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ABSTRACT Numerous factors, including project complexity, team size, customer collaboration, and
development pace, must be taken into consideration while choosing a software development methodology.
This problem is a multi-criteria decision-making dilemma since the many criteria frequently fight with
one another and fluctuate in priority. In order to systematically select the best methodology, the multi-
criteria decision-making technique assists in quantifying and assessing these factors. This ensures that
decisions are made in a fair and informedmanner within the context of the challenging software development
environment. Thus, in this article, we develop a multi-criteria decision-making approach in the setting of
bipolar complex fuzzy information for the prioritization and selection of optimal software development
methodology. For this, we first, invent logarithmic operational laws and associated results for the bipolar
complex fuzzy set. Then, we invent four aggregation operators by utilizing these logarithmic operational
laws under the structure of bipolar complex fuzzy information that is, logarithmic bipolar complex fuzzy
weighted averaging, logarithmic bipolar complex fuzzy ordered weighted averaging, logarithmic bipolar
complex fuzzy weighted geometric, and logarithmic bipolar complex fuzzy ordered weighted geometric.
After that, we solve a multi-criteria decision-making dilemma related to the prioritization and selection
of software development methodology by considering the artificial data in the setting of bipolar complex
fuzzy information and achieve that ‘‘Agile’’ is the optimal software development methodology among the
considered four different software development methodologies, i.e., Waterfall, DevOps, Spiral, and Agile.
In the last, we investigate the comparison study of the deduced theory to a few current theories to reveal the
importance and supremacy of the constructed theory.

INDEX TERMS Software development methodology, logarithmic operations, bipolar complex fuzzy set,
MCDM.

I. INTRODUCTION
When discussing planning, creating, testing, and managing
software systems, the term ‘‘software development method-
ology (SDM)’’ is used. From the inception of the first
idea through the ultimate deployment and continuous main-
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tenance, it includes a set of ideas, techniques, and rules
that direct the whole software development process. Over
time, many approaches have been created to accommo-
date various project requirements, team sizes, technological
difficulties, and organizational demands. For a software
project to be completed successfully, each methodology out-
lines a certain set of tasks, roles, and responsibilities. The
capacity of software development methodologies to offer
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structure and predictability to the sometimes intricate and
varied process of building software is what makes them
so important. Methodologies aid teams in remaining orga-
nized, streamlining communication, and efficientlymanaging
resources by giving a defined structure for project manage-
ment and cooperation. They help to reduce the risk of project
failure or delays by helping to define reasonable expec-
tations, estimate project durations, and allocate resources.
Furthermore, approaches provide a methodical approach to
problem-solving and decision-making, guaranteeing that the
software output satisfies the necessary quality standards and
functional objectives. Saeed et al. [1] analyzed the approaches
to software development. Chandra [2] and Despa [3] investi-
gated the comparison of numerous SDMs.

Software development methodologies also improve team
communication and collaboration. By outlining roles and
duties, they encourage responsibility and open channels
of communication among the team. When teams are dis-
persed across several locations or when numerous teams
work together on the same project, this is very important.
Furthermore, methods make it possible for development pro-
cesses to be continuously improved. Teams may improve
their approach and increase efficiency over time by reflecting
on previous projects, discovering bottlenecks, and iterating
on procedures. Because they offer structure, order, and pre-
dictability, software development techniques are essential to
the software development lifecycle. They make sure that
resources are used efficiently, communication is simplified,
and projects are properly managed. The effective delivery of
software products that satisfy user expectations and quality
standards is made possible by techniques, which promote
cooperation, problem-solving, and continual development.
Geambasu et al. [4] devised the factors that influence the
selection of SDM. Hijazi et al. [5] investigated risk manage-
ment in various SDMs. A conceptual foundation related to
the SDMs was discussed by Gonzalez-Perez and Henderson-
Sellers [6]. Blum [7] investigated a taxonomy of SDM.
Vavpotic and Bajec [8] deduced the evaluation of technical
and social aspects of SDMs.

Crisp sets, a key idea in traditional set theory, have sev-
eral drawbacks. Their binary membership function, which
either includes or excludes items without taking degrees of
belonging into account, makes it difficult to handle ambiguity
or vagueness in real-world circumstances. Furthermore, crisp
sets cannot reflect overlapping or ambiguous borders between
sets, which are frequent in complex systems. Zadeh [9]
developed the fuzzy set (FS) theory to overcome these con-
straints by enabling elements to have degrees of belonging
ranging from 0 to 1. FS better represents slow transitions
and partial belongingness because they can handle ambiguity
and vagueness. They are therefore suitable for simulating
real-world scenarios where elements may to variable degrees
belong to multiple sets. FS offers a more realistic frame-
work for deliberation and reasoning, notably in domains like
artificial intelligence, control systems, and linguistics, by per-

mitting the representation of fuzzy or ambiguous notions.
Wang and Lin [10] initiated the multi-criteria decision-
making (MCDM) technique within the fuzzy structure for
the selection of configuration items for software develop-
ment. Chen [11] discussed risk software development by
employing FS. Lee et al. [12] initiated a novel algorithm for
employing FS for assessing risk in software development.
Hapke et al. [13] discussed a scheduling system for software
development under a fuzzy environment. Poulik et al. [14]
devised a crossroads ranking relying on the Randic index
graph under fuzzy theory. Moreover, Chen et al. [15] dis-
cussed linguistic Z-number, Liu [16] assessed the logistics
efficiency of agriculture produced under intuitionistic FS,
and Das et al. [17] devised φ-tolerance competition graphs
under picture fuzzy information along with its applications.
Zhang [18] devised the notion of the bipolar fuzzy set
(BFS) by expanding the notion of FS. BFS better repre-
sents human opinion, as BFS interprets both positive and
negative aspects (dual aspects) at a time. In the notion of
BFS, there is a positive degree of belonging placed in [0, 1]
and negative degree of belonging placed in [−1, 0] of each
element. Riaz et al. [19] deduced sine trigonometric aggrega-
tion operators (AOs) within bipolar fuzzy (BF) information.
Jana et al. [20] devised logarithmic AOs in the setting of
BFS. Jana et al. [21] deduced Dombi prioritized AOs for the
BF set. Akram [22] initiated bipolar fuzzy graphs (BFGs)
and Samanta and Pal [23] devised irregular BFGs. Rash-
manlou et al. [24] devised a product of BFGs and Akram
and Akmal [25] devised an application of BFGs. Poulik and
Ghorai [26] devised the notion of connectivity in BF inci-
dence graphs. The Randic index of BFGs was deduced by
Poulik et al. [27].

Ramot et al. [28] deduced the notion of the complex fuzzy
set (CFS) by expanding the notion of FS (by changing [0, 1]
to a complex plane’s unit disc). The structure of CFS was
invented byRamot et al. [28] in themodel of polar formwhich
represents two-dimensional information. Afterward, in 2011,
Tamir et al. [29] deduced a novel approach to CFS in the carte-
sian form by transforming the complex plane’s unit disc to the
complex plane’s unit square. The arithmetic and geometric
AOs for complex fuzzy (CF) information were devised by
Bi et al. [30] and Bi et al. [31] respectively. Zhang et al. [32]
investigated the properties of operation under CF informa-
tion. Hu et al. [33] discussed the continuity of CF operations.
Rehman [34] established probability AOs in the model of
CFS. For tackling two-dimensional information with dual
aspects (positive and negative) at a time, Mahmood and
Rehman [35] devised the notion of the bipolar complex fuzzy
set (BCFS). In the notion of BCFS, there is a positive degree
of belongingwhich is placed in the first quadrant of a complex
plane’s unit square, and a negative degree of belonging which
is placed in 3rd quadrant of a complex plane’s unit square
of each element. Rehman and Mahmood [36] employed the
notion of BCFS in pattern recognition and medical diagnosis.
Mahmood and Rehman [37] discussed Dombi AOswithin the
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bipolar complex fuzzy (BCF) set. The Aczel-Alsina AOs and
Maclaurin symmetric mean operators in the setting of BCF
set were discussed by Mahmood et al. [38] and Mahmood
and Rehman [39]. The digital technology implementation
under the setting of BCFS was devised by Mahmood and
Rehman [40].

