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ABSTRACT The state-of-the-art face recognition systems are typically trained on a single computer,
utilizing extensive image datasets collected from various users. Nevertheless, these datasets often contain
sensitive personal information that users may hesitate to disclose. To address potential privacy concerns,
we explore the application of federated learning, both with and without secure aggregators, in the context of
both supervised and unsupervised face recognition systems. Federated learning facilitates the training of a
shared model without necessitating the sharing of individual private data, achieving this by training models
on decentralized edge devices housing the data. In our proposed system, each edge device independently
trains its own model, which is subsequently transmitted either to a secure aggregator or directly to the
central server. To introduce diverse data without the need for data transmission, we employ generative
adversarial networks to generate imposter data at the edge. Following this, the secure aggregator or central
server combines these individual models to construct a global model, which is then relayed back to the edge
devices. Experimental findings based on the CelebA datasets reveal that employing federated learning in
both supervised and unsupervised face recognition systems offers dual benefits. Firstly, it safeguards privacy
since the original data remains on the edge devices. Secondly, the experimental results demonstrate that
the aggregated model yields nearly identical performance compared to the individual models, particularly
when the federated model does not utilize a secure aggregator. Hence, our results shed light on the practical
challenges associated with privacy-preserving face image training, particularly in terms of the balance
between privacy and accuracy.

INDEX TERMS Edge computation, federated learning, privacy, secure aggregator, face recognition.

I. INTRODUCTION
Face recognition is the process of automatically identifying
or verifying the identity of an individual by analyzing facial
patterns [1]. This technology has become an integral compo-
nent in various security and authentication systems, ranging
from smartphone unlocking [2] to airport security checks [3].
It encompasses two primary subfields: face identification and
face verification. Face identification determines the identity
of an individual, whereas face verification confirms or denies
a claimed identity [1]. Ensuring accurate face recognition
is integral for granting access to services, as permissions
should only be accorded following correct identification or
verification.
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approving it for publication was Zahid Akhtar .

The rapid advancement of machine learning (ML)
and the availability of facial datasets have significantly
enhanced the accuracy and performance of face recognition
systems. Typically, face recognition systems employmachine
learning techniques to train deep neural networks using
facial data samples. Data samples are commonly gathered
on end-devices like smartphones, while the model training
takes place on a computationally robust centralized server [4].
This setup raises twomajor concerns. First, since the model is
trained on user face data, it is crucial to prevent unauthorized
access or data breaches to protect user privacy. Second, such
systems involve a heavy data transmission phase, which can
place significant stress on the communication infrastructure.
Federated learning offers a solution to both issues. Rather
than sending the raw sensitive data to the central server for
training the centralized model, federated learning advocates
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for a distributed training approach [5]. In this setup, each
device maintains its own instance of the model and trains
it using its local data [6]. After this local training, only
the model updates are transmitted to the central server. The
server then aggregates these updates and applies them to the
global model [7], [8]. This approach ensures that sensitive
facial data remains local, strengthening privacy measures and
minimizing data transfers. The most common aggregation
strategy is federated averaging, which aggregates the updates
using a weighted average [6].

Mobile phones and smart devices are examples of the
modern distributed networks that generate huge amounts of
data each day [9]. As these devices become more powerful
and concerns about data privacy grow, federated learning has
emerged as a notable solution to keep data on the device and
shift the network’s focus to the edge [9]. Various companies
have adopted federated learning [7], [10], highlighting its
importance in applications that need privacy, especially
when training data is spread across devices [11], [12], [13],
[14]. The increasing demand for federated learning across
various applications has led to the development of numerous
tools, including TensorFlow Federated [15], Federated AI
Technology Enabler [16], Leaf [17], and PaddleFL [18].
While privacy-preserving data studies have been of interest
since the 1970s, it is only in recent times that they are being
extensively employed at a large scale [19]. For instance,
Google uses federated learning in Gboard [12] and Android
messages [20], and Apple has incorporated it in iOS 13 [21]
for features like ‘‘Hey Siri’’ [22].
As mentioned previously, privacy concerns are considered

