhibited significant fluctuations
at the beginning. This might be attributed to the initial lon-
gitudinal speed control fluctuations, leading to vertical load
transfer between the front and rear wheels. In this scenario,
the A4WS controller not only enhances trajectory tracking
accuracy but also exhibits a faster convergence response of
the yaw rate to its steady-state value.

B. TEST SCENARIO 2: LOW SPEED DRY ASPHALT ROAD
It can be seen from Fig. 15 that under the low-speed dry
asphalt road conditions, both the proposed A4WS con-
troller and the 4WS controller demonstrate a high level of
tracking accuracy. As shown in Fig. 16, the maximum lateral

FIGURE 14. Cornering stiffness under test scenario 1: a) Front axle, and b)
Rear axle.

FIGURE 15. Lateral displacement under test scenario 2.

deviation obtainedwith the 4WS controller is 0.0584m,while
with the A4WS controller, the maximum lateral deviation is
reduced to 0.0277 m, a reduction of 52.57%. Fig. 17 indicates
that the maximum yaw rate achieved with the 4WS controller
is 0.2143 rad·s−1, whereas with the A4WS controller, the
maximum yaw rate is 0.2098 rad·s−1, both being relatively
small.

Fig. 18 shows the real-time estimated front and rear axle
cornering stiffness by the BP cornering stiffness estimator
under test scenario 2. Compared to test scenario 1, the ampli-
tude of the cornering stiffness correction curve fluctuations
is smaller. This is because the road conditions are better,
increasing the threshold for tire entry into the nonlinear
working range. Under this scenario, the A4WS controller and
the 4WS controller exhibit similar control effectiveness.
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FIGURE 16. Lateral deviation under test scenario 2.

FIGURE 17. Yaw rate under test scenario 2.

FIGURE 18. Cornering stiffness under test scenario 2: a) Front axle, and b)
Rear axle.

C. TEST SCENARIO 3: HIGH SPEED DRY ASPHALT ROAD
It can be seen from Fig. 19 that under high-speed dry asphalt
road conditions, both the proposed A4WS controller and
the 4WS controller exhibit noticeable deviations when the

FIGURE 19. Lateral displacement under test scenario 3.

lateral distance from the reference trajectory is at its maxi-
mum. As shown in Fig. 20, the maximum lateral deviation
obtained with the 4WS controller is 0.2937 m, while with the
A4WS controller, the maximum lateral deviation is reduced
to 0.1961 m, a reduction of 33.23%. Fig. 21 demonstrates
that the maximum yaw rate achieved with the 4WS controller
is 0.4338 rad·s−1, whereas with the A4WS controller, the
maximum yaw rate is reduced to 0.3750 rad·s−1, a decrease
of 13.55%.

FIGURE 20. Lateral deviation under test scenario 3.

FIGURE 21. Yaw rate under test scenario 3.

Fig. 22 presents the real-time estimated front and rear axle
lateral stiffness by the BP cornering stiffness estimator under
test scenario 3. Compared to test scenario 2, the amplitude
of the cornering stiffness correction curve fluctuations sig-
nificantly increases. This is because the increase in vehicle
speed further enhances the tire’s nonlinearity during steering,
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FIGURE 22. Cornering stiffness under test scenario 3: a) Front axle, and b)
Rear axle.

enlarging the error between linear tire force and actual tire
force. Under this scenario, the A4WS controller with variable
cornering stiffness correction ensures both tracking the ref-
erence trajectory and maintaining excellent vehicle handling
stability.

VI. CONCLUSION
This work proposes a trajectory tracking control method for
4WS intelligent vehicles that takes into consideration the
adaptive cornering stiffness of tires. This method aims to
enhance the accuracy and operational adaptability of vehicle
trajectory tracking, particularly in extreme driving condi-
tions. The main conclusions are summarized as follows:

1) The influence of vertical load and road friction coef-
ficient on the nonlinear characteristics of tire lateral
forces is analyzed based on the magic formula. A tire
cornering stiffness estimation model is established
using a BP neural network. Test results indicated
that the established tire cornering stiffness estimation
model has an estimation mean deviation within 10%
for the test set, with a mean estimation error percentage
of 2.52%.

2) Based on the 2-DOF vehicle dynamics model and the
trajectory tracking error model, the state equations for
trajectory tracking are established. A trajectory track-
ing slidingmode controller for active front-wheel steer-
ing is designed. Additionally, an RBF is employed to
further optimize system errors, creating an RBF-SMC
AFS controller capable of real-time correction of cor-
nering stiffness. Considering the impact of the center

of gravity lateral deviation on vehicle stability, a fuzzy
controller for ARS is designed. The integration of the
AFS controller and the ARS fuzzy controller resulted
in the development of the A4WS integrated controller.

3) A co-simulation model is established using Carsim
and Matlab/Simulink. Simulation results indicate that,
compared to the 4WS controller, the intelligent vehicle
based on the A4WS controller can dynamically adjust
the front and rear axle cornering stiffness according to
driving conditions in real-time. This adjustment sig-
nificantly enhances the precision of vehicle trajectory
tracking and handling stability. Particularly, it proves
valuable for enhancing the adaptability of intelligent
vehicle control systems, especially at high speeds or
low road friction conditions.
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