It is possible to obtain comparably accurate estimates
by using logarithmic operations, which are frequently dis-
regarded in favor of algebraic operations. However, only
a small amount of research has been done on the use of
logarithmic operations for coping with dual aspects and no
research has been done on the use of logarithmic opera-
tions for tackling 2nd dimension (extra fuzzy information).
Also, there is no research on the utilization of logarith-
mic operations for tackling dual aspects and extra fuzzy
information at the same time. Further, the selection and
prioritization of software development methodology is an
MCDM dilemma since various criteria are involved. In many
situations, the criteria of software development methodolo-
gies can have dual aspects (positive and negative aspects)
alongwith extra fuzzy information. For example, the criterion
‘‘development speed’’ has dual aspects ‘‘high development
speed’’ and ‘‘low development speed’’ along with extra
fuzzy information that is its positive and negative effects.
There is no research, which considers the dual aspects and
related extra fuzzy information of criteria of the software
development methodologies. Inspired by these research gaps,
in this script, we deduce an MCDM approach by employing
logarithmic AOs within BCFS for the selection and priori-
tization of software development methodology. Through the
deduced MCDM approach, one can cope with any MCDM
dilemma, where criteria contain dual aspects and extra fuzzy
information. The main contribution of this script is inter-
preted as We investigate logarithmic operations for BCF
information that can fill in the gaps left by algebraic opera-
tions while capturing the interrelationships across numerous
BCFSs. Based on logarithmic operations for BCF infor-
mation, we invent AOs such as logarithmic BCF weighted
averaging (L-BCFWA), logarithmic BCF ordered weighted
averaging (L-BCFOWA), logarithmic BCFweighted geomet-
ric (L-BCFWG), and logarithmic BCF ordered weighted geo-
metric (L-BCFOWG) and discuss related axioms. Compared
to traditional methods, BCF logarithmic aggregation oper-
ators have several advantages: they compress large differ-
ences, highlight smaller values, manage diverse ranges well,
and incorporate decision-maker attitudes through weighting.
These features enable a more flexible and nuanced represen-
tation of complex data and preferences in scenarios such as
information fusion and decision-making. After that, we con-
struct an approach to MCDMwithin the structure of BCFS to
handle MCDM dilemmas. Employing the invented approach
of MCDM, we discuss the case study ‘‘Selection of software
development methodology’’. We investigate the comparison
study of the deduced theory to a few current theories to
reveal the importance and supremacy of the constructed
theory.

The rest of the script is managed as: The notion of BCFS,
score and accuracy function, and fundamental operations of
BCFS are recalled in Section II. In Section III, we explore
a few new logarithmic operational laws (LOLs) based on
BCFNs and talk about their properties. In Section IV,
we invent logarithmic AOs based on the invented LOLs
in the setting of BCF information. These AOs are L-
BCFWA, L-BCFOWA, L-BCFWG, and L-BCFOWG oper-
ators. In Section V, we invent the MCDM approach and
then discuss a case study related to the software development
methodology. We also have a comparison study in Section V.
In Section VI, we interpret the conclusion.

II. PRELIMINARIES
The notion of BCFS, score and accuracy function, and funda-
mental operations of BCFS are recalled in this section of the
article.
Definition 1 [35]: The underneath structure

=
{(

, 5P− ( ) , 5N− ( )
)

| ∈ D
}

designated the structure of BCFS, where 5P− ( ) =

5RP− ( ) + ι 5IP− ( ) is a positive degree of belonging
and 5N− ( ) = 5RN− ( ) + ι 5IN− ( ), is a negative
degree of belonging, with 5RP− ( ) , 5IP− ( ) ∈ [0, 1]
and 5RN− ( ) , 5IN− ( ) ∈ [−1, 0]. The bipolar CF
number (BCFN) is revealed as =

(
5P− , 5N−

)
=(

5RP− + ι5IP− , 5RN− + ι 5IN−

)
Definition 2 [37]:Under a BCFN =

(
5P− , 5N−

)
=(

5RP− + ι5IP− , 5RN− + ι 5IN−

)
SF ( )

=
1
4

(
2+5RP− +5IP− +5RN− +5IN−

)
, SF ∈ [0, 1]

(1)

AF ( )

=
5RP− +5IP− −5RN− −5IN−

4
, AF ∈ [0, 1] (2)

are score and accuracy values of respectively. By employing
Eq. (1) and Eq. (2), we have
1. if SF ( 1) < SF ( 2), then 1 < 2;
2. if SF ( 1) > SF ( 2), then 1 > 2;
3. if SF ( 1) = SF ( 2), then

(1) if AF ( 1) < AF ( 2) , then 1 < 2;
(2) if AF ( 1) > AF ( 2) , then 1 > 2;
(3) if AF ( 1) = AF ( 2) , then 1 = 2.
Definition 3 [37]: Under two BCFNs 1 =

(5P− 1 , 5N− 1 ) = (5RP− 1 + ι5IP− 1 , 5RN− 1 +

ι 5IN− 1 ) and 2 = (5P− 2 , 5N− 2 ) = (5RP− 2 +

ι5IP− 2 , 5RN− 2 + ι 5IN− 2 ) and b > 0, we have

1. 1 ⊕ 2

=

 5RP− 1 + 5RP− 2 − 5RP− 15RP− 2

+ι
(
5IP− 1 + 5RP− 2 − 5IP− 15IP− 2

)
,

−
(
5RN− 15RN− 2

)
+ ι

(
−
(
5IN− 15IN− 2

))


2. 1 ⊗ 2
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=

 5RP− 15RP− 2 + ι 5IP− 15IP− 2 ,

5RN− 1 + 5RN− 25RN− 1 + 5RN− 2

+ι
(
5IN− 1 + 5IN− 25IN− 1 + 5IN− 2

)


3. b 1

=

1 −
(
1 − 5RP− 1

)b
+ ι

(
1 −

(
1 − 5IP− 1

)b)
,

−
∣∣5RN− 1

∣∣b + ι
(
−
∣∣5IN− 1

∣∣b)


4. 1
b

=

(( (
5RP− 1

)b
+ι
(
5IP− 1

)b
,

−1+
(
1+5RN− 1

)b
+ι

(
−1+

(
1+5IN− 1

)b)
))

Theorem 1 [37]: Under two BCFNs, 1 =

(5P− 1 , 5N− 1 ) = (5RP− 1 + ι5IP− 1 , 5RN− 1 +

ι 5IN− 1 ) and 2 = (5P− 2 , 5N− 2 ) = (5RP− 2 +

ι5IP− 2 , 5RN− 2 + ι 5IN− 2 ), and b, b1, b2 > 0, then
1. 1 ⊕ 2 = 2 ⊕ 1

2. 1 ⊗ 2 = 2 ⊗ 1

3. b ( 1 ⊕ 2) = b 1⊕b 2

4. ( 1 ⊗ 2)
b

= 1
b

⊗ 2
b

5. b1 1 ⊕ b2 1 = (b1 + b2) 1

6. 1
b1 ⊗ 1

b2 = 1
b1+b2(

2
b1
)b2

= 2
b1b2 .

III. BCF LOGARITHMIC OPERATIONAL LAWS OF BCFS
AND BCFN
In this segment, we explore a few new logarithmic operational
laws (LOLs) based on BCFNs and talk about their properties.
The fundamental motivation behind this part is to interpret
new logarithmic AOs relying on BCF data. Clearly, logξ 1 is
not well-defined and logξ 0 has no meaning in the real num-
bers. Thus, here, we consider that ̸=0, where is a BCFN
and ξ ̸=1 in this manuscript.
Definition 4: Assume a BCFS =

{( , 5P− ( ), 5N− ( )) | ∈ D} = {( , 5RP− ( ) +

ι 5IP− ( ) , 5RN− ( )+ ι 5IN− ( )) | ∈ D} over D, then
the LOL of BCFS is deduced as

logξ ( )

=

{(
, 1 − logξ5P− ( ) ,

− logξ

(
1 + 5N− ( )

)) | ∈ D

}

=


 ,


1 − logξ5RP− ( )

+ι
(
1 − logξ5IP− ( )

)
,

−logξ

(
1 + 5RN− ( )

)
+ι

(
−logξ

(
1 + 5IN−

)
( )
)

 | ∈ D


Noted that 0 < ξ ≤ min(5RP− ( ), 1+5RN− ( ), 5IP− ( ),
1+5IN− ( )) ≤ 1, ξ ̸=1. Obviously, logξ ( ) is again a BCFS.
Actually, from the definition of BCFS, we have that the real
and unreal parts of a positive degree of belonging hold the
underneath

5RP− : D → [0, 1] , i.e., ∀ ∈ D, 5RP− ( ) ∈ [0, 1]

5IP− : D → [0, 1] , i.e., ∀ ∈ D, 5IP− ( ) ∈ [0, 1]

Similarly, the real and unreal parts of the negative degree
of belonging hold the underneath

5RN− : D→ [−1, 0] , i.e., ∀ ∈D, 5RN− ( )∈ [−1, 0]

5IN− : D → [−1, 0] , i.e., ∀ ∈D, 5IN− ( )∈ [−1, 0]

If 0 < ξ ≤ min(5RP− ( ), 1+5RN− ( ), 5IP− ( ), 1+
5IN− ( )) ≤ 1, ξ ̸=1, then, the real and unreal parts of the
positive degree of belonging

1 − logξ5RP− : D →[0, 1], i.e.,

∀ ∈ D, 1 − logξ5RP− ( ) ∈ [0, 1]