as one of the major challenges in face and speaker recognition
systems [23], [24] as these systems usually involve the
complete sharing of facial data, which can bring threaten-
ing consequences to people’s privacy. Federated learning
emerges as a promising approach to address these concerns.
Unlike conventional methods that require raw data to be
sent to a central server for processing, federated learning
enables model training directly on the user’s device, ensuring
that sensitive facial data remains local. This decentralized
approach not only enhances privacy but also reduces the need
for data transmission, thereby saving bandwidth.

Thus, the main contribution of this work centers on the
integration of federated learning techniques in the training
of deep neural network-based face recognition classifiers,
both supervised and unsupervised, with the primary aim
of safeguarding user privacy. In the proposed system, each
device independently trains its own model and subsequently
transmits this local model to either a secure aggregator or
directly to a central server. The secure aggregator, in turn,
consolidates these local models originating from various
devices, assembles a global model, and dispatches it to
the central server. Alternatively, the central server may
construct the global model directly, without intermediary
interaction with the secure aggregator. Ultimately, the central
server redistributes the global model to all participating
devices.

The proposed system facilitates the training of a face
recognition model grounded in a deep neural network.
It accomplishes this by utilizing data stored exclusively on
the respective devices, guaranteeing that this data never exits
the confines of those devices. The cloud-based component
of the system employs federated averaging to merge these
local models, thereby forming a global model that is
subsequently relayed back to the devices for inference. The
implementation of secure aggregation ensures that, at a global
level, individual updates from the devices remain completely
confidential and inscrutable. As the edge devices solely
transmit model updates, no raw data ever departs from the
edge. Consequently, the aggregator only has access to amodel
trained for the purpose of identifying a local user, preserving
the privacy of all other information pertaining to face image
at the edge.

A second innovation lies in the deployment of a generative
adversarial network (GAN) to produce counterfeit data
directly on edge devices. Employing a GAN eliminates
the necessity of transmitting counterfeit data to the edge
or accumulating such data at the edge itself. Transmitting
counterfeit data could place a substantial strain on available
bandwidth and, more crucially, expose potential vulnerabil-
ities by revealing distinct information about the local user.
Conversely, collecting counterfeit data at the edge could
prove unfeasible.

The potential applications of the proposed federated
learning systems are diverse and could encompass tasks
like smartphone-based learning. By collaboratively learning
facial characteristics from a multitude of mobile devices,
a shared statistical model can be developed to effectively
identify individuals. Nevertheless, users might be hesitant to
relinquish their data to a central server, driven by concerns
about safeguarding their personal privacy. As a solution,
federated learning can be employed to train a centralized,
user-independent model without the need to expose or share
private data.

In the context of smartphone-based learning, a collective
approach to learning face image characteristics from a
substantial pool of mobile and similar devices enables
the development of a unified statistical model for user
identification. However, users may understandably harbor
reservations about transferring their data to a central server,
driven by privacy concerns. As a solution, federated learning
can be employed to train a central, user-independent model
without compromising the confidentiality of their private
data.

In the context of learning across organizations, entities like
universities can be likened to remote devices, each housing a
wealth of student data. Nevertheless, universities are typically
bound by stringent privacy regulations and practices, and any
data leakage could lead to legal, administrative, or ethical
complications. Federated learning offers a viable solution,
allowing for confidential learning to take place across diverse
devices and organizations while safeguarding the sensitive
data of these institutions.
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Our experiments conducted on the CelebA datasets reveal
that federated learning brings notable advantages to both
supervised and unsupervised facial recognition systems. This
is achieved by avoiding the transmission of sensitive user
data to central servers, while still delivering promising results
when compared to individual local models. Consequently, the
experimental outcomes provide a quantitative understanding
of the challenges associated with the practical application
of privacy-preserving training for facial recognition. These
challenges are particularly evident in the trade-off between
privacy and accuracy.