1 − logξ5IP− : D → [0, 1] , i.e.,

∀ ∈ D, 1 − logξ5IP− ( ) ∈ [0, 1]

and the real and unreal parts of the negative degree of belong-
ing

− logξ

(
1 + 5RN−

)
: D → [−1, 0] , i.e.,

∀ ∈ D, − logξ

(
1 + 5RN− ( )

)
∈ [−1, 0]

− logξ

(
1 + 5IN−

)
: D → [−1, 0] , i.e.,

∀ ∈ D, − logξ

(
1 + 5IN− ( )

)
∈ [−1, 0]

Consequently,

logξ ( )

=
{(

, 1−logξ5P− ( ) , − logξ

(
1+5N− ( )

))
| ∈D

}
=

 ,


1 − logξ5RP− ( )

+ι
(
1 − logξ5IP− ( )

)
,

−logξ

(
1 + 5RN− ( )

)
+ι

(
−logξ

(
1 + 5IN−

)
( )
)
 | ∈ D


where, 0 < ξ ≤ min(5RP− ( ), 1 + 5RN− ( ), 5IP− ( ),
1 + 5IN− ( )) ≤ 1, ξ ̸=1 is a BCFS.
Definition 5: Assume a BCFN =

(
5P− , 5N−

)
=(

5RP− + ι 5IP− , 5RN− + ι 5IN−

)
over D, if,

logξ ( )

=



(
1 − logξ5P− ,

− logξ

(
1 + 5N−

))=


1 − logξ5RP−

+ι
(
1 − logξ5IP−

)
,

−logξ

(
1 + 5RN−

)
+ι

(
−logξ

(
1 + 5IN−

))


(
1 − log 1

ξ
5P− ,

−log 1
ξ

(
1 + 5N−

))=


1 − log 1

ξ
5RP−

+ι
(
1 − log 1

ξ
5IP−

)
,

−log 1
ξ

(
1 + 5RN−

)
+ι

(
−log 1

ξ

(
1 + 5IN−

))


with 0 < ξ ≤ min(5RP− , 1 + 5RN− , 5IP− , 1 +

5IN− ) ≤ 1, ξ ̸=1, and 0 < 1
ξ

≤ min(5RP− , 1 +

5RN− , 5IP− , 1+ 5IN− ) ≤ 1, ξ ̸=1 then logξ ( ) would
be revealed as a logarithmic operator and the value of logξ ( )
would be identified as logarithmic BCFN (L-BCFN). Further,
logξ (0) = 0, where 0 = (0 + ι 0, − 0 − ι 0) and ξ > 0 and
ξ ̸=1.
Definition 6: For two BCFNs 1 = (5P− 1 , 5N− 1 ) =

(5RP− 1 + ι5IP− 1 , 5RN− 1 + ι 5IN− 1 ) and 2 =

38166 VOLUME 12, 2024



Y. Song et al.: Selection of SDM by Employing a Multi-Criteria Decision-Making Approach

(5P− 2 , 5N− 2 ) = (5RP− 2 + ι5IP− 2 , 5RN− 2 +

ι 5IN− 2 ) and b > 0, we interpret the underneath LOLs

1. logξ 1 ⊕ logξ 2

=


logξ5RP− 1+logξ5RP− 2−logξ5RP− 1 logξ5RP− 2

+ι (logξ5IP− 1+logξ5IP− 2−logξ5IP− 1 logξ5IP− 2 )
−((−logξ (1+5RN− 1 )(−logξ (1+5RN− 2 ))))

+ι (−((−logξ (1+5IN− 1 )(−logξ (1+5IN− 2 )))))



=


1 − logξ5RP− 1 .logξ5RP− 2

+ι
(
1 − logξ5IP− 1 .logξ5IP− 2

)
−
((

−logξ

(
1+5RN− 1

) (
−logξ

(
1+5RN− 2

))))
+ι (−((−logξ (1+5IN− 1 )(−logξ (1+5IN− 2 )))))

 ;

2. logξ 1 ⊗ logξ 2

=



(
1 − logξ5RP− 1

) (
1 − logξ5RP− 2

)
+ι

(
1 − logξ5IP− 1

) (
1 − logξ5IP− 2

)
,(

logξ

(
1 + 5RN− 1

)
+ logξ

(
1 + 5RN− 2

)
+logξ

(
1 + 5RN− 1

)
logξ

(
1 + 5RN− 2

))
+ι

(
logξ

(
1 + 5IN− 1

)
+ logξ

(
1 + 5IN− 2

)
+logξ

(
1 + 5IN− 1

)
logξ

(
1 + 5IN− 2

))



=



(
1 − logξ5RP− 1

) (
1 − logξ5RP− 2

)
+ι

(
1 − logξ5IP− 1

) (
1 − logξ5IP− 2

)
,(

−1 +
(
1 − logξ

(
1 + 5RN− 1

))(
1 − logξ

(
1 + 5RN− 2

)) )
+ι

(
−1 +

(
1 − logξ

(
1 + 5IN− 1

))(
1 − logξ (1 + 5IN−2)

) )

 ;

3. blogξ 1

=


1 −

(
1 −

(
1 − logξ5RP− 1

))b
+ι
(
1 −

(
1 −

(
1 − logξ5IP− 1

))b)
,

−
∣∣logξ

(
1 + 5RN− 1

)∣∣b
+ι

(
−
∣∣logξ

(
1 + 5IN− 1

)∣∣b)



=


1 −

(
logξ5RP− 1

)b
+ι
(
1 −

(
logξ5IP− 1

)b)
,

−
∣∣logξ

(
1 + 5RN− 1

)∣∣b
+ι

(
−
∣∣logξ

(
1 + 5IN− 1

)∣∣b)

 ;

4.
(
logξ 1

)b

=


(
1 − logξ5RP− 1

)b
+ι
(
1 − logξ5IP− 1

)b
,

−1+

(
1 − logξ

(
1+5RN− 1

)b)
+ι

(
−1+

(
1−logξ

(
1+5RN− 1

))b)


The underneath theorem will express the association between
exponential operational law and LOL.
Theorem 2: Assume = (5P− , 5N− ) = (5RP− +

ι 5IP− , 5RN− + ι 5IN− ) as a BCFN and if 0 < ξ ≤

min(5RP− , 1 + 5RN− , 5IP− , 1 + 5IN− ) ≤ 1, ξ ̸=1,
then we have

1. ξ logξ ( ) =

2. logξ (ξ) =

Proof: Omitted.
Theorem 3: Under twoBCFNs = (5P− , 5N− ) =

(5RP− + ι 5IP− , 5RN− + ι 5IN− ), = 1, 2,
we have
1. logξ 1 ⊕ logξ 2 = logξ 2 ⊕ logξ 1
2. logξ 1 ⊗ logξ 2 = logξ 2 ⊗ logξ 1

Noted that 0 < ξ ≤ min(5RP− ( ), 1 + 5RN− ( ),
5IP− ( ), 1 + 5IN− ( )) ≤ 1 and ξ ̸=1.

Proof:
1. From Def (6), we have

logξ 1 ⊕ logξ 2

=



1 − logξ5RP− 1 logξ5RP− 2

+ι
(
1 − logξ5IP− 1 logξ5IP− 2

)
−

((
−logξ

(
1 + 5RN− 1

)(
−logξ

(
1 + 5RN− 2

))))
+ι

(
−

((
−logξ

(
1 + 5IN− 1

)(
−logξ

(
1 + 5IN− 2

)))))



=



1 − logξ5RP− 2 logξ5RP− 1

+ι
(
1 − logξ5IP− 2 logξ5IP− 1

)
−

((
−logξ

(
1 + 5RN− 2

)(
−logξ

(
1 + 5RN− 1

))))
+ι

(
−

((
−logξ

(
1 + 5IN− 2

)(
−logξ

(
1 + 5IN− 1

)))))


= logξ 2 ⊕ logξ 1

2. By employing Def (6), we achieve

logξ 1 ⊗ logξ 2

=



(
1 − logξ5RP− 1

) (
1 − logξ5RP− 2

)
+ι

(
1 − logξ5IP− 1

) (
1 − logξ5IP− 2

)
,(

−1 +
(
1 − logξ

(
1 + 5RN− 1

))(
1 − logξ

(
1 + 5RN− 2

)) )
+ι

(
−1 +

(
1 − logξ

(
1 + 5IN− 1

))(
1 − logξ (1 + 5IN−2)

) )



=



(
1 − logξ5RP− 2

) (
1 − logξ5RP− 1

)
+ι

(
1 − logξ5IP− 2

) (
1 − logξ5IP− 1

)
,(

−1 +
(
1 − logξ

(
1 + 5RN− 2

))(
1 − logξ

(
1 + 5RN− 1

)) )
+ι

(
−1 +

(
1 − logξ

(
1 + 5IN− 2

))(
1 − logξ

(
1 + 5IN− 1

)) )


= logξ 2 ⊗ logξ 1

Theorem 4: Under three BCFNs = (5P− , 5N− ) =

(5RP− +ι 5IP− , 5RN− +ι 5IN− ), = 1, 2, 3we
have
1.

(
logξ 1 ⊕ logξ 2

)
⊕ logξ 2

= logξ 1 ⊕
(
logξ 2 ⊕ logξ 3

)
2.

(
logξ 1 ⊗ logξ 2

)
⊗ logξ 2

= logξ 1 ⊗
(
logξ 2 ⊗ logξ 3

)
Noted that 0 < ξ ≤ min(5RP− ( ), 1+5RN− ( ), 5IP− ( ),
1 + 5IN− ( )) ≤ 1 and ξ ̸=1.

Proof: Trivial, so omitted here.
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Theorem 5: Under twoBCFNs =

(
5P− , 5N−

)
=(

5RP− + ι 5IP− , 5RN− + ι 5IN−

)
, = 1, 2,

and b1, b2, > 0, we have
1. b1

(
logξ 1 ⊕ logξ 2

)
= b1logξ 1 ⊕ b1logξ 2

2.
(
logξ 1 ⊗ logξ 2

)b1
=
(
logξ 1

)b1
⊗
(
logξ 2

)b1

3. b1logξ 1 ⊕ b2logξ 1 = (b1 + b2) logξ 1

4.
(
logξ 1

)b1
⊗
(
logξ 1

)b2
=
(
logξ 1

)(b1+b2)

5.
((
logξ 1

)b1
)b2

=
(
logξ 1

)b1b2

Noted that 0 < ξ ≤ min(5RP− ( ),
1 + 5RN− ( ), 5IP− ( ), 1 + 5IN− ( )) ≤ 1 and ξ ̸=1.

Proof:
1. By employing Def (6), we have

logξ 1 ⊕ logξ 2

=



(
logξ5RP− 1 + logξ5RP− 2

−logξ5RP− 1 logξ5RP− 2

)
+ι

(
logξ5IP− 1 + logξ5IP− 2

−logξ5IP− 1 logξ5IP− 2

)
−

((
−logξ

(
1 + 5RN− 1

)(
−logξ

(
1 + 5RN− 2

))))
+ι

(
−

((
−logξ

(
1 + 5IN− 1

)(
−logξ

(
1 + 5IN− 2

)))))




1 − logξ5RP− 1 logξ5RP− 2

+ι
(
1 − logξ5IP− 1 logξ5IP− 2

)
−

((
−logξ

(
1 + 5RN− 1

)(
−logξ

(
1 + 5RN− 2

))))
+ι

(
−

((
−logξ

(
1 + 5IN− 1

)(
−logξ

(
1 + 5IN− 2

)))))


b1
(
logξ 1 ⊕ logξ 2

)

=


1 −

(
logξ5RP− 1 logξ5RP− 2

)b1

+ι
(
1 −

(
logξ5IP− 1 logξ5IP− 2

)b1
)

,

−
∣∣(−logξ

(
1+5RN− 1

) (
−logξ

(
1+5RN− 2

)))∣∣b
+ι

(
−
∣∣(−logξ

(
1+5IN− 1

)
(−logξ (1+5IN− 2 )))

∣∣b)


= b1logξ 1 ⊕ b1logξ 2

The rest is similar and can be proved by employing Def (6).

IV. LOGARITHMIC AOS FOR BCFNS
Here, we invent logarithmic AOs based on the invented LOLs
in the setting of BCF information. These AOs are L-BCFWA,
L-BCFOWA, L-BCFWG, and L-BCFOWG operators.
Definition 7: Under the gathering of BCFNs =

(5P− , 5N− ) = (5RP− + ι 5IP− , 5RN− +

ι 5IN− ), = 1, 2, . . . , , with 0 < ξ ≤

min(5RP− , 1+5RN− , 5IP− , 1+5IN− ) ≤ 1 and

ξ ̸=1, the L-BCFWA operator is deduced as

L − BCFWA
(

1, 2, . . . ,
)

=
⊕

= 1

− logξ

Noted that =
(

−1, −2, . . . , −

)
is a weight

vector with the axiom that 0 ≤ − ≤ 1 and
∑

=1 − =

1.
Theorem 6: Under the gathering of BCFNs =

(5P− , 5N− ) = (5RP− + ι 5IP− , 5RN− +

ι 5IN− ), = 1, 2, . . . , , with 0 < ξ ≤

min(5RP− , 1+5RN− , 5IP− , 1+5IN− ) ≤ 1 and

ξ ̸=1, the usage of the L-BCFWA operator will deduce again
a BCFN and

L − BCFWA
(

1, 2, . . . ,
)

=





1 −

∏
=1

(
logξ 5RP−

)
−

+ι

1 −

∏
=1

(
logξ 5IP−

)
−

 ,

−

∏
=1

(∣∣∣logξ

(
1 + 5RN−

)∣∣∣) −

+ι

−

∏
=1

(∣∣∣logξ

(
1 + 5IN−

)∣∣∣) −






1 −

∏
=1

(
log 1

ξ
5RP−

)
−

+ι

1 −

∏
=1

(
log 1

ξ
5IP−

)
−

 ,

−

∏
=1

(∣∣∣∣log 1
ξ

(
1 + 5RN−

)∣∣∣∣) −

+ι

−

∏
=1

(∣∣∣∣log 1
ξ

(
1 + 5IN−

)∣∣∣∣) −




(3)

where, 0 < ξ ≤ min(5RP− , 1+5RN− , 5IP− , 1+

5IN− ) ≤ 1, ξ ̸=1, and 0 < 1
ξ

≤ min(5RP− , 1 +

5RN− , 5IP− , 1 + 5IN− ) ≤ 1, ξ ̸=1.
Proof:This proof would be done bymathematical induc-

tion. Assume = 2, and since

−1logξ1 1 =



1 −
(
logξ1

5RP− 1

)
−1

+ι

(
1 −

(
logξ1

5IP− 1

)
−1

)
,

−
∣∣logξ1

(
1 + 5RN− 1

)∣∣ −1

+ι

(
−
∣∣logξ1

(
1 + 5IN− 1

)∣∣ −1

)



−2logξ2 2 =



1 −
(
logξ2

5RP− 2

)
−2

+ι

(
1 −

(
logξ2

5IP− 2

)
−2

)
,

−
∣∣logξ2

(
1 + 5RN− 2

)∣∣ −2

+ι

(
−
∣∣logξ2

(
1 + 5IN− 2

)∣∣ −2

)


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then,

−1logξ1 1 ⊕ −2logξ2 2

=





1 −
(
logξ1

5RP− 1

)
−1

+1 −
(
logξ2

5RP− 2

)
−2

−


(
1 −

(
logξ1

5RP− 1

)
−1

)
(
1 −

(
logξ2

5RP− 2

)
−2

)




+ι



1 −
(
logξ1

5IP− 1

)
−1

+1 −
(
logξ2

5IP− 2

)
−2

−


(
1 −

(
logξ1

5IP− 1

)
−1

)
(
1 −

(
logξ2

5IP− 2

)
−2

)



,

−


(

−
∣∣logξ1

(
1 + 5RN− 1

)∣∣ −1

)
(

−
∣∣logξ2

(
1 + 5RN− 2

)∣∣ −2

)


+ι

−


(

−
∣∣logξ1

(
1 + 5IN− 1

)∣∣ −1

)
(

−
∣∣logξ2

(
1 + 5IN− 2

)∣∣ −2

)





=



1 −

2∏
=1

(
logξ 5RP−

)
−

+ι

1 −

2∏
=1

(
logξ 5IP−

)
−

 ,

−

2∏
=1

∣∣∣logξ

(
1 + 5RN−

)∣∣∣ −

+ι

−

2∏
=1

∣∣∣logξ

(
1 + 5IN−

)∣∣∣ −




= L − BCFWA ( 1, 2)

Assume that Eq. (3) is valid for =
◦C, then we have

L − BCFWA ( 1, 2, . . . , ◦C)

=



1 −

◦C∏
=1

(
logξ 5RP−

)
−

+ι

1 −

◦C∏
=1

(
logξ 5IP−

)
−

 ,

−

◦C∏
=1

∣∣∣logξ

(
1 + 5RN−

)∣∣∣ −

+ι

−

◦C∏
=1

∣∣∣logξ

(
1 + 5IN−

)∣∣∣ −




last let =

◦C + 1, then

L − BCFWA ( 1, 2, . . . , ◦C) ⊕ ◦C+1

=



1 −

◦C∏
=1

(
logξ 5RP−

)
−

+ι

1 −

◦C∏
=1

(
logξ 5IP−

)
−

 ,

−

◦C∏
=1

∣∣∣logξ

(
1 + 5RN−

)∣∣∣ −

+ι

−

◦C∏
=1

∣∣∣logξ

(
1 + 5IN−

)∣∣∣ −





⊕



1 −

(
logξ◦C+1

5RP− ◦C+1

)
−◦C+1

+ι

(
1 −

(
logξ◦C+1

5IP− ◦C+1

)
−◦C+1

)
,

−

∣∣∣logξ◦C+1

(
1 + 5RN− ◦C+1

)∣∣∣ −◦C+1

+ι

(
−

∣∣∣logξ◦C+1

(
1 + 5IN− ◦C+1

)∣∣∣ −◦C+1

)