The remainder of this paper is structured as follows.
Section III provides a detailed description of the proposed
system’s architecture. The experimental results are outlined
in Section IV, while Section V presents the conclusions
drawn from the work.

II. RELATED WORK
Various methodologies have been proposed to enhance the
privacy and security of face recognition systems.

A. PRIVACY-PRESERVING FACE RECOGNITION
Various methods have been explored to safeguard facial
data. Instead of using real images of individuals’ faces,
the authors of [25] propose to generate synthetic images
by training a class-conditional GAN. The synthetic data
generator was trained on the original face dataset and the
identities of the individuals as class labels. The authors then
generate the synthetic dataset to train the face recognition
model. PriFace [26] is another method for privacy-preserving
face recognition. PriFace uses locality-sensitive hashing to
add randomness to facial data, preventing potential misuse
or reconstruction of the images. Further, the work in [27]
uses the Householder matrix to protect both model and
facial data. This method combines additive and multiplicative
perturbations, ensuring efficient user-side computations. For
smart home settings, the authors of [28] propose to protect
the face feature data of the users using a face recognition
approach that combines random matrix and BLS short
signature with FaceNet. The work in [29] proposes to protect
the privacy of the faces by encrypting them through affine
transformation, which consists of permutation, diffusion and
shift transformations. Another scheme presented in [30]
performs privacy-preserving face recognition scheme in
the frequency domain. This scheme integrates an analysis
network that gathers components with the same frequency
from different blocks and a fast masking method to further
secure the remaining frequency components. We can also
highlight the work of [31] in which the normalized face
feature vectors are encrypted using the CKKS algorithm from
the SEAL library. To save computation costs that comes with
encryption of query face images, [32] proposes to match an
encrypted face query against clustered faces in the repository
through a novel multi-matching scheme.

Other studies use local differential privacy to ensure
that individual data points cannot be reverse-engineered or

identified. The work of [33] proposes a general privacy pro-
tection framework for edge-based face recognition systems.
This is done through a local differential privacy algorithm
based on the proportion difference of feature information.
Furthermore, identity authentication and hash technology are
used to ensure the legitimacy of the terminal device and the
integrity of the face image in the data acquisition phase.
The authors of [34] introduce a new privacy-preserving face
recognition protocol referred to as Privacy using EigEnface
Perturbation (PEEP). This protocol uses local differential
privacy to apply perturbation to Eigenfaces. Only the
perturbed data is stored in third-party servers, and a standard
Eigenface recognition algorithm is run on this data.

B. FEDERATED LEARNING FOR FACE RECOGNITION
Multiple methods use federated learning to ensure privacy-
preserving face recognition. The authors of [35] introduce
PrivacyFace, which leverages privacy-agnostic clusters dur-
ing model training. These clusters are indifferent to privacy
concerns (i.e., the data in these clusters do not reveal sensitive
personal information). PrivacyFace consists of two main
components: theDifferently Private Local Clustering (DPLC)
algorithm, which derives privacy-independent group features,
and a consensus-aware face recognition loss that refines the
global feature space distribution using these desensitized
group features. FedFace [36] presents a federated learning
framework that learns from face images across multiple
clients without sharing the images with other clients or a
central host. Each client, typically a mobile device, contains
face images of only its owner. Face Presentation Attack
Detection (FedPAD) [37] aims to develop generalized fPAD
models while ensuring data privacy. Each data owner trains
a local fPAD model, and a server aggregates these models
without accessing individual private data. Once the global
model is refined, it’s used for fPAD inference. FedFR [38]
is a federated learning-based framework for privacy-aware
generic face representation. The framework optimizes per-
sonalized models for clients using the Decoupled Feature
Customization module, improving both the global model for
face representation and the personalized user model.