=



1 −

◦C+1∏
=1

(
logξ 5RP−

)
−

+ι

1 −

◦C+1∏
=1

(
logξ 5IP−

)
−

 ,

−

◦C+1∏
=1

∣∣∣logξ

(
1 + 5RN−

)∣∣∣ −

+ι

−

◦C+1∏
=1

∣∣∣logξ

(
1 + 5IN−

)∣∣∣ −




Therefore, Eq. (3) is valid ∀ . Likewise, if 0 < 1

ξ
≤

min
(
5RP− , 1 + 5RN− , 5IP− , 1 + 5IN−

)
≤ 1,

ξ ̸=1, then we can demonstrate

L − BCFWA
(

1, 2, . . . ,
)

=



1 −

∏
=1

(
log 1

ξ
5RP−

)
−

+ι

1 −

∏
=1

(
log 1

ξ
5IP−

)
−

 ,

−

∏
=1

(∣∣∣∣log 1
ξ

(
1 + 5RN−

)∣∣∣∣) −

+ι

−

∏
=1

(∣∣∣∣log 1
ξ

(
1 + 5IN−

)∣∣∣∣) −




Hence proved.

Further, if ξ1 = ξ2 = . . . = ξ = ξ and 0 < ξ ≤

min
(
5RP− , 1 + 5RN− , 5IP− , 1 + 5IN−

)
≤

1 and ξ ̸=1, then the invented L-BCFWA operator would be
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transformed underneath

L − BCFWA
(

1, 2, . . . ,
)

=



1 −

∏
=1

(
logξ5RP−

)
−

+ι

1 −

∏
=1

(
logξ5IP−

)
−

 ,

−

∏
=1

(∣∣∣logξ

(
1 + 5RN−

)∣∣∣) −

+ι

−

∏
=1

(∣∣∣logξ

(
1 + 5IN−

)∣∣∣) −




Properties: L-BCFWA operator holds the underneath

axioms.
❖ Idempotency: Under the gathering of BCFNs =

(5P− , 5N− ) = (5RP− + ι 5IP− , 5RN− +

ι 5IN− ), = 1, 2, . . . , , then if = ∀ , that is
5RP− = 5RP− , 5IP− = 5IP− , 5RN− = 5RN−

and 5IN− = 5IN− ∀ , then

L − BCFWA
(

1, 2, . . . ,
)

= logξ

Noted that ξ1 = ξ2 = . . . = ξ = ξ .
Proof: Since we have

L − BCFWA
(

1, 2, . . . ,
)

=



1 −

∏
=1

(
logξ5RP−

)
−

+ι

1 −

∏
=1

(
logξ5IP−

)
−

 ,

−

∏
=1

(∣∣∣logξ

(
1 + 5RN−

)∣∣∣) −

+ι

−

∏
=1

(∣∣∣logξ

(
1 + 5IN−

)∣∣∣) −




and 5RP− = 5RP− , 5IP− = 5IP− , 5RN− =

5RN− and 5IN− = 5IN− ∀ , then

L − BCFWA
(

1, 2, . . . ,
)

=



1 −

∏
=1

(
logξ5RP−

)
−

+ι

1 −

∏
=1

(
logξ5IP−

)
−

 ,

−

∏
=1

(∣∣logξ

(
1 + 5RN−

)∣∣) −

+ι

−

∏
=1

(∣∣logξ

(
1 + 5IN−

)∣∣) −





=



1 −
(
logξ5RP−

)∑
=1

−

+ι

1 −
(
logξ5IP−

)∑
=1

−

 ,

−
(∣∣logξ

(
1 + 5RN−

)∣∣)∑=1
−

+ι

−
(∣∣logξ

(
1 + 5IN−

)∣∣)∑=1
−





=


1 − logξ5RP−

+ι
(
1 − logξ5IP−

)
,

−logξ

(
1 + 5RN−

)
+ι

(
−logξ

(
1 + 5IN−

))
 = logξ .

❖ Monotonicity: Under two gatherings of BCFNs =

(5P− , 5N− ) = (5RP− + ι 5IP− , 5RN− +

ι 5IN− ), and ⋆
= (5P−

⋆ , 5N−
⋆ ) = (5RP−

⋆ +

ι 5IP−
⋆ , 5RN−

⋆ + ι 5IN−
⋆ ), = 1, 2, . . . , ,

if 5RP− ≤ 5RP−
⋆ , 5IP− ≤ 5IP−

⋆ , 5RN− ≤

5RN−
⋆ and 5IN− ≤ 5IN−

⋆ , then

L − BCFWA
(

1, 2, . . . ,
)

≤ L − BCFWA
(

⋆
1,

⋆
2, . . . , ⋆

)
Proof: Since, for any , we have

5RP− ≤ 5RP−
⋆

⇒ logξ5RP− ≤ logξ5RP−
⋆

⇒

∏
=1

logξ5RP− ≤

∏
=1

logξ5RP−
⋆

⇒ 1 −

∏
=1

logξ5RP− ≤ 1 −

∏
=1

logξ5RP−
⋆

Similarly, for any

1 −

∏
=1

logξ5IP− ≤ 1 −

∏
=1

logξ5IP−
⋆

Next, for any , we have that

5RN− ≤ 5RN−
⋆

⇒ 1 + 5RN− ≤ 1 + 5RN−
⋆

⇒ logξ

(
1 + 5RN−

)
≥ logξ

(
1 + 5RN−

⋆

)
⇒

∏
=1

logξ

(
1 + 5RN−

)
≥

∏
=1

logξ

(
1 + 5RN−

⋆

)

⇒ −

∏
=1

logξ

(
1 + 5RN−

)
≤ −

∏
=1

logξ

(
1 + 5RN−

⋆

)
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Similarly, for any , we have

−

∏
=1

logξ

(
1 + 5IN−

)
≤ −

∏
=1

logξ

(
1 + 5IN−

⋆

)
By employing the Def of score and accuracy values,
we achieve that

L − BCFWA
(

1, 2, . . . ,
)

≤ L − BCFWA
(

⋆
1,

⋆
2, . . . , ⋆

)
.

❖ Boundedness: Under the gathering of BCFNs

=

(
5P− , 5N−

)
=

(
5RP− + ι 5IP− , 5RN− + ι 5IN−

)
,

= 1, 2, . . . , , then if

−
=

min
{
5RP−

}
+ ι min

{
5IP−

}
,

max
{

5RN−

}
+ ι max

{
5IN−

} ,

+
=

max
{
5RP−

}
+ ι max

{
5IP−

}
,

min
{

5RN−

}
+ ι min

{
5IN−

}  , then

−
≤ L − BCFWA

(
1, 2, . . . ,

)
≤

+

Proof: By employing idempotency and monotonicity,
boundedness, we achieve that

−
≤ L − BCFWA

(
1, 2, . . . ,

)
≤

+.

Definition 8: Under the gathering of BCFNs =

(5P− , 5N− ) = (5RP− + ι 5IP− , 5RN− +

ι 5IN− ), = 1, 2, . . . , , with 0 < ξ ≤

min(5RP− , 1+5RN− , 5IP− , 1+5IN− ) ≤ 1 and

ξ ̸=1, the L-BCFOWA operator is deduced as

L − BCFOWA
(

1, 2, . . . ,
)

=
⊕

= 1

− logξ ŷ( )

Noted that =
(

−1, −2, . . . , −

)
is a weight

vector with the axiom that 0 ≤ − ≤ 1,
∑

=1 − =

1 and
(
ŷ(1), ŷ(2), . . . , ŷ ( )

)
is a permutation of 1, 2, ..,

such that for any ŷ ( − 1) ≤ ŷ ( ).
Theorem 7: Under the gathering of BCFNs =

(5P− , 5N− ) = (5RP− + ι 5IP− , 5RN− +

ι 5IN− ), = 1, 2, . . . , , with 0 < ξ ≤

min(5RP− , 1+5RN− , 5IP− , 1+5IN− ) ≤ 1 and

ξ ̸=1, the usage of the L-BCFOWAoperator will deduce again
a BCFN and

L − BCFOWA
(

1, 2, . . . ,
)

=





1 −

∏
=1

(
logξ 5RP− ŷ( )

)
−

+ι

1 −

∏
=1

(
logξ 5IP− ŷ( )

)
−

 ,

−

∏
=1

(∣∣∣logξ

(
1 + 5RN− ŷ( )

)∣∣∣) −

+ι

−

∏
=1

(∣∣∣logξ

(
1 + 5IN− ŷ( )

)∣∣∣) −






1 −

∏
=1

(
log 1

ξ
5RP−ŷ( )

)
−

+ι

1 −

∏
=1

(
log 1

ξ
5IP− ŷ( )

)
−

 ,

−

∏
=1

(∣∣∣∣log 1
ξ

(
1 + 5RN− ŷ( )

)∣∣∣∣) −

+ι

−

∏
=1

(∣∣∣∣log 1
ξ

(
1 + 5IN− ŷ( )

)∣∣∣∣) −




where, 0 < ξ ≤ min(5RP− , 1+5RN− , 5IP− , 1+

5IN− ) ≤ 1, ξ ̸=1, and 0 < 1
ξ

≤ min(5RP− , 1 +

5RN− , 5IP− , 1 + 5IN− ) ≤ 1, ξ ̸=1.
Proof: This proof is identical to the proof of Theo-

rem (2).
Further, if ξ1 = ξ2 = . . . = ξ = ξ and 0 < ξ ≤

min
(
5RP− , 1 + 5RN− , 5IP− , 1 + 5IN−

)
≤

1 and ξ ̸=1, then the invented L-BCFOWA operator would
be transformed underneath

L − BCFOWA
(

1, 2, . . . ,
)

=



1 −

∏
=1

(
logξ5RP− ŷ( )

)
−

+ι

1 −

∏
=1

(
logξ5IP− ŷ( )

)
−

 ,

−

∏
=1

(∣∣∣logξ

(
1 + 5RN− ŷ( )

)∣∣∣) −

+ι

−

∏
=1

(∣∣∣logξ

(
1 + 5IN− ŷ( )

)∣∣∣) −




Properties: L-BCFOWA operator holds the underneath

axioms.
❖ Idempotency: Under the gathering of BCFNs =

(5P− , 5N− ) = (5RP− + ι 5IP− , 5RN− +

ι 5IN− ), = 1, 2, . . . , , then if = ∀ , that is
5RP− = 5RP− , 5IP− = 5IP− , 5RN− = 5RN−

and 5IN− = 5IN− ∀ , then

L − BCFOWA
(

1, 2, . . . ,
)

= logξ
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Noted that ξ1 = ξ2 = . . . = ξ = ξ .
❖ Monotonicity: Under two gatherings of BCFNs =

(5P− , 5N− ) = (5RP− + ι 5IP− , 5RN− +

ι 5IN− ), and ⋆
= (5P−

⋆ , 5N−
⋆ ) = (5RP−

⋆ +

ι 5IP−
⋆ , 5RN−

⋆ + ι 5IN−
⋆ ), = 1, 2, . . . , ,

if 5RP− ≤ 5RP−
⋆ , 5IP− ≤ 5IP−

⋆ , 5RN− ≤

5RN−
⋆ and 5IN− ≤ 5IN−

⋆ , then

L − BCFOWA
(

1, 2, . . . ,
)

≤ L − BCFOWA
(

⋆
1,

⋆
2, . . . , ⋆

)
❖ Boundedness: Under the gathering of BCFNs

=

(
5P− , 5N−

)
=

(
5RP− + ι 5IP− , 5RN− + ι 5IN−

)
,

= 1, 2, . . . , , then if

−
=

min
{
5RP−

}
+ ι min

{
5IP−

}
,

max
{

5RN−

}
+ ι max

{
5IN−

} , and

+
=

max
{
5RP−

}
+ ι max

{
5IP−

}
,

min
{

5RN−

}
+ ι min

{
5IN−

}  , then

−
≤ L − BCFOWA

(
1, 2, . . . ,

)
≤

+

Underneath, we investigate the logarithmic BCF geometric
AOs.
Definition 9: Under the gathering of BCFNs =

(5P− , 5N− ) = (5RP− + ι 5IP− , 5RN− +

ι 5IN− ), = 1, 2, . . . , , with 0 < ξ ≤

min(5RP− , 1+5RN− , 5IP− , 1+5IN− ) ≤ 1 and

ξ ̸=1, the L-BCFWG operator is deduced as

L − BCFWG
(

1, 2, . . . ,
)

=
⊗

= 1

(
logξ

)
−

Noted that =
(

−1, −2, . . . , −

)
is a weight

vector with the axiom that 0 ≤ − ≤ 1 and
∑

=1 − =

1.
Theorem 8: Under the gathering of BCFNs =

(5P− , 5N− ) = (5RP− + ι 5IP− , 5RN− +

ι 5IN− ), = 1, 2, . . . , , with 0 < ξ ≤

min(5RP− , 1+5RN− , 5IP− , 1+5IN− ) ≤ 1 and

ξ ̸=1, the usage of the L-BCFWG operator will deduce again
a BCFN and

L − BCFWG
(

1, 2, . . . ,
)

=





∏
=1

(
1 − logξ 5RP−

)
−

+ι
∏
=1

(
1 − logξ 5IP−

)
−

,

−1 +

∏
=1

(
1 − logξ

(
1 + 5RN−

))
−

+ι

−1 +

∏
=1

(
1 − logξ

(
1 + 5IN−

))
−





∏
=1

(
1 − log 1

ξ
5RP−

)
−

+ι
∏
=1

(
1 − log 1

ξ
5IP−

)
−

,

−1 +

∏
=1

(
1 − log 1

ξ

(
1 + 5RN−

)) −

+ι

−1 +

∏
=1

(
1 − log 1

ξ

(
1 + 5IN−

)) −




(4)

where, 0 < ξ ≤ min(5RP− , 1+5RN− , 5IP− , 1+

5IN− ) ≤ 1, ξ ̸=1, and 0 < 1
ξ

≤ min(5RP− , 1 +

5RN− , 5IP− , 1 + 5IN− ) ≤ 1, ξ ̸=1.
Proof:This proof would be done bymathematical induc-

tion. Assume = 2, and since

(
logξ1 1

)
−1

=



(
1 − logξ1

5RP− 1

)
−1

+ι
(
1 − logξ1

5IP− 1

)
−1 ,

−1 +

(
1 − logξ1

(
1 + 5RN− 1

)
−1

)
+ι

(
−1 +

(
1 − logξ1

(
1 + 5RN− 1

))
−1

)


(
logξ2 2

)
−2

=



(
1 − logξ2

5RP− 2

)
−2

+ι
(
1 − logξ2

5IP− 2

)
−2 ,

−1 +

(
1 − logξ2

(
1 + 5RN− 2

)
−2

)
+ι

(
−1 +

(
1 − logξ2

(
1 + 5RN− 2

))
−2

)



then,

(
logξ1 1

)
−1

⊗
(
logξ2 2

)
−2
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=



(
1 − logξ1

5RP− 1

)
−1

+ι
(
1 − logξ1

5IP− 1

)
−1 ,

−1 +

(
1 − logξ1

(
1 + 5RN− 1

)
−1

)
+ι

(
−1 +

(
1 − logξ1

(
1 + 5RN− 1

))
−1

)



⊗



(
1 − logξ2

5RP− 2

)
−2

+ι
(
1 − logξ2

5IP− 2

)
−2 ,

−1 +

(
1 − logξ2

(
1 + 5RN− 2

)
−2

)
+ι

(
−1 +

(
1 − logξ2

(
1 + 5RN− 2

))
−2

)



=



(
1 − logξ1

5RP− 1

)
−1
(
1 − logξ2

5RP− 2

)
−2

+ι
(
1 − logξ1

5IP− 1

)
−1
(
1 − logξ2

5IP− 2

)
−2 ,

−1 +

(
1 − logξ1

(
1 + 5RN− 1

)
−1

)
−1 +

(
1 − logξ2

(
1 + 5RN− 2

)
−2

)
+

(
−1 +

(
1 − logξ1

(
1 + 5RN− 1

)
−1

))
(

−1 +

(
1 − logξ2

(
1 + 5RN− 2

)
−2

))



+ι



−1 +

(
1 − logξ1

(
1 + 5IN− 1

)
−1

)
−1 +

(
1 − logξ2

(
1 + 5IN− 2

)
−2

)
+

(
−1 +

(
1 − logξ1

(
1 + 5IN− 1

)
−1

))
(

−1 +

(
1 − logξ2

(
1 + 5IN− 2

)
−2

))





=



2∏
=1

(
1 − logξ 5RP−

)
−

+ι

2∏
=1

(
1 − logξ 5IP−

)
−

,

−1 +

2∏
=1

(
1 − logξ

(
1 + 5RN−

))
−

+ι

−1 +

2∏
=1

(
1 − logξ

(
1 + 5IN−

))
−




= L − BCFWG ( 1, 2)

Assume that Eq. (4) is valid for =
◦C, then we have

L − BCFWG ( 1, 2, . . . , ◦C)