III. PROPOSED SYSTEM
The challenge of federated learning revolves around the
task of constructing a unified global statistical model using
data distributed across a limited number to possibly millions
of remote devices. More specifically, the primary objective
commonly pursued in federated learning is the minimization
of the following objective function:

min
w
F(w), where F(w) :=

m∑
k=1

pkFk (w), (1)

where m represents the total number of devices, Fk denotes
the local objective function for the kth device, and pk
signifies the relative impact of each device with pk ≥ 0 and∑m

k=1 pk = 1.
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Federated learning empowers the distributed training of
face recognition models, accommodating a diverse range
of client devices. As illustrated in Fig. 1, the envisioned
federated learning system for face recognition functions
across three key locations: edge devices, a secure aggregator,
and a central main server. These edge devices encompass a
variety of hardware, including mobile phones, laptops, and
similar devices. In contrast, the aggregator and main server
typically operate as cloud-based services.

Fig. 1 depicts the training of a central model using a
distributed dataset. Here, a multitude of nodes, which could
represent user devices, possess subsets of data with varying
sizes. At the device level, each node computes a model
update, which is subsequently conveyed to a central server.
During each training iteration, a substantial volume of these
updates or gradients is amalgamated at the central server. The
central server then derives a global update for the central
model by computing the average of these individual local
updates.

Note that the architecture of the proposed system remains
consistent for both supervised and unsupervised face recog-
nition systems. The key distinction lies in the utilization of
labels for training in supervised systems, while unsupervised
systems do not rely on labels for training individual face
recognition models.

While it is feasible to train individual face recognition
models in the supervised system using only client images
of a given person on a specific device, our preference is
to enhance model robustness and improve the ability to
distinguish impostor images. To achieve this, as depicted
in Fig. 1, we employ two distinct methods for generating
impostor image data for each individual on the edge device:
• In the first method, we randomly select the image of
other persons from the CelebA dataset as impostor
image data for a given person.

• In the secondmethod, we train a GANmodel to generate
impostor image data as it is not always easy to find image
data of different persons in edge devices. Thus, we use
the work of [39] to train a GAN model on the CelebA
dataset. Once the impostor images are generated using
the trained GAN model, they are combined with client
image data to train an individual face recognition model
on a specific edge device.

The proposed system employs distributed gradient descent
to train a deep neural network across training data residing
on user-held devices, with the aim of analyzing the impact of
a secure aggregator. In the system that incorporates a secure
aggregator, the process unfolds as follows:

1) Local Training: Initially, an individual model is trained
locally on each user’s device.

2) Model Transmission to Secure Aggregator: Subse-
quently, each user’s device transmits its locally trained
model to the secure aggregator.

3) Global Model Creation: The secure aggregator aggre-
gates these individual models to construct a global
model.

FIGURE 1. The proposed face recognition system incorporates federated
learning. Through the implementation of a secure aggregator,
we empower a collective of inherently untrusting devices to collaborate
and calculate an aggregate value without disclosing their individual
private data.

4) Aggregated Model Transmission: The aggregated
model is then sent to the central main server.

5) Distribution to Devices: Finally, the main server redis-
tributes the global model to each individual device.

In contrast, in the system where a secure aggregator is not
utilized, the workflow proceeds as follows:

1) Local Training: Each device independently conducts
local training to create an individual model.

2) Model Transmission to Main Server: These individual
models are directly transmitted to the central main
server.

3) Global Model Creation: The main server combines
these individual models to form a global model.

4) Aggregated Model Transmission: The global model is
sent back to each individual device for further use and
updates.

This dual approach allows for a comparative analysis of the
system’s performance with and without the incorporation of
a secure aggregator.

Privacy serves as a significant driving force behind the
adoption of federated learning applications. These systems
are designed to safeguard user data by prioritizing the
sharing of model updates, such as gradient information,
rather than the raw and potentially sensitive data itself. This
innovative approach to collaborative machine learning not
only enhances data privacy but also enables the collective
training of robust and accurate models without exposing
individual user information to undue risks or breaches [40],
[41], [42]. While federated learning mitigates some privacy
risks by not directly sharing raw data, it’s important to
recognize that sending model updates during the training
process can still pose potential privacy challenges [43].
While recent advancements in federated learning have made
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strides in enhancing privacy through tools like secure
multiparty computation (SMC) or differential privacy (DP),
these approaches have trade-offs between privacy and model
performance. The secure aggregator belongs to the class of
secure multi-party computation algorithms, where a set of
inherently distrustful devices denoted as d ∈ U individually
possess private values xu. These devices collaborate to
calculate an aggregate value, such as the sum

∑
u∈U xu, while

ensuring that no device discloses any information about its
private value to others, except what can be inferred from the
resulting aggregate value.

The proposed system aims to uphold the privacy of
federated learning by incorporating the use of secure
multiparty computation (SMC) techniques [44], [45]. The
adoption of secure multiparty computation serves to safe-
guard individual model updates, ensuring their privacy and
confidentiality [44]. The central server is unable to observe
individual local updates; it can only access the aggregated
results at each round.

The proposed work employs the classical federated
learning average (FedAvg) [6]. The process involves local
optimization executed on participating clients and a sub-
sequent server step to update the global model. Notably,
Algorithm 1 illustrates that devices communicate only the
updated weights rather than face image data, preserving the
security and privacy of the user’s facial information locally.

Addressing the transfer of a substantial volume of updated
model parameters from users to a server, which is often
restricted in throughput [8], [9], [46], [47], poses a signif-
icant obstacle in federated learning. This difficulty can be
addressed through strategies such as minimizing the number
of participating users, achieved through the implementation
of scheduling policies [48], [49].

Algorithm 1 In FedAvg, theCDevices Are Denoted by Index
c, Epochs Are Indicated by Index e, and n Represents the
Number of Face Image Samples
h!
0: Initialize w0

0: for each epoch e = 1, 2, . . . . do
0: D← (random subset of M clients)
0: for each client c ∈ C do
0: ŵec← ClientUpdate(c,we)
0: 1wec = we − ŵec
0: end for
0: w̄e =

∑C
c=1

nc
n 1wec ▷ weighted average

0: end for
0: we+1 = we − ηw̄e ▷ Serverupdate = 0

IV. EXPERIMENTS
A. DATASET
CelebA (Celebrities Attributes Dataset) [50], is a popular
dataset in the field of computer vision and machine learning.
It was created by researchers at the Chinese University of
Hong Kong and is often used for various facial recognition

TABLE 1. The architecture employed for the supervised face verification
system.

and image analysis tasks. CelebA is known for its large
collection of celebrity images and the annotations associated
with them. CelebA contains more than 200,000 celebrity
images. These images cover a wide range of celebrities
from different backgrounds and professions. Each image in
the CelebA dataset is annotated with a set of 40 binary
attributes. These attributes include characteristics like ‘‘smil-
ing,’’ ‘‘wearing glasses,’’ ‘‘wearing a hat,’’ and so on.
These annotations are valuable for tasks like facial attribute
prediction and facial attribute manipulation. In addition to
attribute annotations, CelebA also provides identity labels for
the celebrities in the dataset. This can be useful for tasks
involving face recognition. The images in CelebA showcase
a wide variety of poses, expressions, lighting conditions,
and backgrounds, making it suitable for a broad range of
computer vision tasks. The dataset is typically split into
training, validation, and test sets to facilitate model training
and evaluation.

B. EXPERIMENTAL SETUP
The system architectures are:
• The CNN architecture utilized in our work closely
mirrors VGG-M [51], a widely adopted architecture
for image classification and speech technology applica-
tions [52]. Furthermore, we incorporate a max-pooling
layer with dimensions of 2 by 2, along with batch
normalization and dropout layers.
The supervised system has been implemented using the
Keras deep learning library [53] to train the model. The
network is trained on Titan X GPUs for 100 epochs or
until the validation error stops decreasing, whichever
is sooner, using a batch-size of 64. We use SGD
with momentum (0.9), weight decay (5 × 10−4) and
a logarithmically decaying learning rate (initialised to
10−2 and decaying to 10−8).