=



◦C∏
=1

(
1 − logξ 5RP−

)
−

+ι

◦C∏
=1

(
1 − logξ 5IP−

)
−

,

−1 +

◦C∏
=1

(
1 − logξ

(
1 + 5RN−

))
−

+ι

−1 +

◦C∏
=1

(
1 − logξ

(
1 + 5IN−

))
−




last let =

◦C + 1, then

L − BCFWG ( 1, 2, . . . , ◦C) ⊗ ◦C+1

=



◦C∏
=1

(
1 − logξ 5RP−

)
−

+ι

◦C∏
=1

(
1 − logξ 5IP−

)
−

,

−1 +

◦C∏
=1

(
1 − logξ

(
1 + 5RN−

))
−

+ι

−1 +

◦C∏
=1

(
1 − logξ

(
1 + 5IN−

))
−





⊗



(
1 − logξ◦C+1

5RP− ◦C+1

)
−◦C+1

+ι
(
1 − logξ◦C+1

5IP− ◦C+1

)
−◦C+1

,

−1+

(
1 − logξ◦C+1

(
1 + 5RN− ◦C+1

)
−◦C+1

)
+ι

(
−1+

(
1−logξ◦C+1

(
1+5RN− ◦C+1

)) −◦C+1

)



=



◦C+1∏
=1

(
1 − logξ 5RP−

)
−

+ι

◦C+1∏
=1

(
1 − logξ 5IP−

)
−

,

−1 +

◦C+1∏
=1

(
1 − logξ

(
1 + 5RN−

))
−

+ι

−1 +

◦C+1∏
=1

(
1 − logξ

(
1 + 5IN−

))
−





Therefore, Eq. (4) is valid ∀ . Likewise, if 0 < 1
ξ

≤

min(5RP− , 1 + 5RN− , 5IP− , 1 + 5IN− ) ≤ 1,

ξ ̸=1, then we can demonstrate

L − BCFWG
(

1, 2, . . . ,
)
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=



∏
=1

(
1 − log 1

ξ
5RP−

)
−

+ι
∏
=1

(
1 − log 1

ξ
5IP−

)
−

,

−1 +

∏
=1

(
1 − log 1

ξ

(
1 + 5RN−

)) −

+ι

−1 +

∏
=1

(
1 − log 1

ξ

(
1 + 5IN−

)) −




Hence proved.

Further, if ξ1 = ξ2 = . . . = ξ = ξ and 0 < ξ ≤

min
(
5RP− , 1 + 5RN− , 5IP− , 1 + 5IN−

)
≤

1 and ξ ̸=1, then the invented L-BCFWG operator would be
transformed underneath

L − BCFWG
(

1, 2, . . . ,
)

=



∏
=1

(
1 − logξ5RP−

)
−

+ι
∏
=1

(
1 − logξ5IP−

)
−

,

−1 +

∏
=1

(
1 − logξ

(
1 + 5RN−

))
−

+ι

−1 +

∏
=1

(
1 − logξ

(
1 + 5IN−

))
−




Properties: L-BCFWG operator holds the underneath

axioms.
❖ Idempotency: Under the gathering of BCFNs =

(5P− , 5N− ) = (5RP− + ι 5IP− , 5RN− +

ι 5IN− ), = 1, 2, . . . , , then if = ∀ , that is
5RP− = 5RP− , 5IP− = 5IP− , 5RN− = 5RN−

and 5IN− = 5IN− ∀ , then

L − BCFWG
(

1, 2, . . . ,
)

= logξ

Noted that ξ1 = ξ2 = . . . = ξ = ξ .
❖ Monotonicity: Under two gatherings of BCFNs =

(5P− , 5N− ) = (5RP− + ι 5IP− , 5RN− +

ι 5IN− ), and ⋆
= (5P−

⋆ , 5N−
⋆ ) = (5RP−

⋆ +

ι 5IP−
⋆ , 5RN−

⋆ + ι 5IN−
⋆ ), = 1, 2, . . . , ,

if 5RP− ≤ 5RP−
⋆ , 5IP− ≤ 5IP−

⋆ , 5RN− ≤

5RN−
⋆ and 5IN− ≤ 5IN−

⋆ , then

L − BCFWG
(

1, 2, . . . ,
)

≤ L − BCFWG
(

⋆
1,

⋆
2, . . . , ⋆

)
❖ Boundedness: Under the gathering of BCFNs

=

(
5P− , 5N−

)
=

(
5RP− + ι 5IP− , 5RN− + ι 5IN−

)
,

= 1, 2, . . . , , then if

−
=

min
{
5RP−

}
+ ι min

{
5IP−

}
,

max
{

5RN−

}
+ ι max

{
5IN−

} , and

+
=

max
{
5RP−

}
+ ι max

{
5IP−

}
,

min
{

5RN−

}
+ ι min

{
5IN−

}  , then

−
≤ L − BCFWG

(
1, 2, . . . ,

)
≤

+

Definition 10: Under the gathering of BCFNs =

(5P− , 5N− ) = (5RP− + ι 5IP− , 5RN− +

ι 5IN− ), = 1, 2, . . . , , with 0 < ξ ≤

min(5RP− , 1+5RN− , 5IP− , 1+5IN− ) ≤ 1 and

ξ ̸=1, the L-BCFOWG operator is deduced as

L − BCFOWG
(

1, 2, . . . ,
)
=

⊗

= 1

(
logξ ŷ( )

)
−

Noted that =
(

−1, −2, . . . , −

)
is a weight

vector with the axiom that 0 ≤ − ≤ 1,
∑

=1 − =

1 and
(
ŷ(1), ŷ(2), . . . , ŷ ( )

)
is a permutation of 1, 2, ..,

such that for any ŷ ( − 1) ≤ ŷ ( ).
Theorem 9: Under the gathering of BCFNs =(

5P− , 5N−

)
=

(
5RP− + ι 5IP− ,

5RN− + ι 5IN−

)
, = 1, 2, . . . , , with 0 < ξ ≤

min
(
5RP− , 1 + 5RN− , 5IP− , 1 + 5IN−

)
≤

1 and ξ ̸=1, the usage of the L-BCFOWGoperator will deduce
again a BCFN and

L − BCFOWG
(

1, 2, . . . ,
)

=





∏
=1

(
1 − logξ 5RP− ŷ( )

)
−

+ι
∏
=1

(
1 − logξ 5IP− ŷ( )

)
−

,

−1 +

∏
=1

(
1 − logξ

(
1 + 5RN− ŷ( )

))
−

+ι

−1+

∏
=1

(
1 − logξ

(
1 + 5IN− ŷ( )

))
−





∏
=1

(
1 − log 1

ξ
5RP− ŷ( )

)
−

+ι
∏
=1

(
1 − log 1

ξ
5IP− ŷ( )

)
−

,

−1+

∏
=1

(
1 − log 1

ξ

(
1+5RN− ŷ( )

)) −

+ι

−1+

∏
=1

(
1 − log 1

ξ

(
1+5IN− ŷ( )

)) −




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where, 0 < ξ ≤ min(5RP− , 1+5RN− , 5IP− , 1+

5IN− ) ≤ 1, ξ ̸=1, and 0 < 1
ξ

≤ min(5RP− , 1 +

5RN− , 5IP− , 1 + 5IN− ) ≤ 1, ξ ̸=1.
Properties: L-BCFOWG operator holds the underneath

axioms.
❖ Idempotency: Under the gathering of BCFNs =

(5P− , 5N− ) = (5RP− + ι 5IP− , 5RN− +

ι 5IN− ), = 1, 2, . . . , , then if = ∀ , that is
5RP− = 5RP− , 5IP− = 5IP− , 5RN− = 5RN−

and 5IN− = 5IN− ∀ , then

L − BCFOWG
(

1, 2, . . . ,
)

= logξ

Noted that ξ1 = ξ2 = . . . = ξ = ξ .
❖ Monotonicity: Under two gatherings of BCFNs =

(5P− , 5N− ) = (5RP− + ι 5IP− , 5RN− +

ι 5IN− ), and ⋆
= (5P−

⋆ , 5N−
⋆ ) = (5RP−

⋆ +

ι 5IP−
⋆ , 5RN−

⋆ + ι 5IN−
⋆ ), = 1, 2, . . . , ,

if 5RP− ≤ 5RP−
⋆ , 5IP− ≤ 5IP−

⋆ , 5RN− ≤

5RN−
⋆ and 5IN− ≤ 5IN−

⋆ , then

L − BCFOWG
(

1, 2, . . . ,
)

≤ L − BCFOWG
(

⋆
1,

⋆
2, . . . , ⋆

)
❖ Boundedness: Under the gathering of BCFNs

=

(
5P− , 5N−

)
=

(
5RP− + ι 5IP− , 5RN− + ι 5IN−

)
,

= 1, 2, . . . , , then if

−
=

min
{
5RP−

}
+ ι min

{
5IP−

}
,

max
{

5RN−

}
+ ι max

{
5IN−

} , and

+
=

max
{
5RP−

}
+ ι max

{
5IP−

}
,

min
{

5RN−

}
+ ι min

{
5IN−

}  , then

−
≤ L − BCFOWG

(
1, 2, . . . ,

)
≤

+

V. APPLICATION (MCDM APPROACH BASED ON
LOGARITHM BCF AOS)
In this portion, we invent an MCDM approach relying on the
devised logarithm BCF (L-BCF) AOs.