• An autoencoder is employed to train the unsupervised
system with the primary objective of enabling the net-
work to acquire a representation of person-specific facial
data. The CNN component, identified as the encoder,
is optimized to learn a sophisticated representation of
the provided facial image, while the decoder component
is fine-tuned to reconstruct the encoder’s output into
the corresponding facial image. Following the training
phase, the decoder component is discarded, and the
already learned encoding representation is repurposed
for the face verification task. The unsupervised system
does not utilize impostor data since its primary focus is
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on acquiring a compact vector representation of distinct
individual faces.

The proposed face verification system has been carried
out on the following databases namely CelebA [50]. We ran-
domly selected 1000 persons’ face images. We allocated 90%
of each person’s face images for training an individual, face-
dependent model, while the remaining 10% was reserved
for evaluation. For instance, if a given person had 100 face
images in the development set from the database, 90 images
were utilized for training the individual face model, and
the remaining 10 images were used for evaluation. Addi-
tionally, impostor data was introduced into the test set for
comprehensive assessment.

Initially, our intention was to train individual face models
exclusively using the authentic client face data for each
person on every device. However, due to the limited number
of files for each individual in the dataset—most individuals
having fewer than 100 face images—this approach resulted
in an overfitting problem. To address this, we modified our
strategy and trained individual face models by incorporating
both the true face of the individual and the face images of
other individuals as impostor face data.

We adopted two distinct methods to generate impostor
face images for each individual device. In the first method,
we selected face images of other individuals from each
dataset as impostor face images, with 100 samples chosen
for each individual on a given device. For the second
method, impostor data was created using a GAN model,
leveraging the approach outlined in [39] to train the
GAN model on each dataset. Similar to the first method,
we generated 100 impostor face images for each individual
device.

The primary challenge in training the GAN model to
generate impostor face images lies in its time-consuming
training phase. The computational cost of training the GAN
model for 50 hours on the CelebA dataset with a Quadro
P2000 GPU amounts to 3.5 hours. However, once the GAN
model is trained, the extraction of impostor face image
samples on edge devices becomes significantly faster. It’s
important to note that the training of the GAN model is a
one-time task.

The proposed system’s performance is assessed using the
Equal Error Rate (EER), a metric that measures the point at
which the rates of acceptance and rejection errors are equal.

C. EXPERIMENTAL RESULTS
As it is mentioned in Section III, we have analyzed the impact
of federated learning both for supervised and unsupervised
face verification systems with and without using the secure
aggregator. Thus, the experimental results of the supervised
and unsupervised systems with and without using the secure
aggregator are described below.

1) SUPERVISED SYSTEMS WITHOUT SECURE AGGREGATOR
Fig. 2 illustrates the comparative performance of both
individual and aggregated models within the supervised

system, with and without the utilization of GAN. Notably, the
distinction between Fig. 2 (a) and Fig. 2 (b) lies in the method
of generating impostor face image samples. In Fig. 2 (a),
impostor face image samples are created by selecting face
images of different individuals (i.e., extracting face images
from CelebA to serve as impostors for a given face image).
Conversely, in Fig. 2 (b), the GAN model is employed to
generate the impostor face images.

The primary distinction between the individual and
aggregated face image models lies in their training approach.
For the individual model, a dedicated face image model is
initially trained for each specific face image, utilizing the
corresponding individual’s face image data. Subsequently,
the face image samples are assessed using this personalized
face image model. In this work, the individual model
serves as the baseline system, wherein 1000 individual face
image models are trained using face image samples from
1000 devices.