Under the presence of alternative that is AT ={
AT−1, AT−2, . . . , AT−

}
and criteria that are AB ={

AB−1, AB−2, . . . , AB−

}
with a weight that is =(

−1, −2, . . . , −

)
which holds the axiom that 0 ≤

− ≤ 1,
∑

=1 − = 1. The decision expert assesses
the revealed alternatives by keeping in mind the demon-
strated criteria and interprets the evaluation arguments under
the model of BCFNs =

(
5P− , 5N−

)
=(

5RP− + ι 5IP− , 5RN− + ι5IN−

)
, to devise

a BCF decision matrix MDM. For tackling this MCDM
dilemma, we have the underneath steps

Step 1: In so many MCDM dilemmas, the attributes can
be cost type and benefit type. Thus, the standardization of the

BCF decision matrix is required, which will be done by the
underneath formula.

(MDM)S =




5RP−

+ι 5IP− ,

5RN−

+ι5IN−

 For benefit type


1 − 5RP−

+ι
(
1 − 5IP−

)
,

−1 − 5RN−

+ι
(
−1 − 5IN−

)
 For cost type

Step 2:Aggregate the standardizationBCF decisionmatrix
by employing one of the invented operators i.e., L-BCFWA,
L-BCFOWA, L-BCFWG, and L-BCFOWG operators.

Step 3: Achieve the score values of the aggregated out-
comes and in case of the same score values of two distinct
aggregated outcomes, then achieve the accuracy values.

Step 4: Order the alternatives by employing the score or
accuracy values.

5.1. Case Study
To optimize the software development process for a

future project, a choice of the best software development
methodology is required. The four alternatives that are being
considered are

AT−1: Waterfall: A methodological approach that is
linear and sequential and requires completion of each phase
(maintenance, design, deployment, implementation, testing,
requirements) before moving on to the next. Once a phase is
over, accommodating changes can be difficult.

AT−2: DevOps:DevOps is a set of practices that aims to
close the gap between development and IT operations, despite
not being a conventional methodology. To produce faster and
more reliable software releases, it places a strong emphasis
on automation, collaboration, and continuous delivery.

AT−3: Spiral: Waterfall and iterative development are
both used in this methodology. It entails repeatedly iterating
on the software to refine and improve it, building on the
knowledge gained from the previous cycle.

AT−4: Agile: A collaborative, adaptable, and iterative
strategy that prioritizes client feedback. By dividing the
project into smaller iterations or sprints, agile approaches
like Scrum and Kanban enable frequent modifications and
continual development.

The decision will depend on four criteria that is AB−1:
Project flexibility, AB−2: Development speed, AB−3:
Communication and collaboration, and AB−4: Risk man-
agement.

A thorough evaluation will be carried out by comparing the
four methodologies to these criteria and giving each criteria
weight i.e., (0.14, 0.36, 0.24, 0.26) based on the particulars
of the project. The methodology that received the highest
overall score will be suggested for the software development
project, ensuring that the choice is well-informed and fits
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TABLE 1. Evaluation values of software development methodologies.

TABLE 2. The aggregated outcomes of software development methodologies after employing L-BCFWA, L-BCFOWA, L-BCFWG, and L-BCFOWG operators.

TABLE 3. The score values of software development methodologies.

TABLE 4. The ranking of software development methodologies.

with the project’s particular needs and limitations.Bottom of
FormThe evaluated values are in Table 1.
Step 1: In this MCDM dilemma, all criteria are benefits

type so skipping this step.
Step 2: Aggregated BCF decision matrix by employ-

ing L-BCFWA, L-BCFOWA, L-BCFWG, and L-BCFOWG
operators, and the result is displayed in Table 2.

Step 3: Achieved the score values of each software devel-
opment methodology and revealed in Table 3.
Step 4: In Table 4, order the software development

methodology.

Thus, we got that the AT−4 that is ‘‘Agile’’ is the best
software development methodology among the considered
four methodologies.

VI. COMPARATIVE STUDY
This portion of the article contains a comparative study of the
invented theory with a few prevailing theories to reveal the
supremacy and dominance of the invented work.

For this purpose, we consider four various articles from the
literature whose basic theme is discussed underneath.

◦ The theory of logarithmic AOs and MADM technique
under BF information was deduced by Jana et [20].

◦ The theory of sine trigonometric AOs and SIR technique
under BF information was invented by Riaz et al. [19].

◦ The notion of arithmetic AOs in the setting of complex
fuzzy information was deduced by Bi et [30].

◦ The notion of geometric AOs in the setting of complex
fuzzy information was deduced by Bi et [31].

and also consider the information from the case study demon-
strated in Table 1. As the data is in the model of bipolar
complex fuzzy information and AOs and methods invented
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TABLE 5. The comparison among a few current theories and devised theories.

by Jana et al. [20] and Riaz et al. [19] merely tackle the
bipolar fuzzy and fuzzy information and can’t handle the two-
dimensional information. Thus, the theories of Jana et al. [20]
and Riaz et al. [19] failed to cope with the data in Table 1.
Similarly, the AOs invented by Bi et al. [30] and Bi et al. [31]
merely aggregate complex fuzzy and fuzzy information and
can’t tackle the negative opinion or aspects. Thus, these AOs
can’t aggregate the data in the structure of BCFS and hence
failed to copewith the data in Table 1. The result is interpreted
in Table 5.
Further, the invented logarithmic BCF AOs are more gen-

eralized and accurate than the logarithmic AOs for bipolar
fuzzy information invented by Jana et a. [20] because by
removing the unreal part in the invented logarithmic BCF
AOs, we would get the logarithmic AOs for bipolar fuzzy
information invented by Jana al. [20], so the logarithmic
AOs for BFS are the special case of the invented operators.
Furthermore, by ignoring the negative degree of belonging
the invented logarithmic BCF AOs would convert in the
model of the cartesian form of CFS and by removing the
negative degree of belonging and unreal part into the positive
degree of belonging the deduced logarithmic BCFAOswould
transform in the structure of FS.

Moreover, there are various techniques for tackling dilem-
mas in the literature such as SPOTIS, COMET, SIMUS,
RANCOM, etc. Here, we would compare the invented
MCDM approach with SPOTIS in the structure of FS was
deduced by Shekhovtsov et al. [41], COMET for intuition-
istic FS (IFS) was diagnosed by Faizi et al. [42], SIMUS
in model of FS was delivered by Stoilova and Munier [43],
and RANCOM in single-valued Neutrosophic set (SVNS)
was deduced by Rani et al. [44]. These already existing
theory can’t tackle the information displayed in Table 1,
because the theories of FS, IFS, and SVNS can’t cope with
bipolarity and extra fuzzy information. Thus, for the infor-
mation in the structure of BCFS, these approaches are not
applicable. Merely the invented MCDM can cope with BCF
information.

VII. CONCLUSION
In this article, we invented LOLs for BCF information and
associated properties. Then by employing these operations,

we deduced four various AOs that are L-BCFWA, L-
BCFOWA, L-BCFWG, and L-BCFOWG operators. we also
investigated the associated axioms of these logarithmic AOs.
After that, we devised an approach to MCDM under the
setting of BCF information to cope with MCDM dilemmas.
Further, in this script, we discussed the selection of soft-
ware development methodology since, software development
methodology is an MCDM dilemma because the selection of
the best software development methodology would be based
on various criteria which ensures that the decision is made
in a fair and informed manner. Thus, we investigate case
study related to the selection and prioritization of software
development methodology. To demonstrate the significance
and superiority of the constructed theory, we last looked into
a comparison study of the inferred theory to a few other
contemporary theories.

A. LIMITATIONS AND FUTURE DIRECTION
The invented theory can’t overcome with information that is
in the model of BCF linguistic set [45], BCF soft set [46],
picture FS [47], complex picture FS [48], complex bipolar
FS [49], bipolar complex spherical FS [50] and other gener-
alization of BCFS. Because of this limitation and the benefits
of logarithmic AOs, there is a deliberate plan to use them
in a wider range of frameworks, such as BCF linguistic set,
BCF soft se, picture FS, bipolar complex spherical FS, etc.
By utilizing the natural advantages of logarithmic AOs, this
extension aims to improve accuracy and efficiency in a range
of computational tasks. Logarithmic AOs are expected to
open up new possibilities for analysis and problem-solving,
spurring innovation across several fields, when incorporated
into these frameworks. These initiatives seek to meet difficult
problems and promote improvements in both theoretical and
practical research by utilizing the natural adaptability and
durability of logarithmic AOs.
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