In contrast, the aggregated model employs a collaborative
approach. Each of the 1000 devices transmits their parameters
to a secure aggregator. The aggregator computes the average
of these parameters, establishing them as its updated weight
parameters, and then redistributes them to the 1000 devices.
Consequently, this collaborative model is referred to as the
aggregated (federated) face image model.

In Fig. 2, it is evident that when each of the 1000 devices
employs its own individual model, the Equal Error Rate
(EER) surpasses 1.98. However, with the utilization of
federated/aggregated models, irrespective of the impostor
generation method, a majority of the devices exhibit EER
values below 1.98. Specifically, employing the first method,
which uses the face images of other individuals as impos-
tor data, around 324 devices yield an EER below 1.98.
Meanwhile, in the second aggregation method involving
GAN-generated impostor face images, a similar number of
devices achieve an EER below 1.98.

In both Fig.2 (a) and Fig.2 (b), it is noticeable that
the aggregated face image model consistently outperforms
the individual model in terms of average EER, regardless
of whether GAN or other persons’ face images are used
as impostor data. These figures also indicate that the two
aggregated methods yield nearly identical average EER
values. This suggests the feasibility of employing GAN for
on-device generation of impostor face images, eliminating the
need to transfer impostor data from external sources to edge
devices.

Table 2 presents a comprehensive overview of the
results. The average EER of individual models across the
1000 devices/face images in the supervised face image
verification system stands at 2.11. This average EER serves
as the baseline system, calculated by utilizing data trained
specifically for each face image/device.

Additionally, Table 2 highlights that the average EER
for the 1000 devices under the federated model, without
employing a secure aggregator and GAN, is 1.55. This rep-
resents a noteworthy 26.5% relative improvement compared
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FIGURE 2. Histograms depicting the Equal Error Rate (EER) across
1000 devices are presented for the comparison between individual and
federated models in the supervised systems. Notably, this evaluation
focuses on models that do not utilize a secure aggregator (SA).

to the baseline systems. Similarly, leveraging GAN to
generate impostor data during the training of face image
models yields superior EER results compared to the baseline
system. The table illustrates that the federated model utilizing
GAN-generated data achieves an average EER of 1.98,
reflecting a 6.

2) SUPERVISED SYSTEMS USING SECURE AGGREGATOR
Table 2 reveals that the average Equal Error Rate (EER) of
the 1000 devices within the federated model of the supervised
system, incorporating both a secure aggregator and impostor
face images from the CelebA dataset, is 2.61. Similarly, the
average EER for the 1000 devices in the federated model of
the same system, employing the GAN technique to generate
impostor face images, is 2.73. These findings suggest that,
regardless of the impostor generationmethod, the inclusion of
a secure aggregator leads to inferior results compared to both
individual systems and federated systems that do not involve
a secure aggregator.

The decline in EER when employing a secure aggregator
in the federated system can be attributed to the trade-off
between privacy enhancement and model performance or
system efficiency. While recent approaches aim to bolster the

FIGURE 3. Histograms illustrating the Equal Error Rate (EER) distribution
across 1000 devices are provided for a comparison between individual
and federated models in the supervised system. This analysis specifically
considers models that incorporate a secure aggregator (SA).

privacy of federated learning through secure aggregation, this
often comes at the expense of reduced model performance
or overall system efficiency. Consequently, it becomes
essential to weigh the privacy aspect alongside the EER
values. Nevertheless, the results from systems incorporating
secure aggregators remain acceptable despite the observed
trade-offs.

In Figure 4, the distribution of Equal Error Rate (EER)
among the 1000 devices is presented for both individual
and aggregated models within the supervised system, with
and without the inclusion of a secure aggregator. The figure
also highlights the influence of using Generative Adversarial
Networks (GAN) for impostor face image generation. The
depicted elements include the minimum, lower quartile,
median, upper quartile, and maximum EER values.

As evident from the figure, aggregatedmodels, particularly
those not incorporating a secure aggregator, consistently
outperform individual models in terms of average EER,
regardless of the impostor generation method employed.
The visual representation of EER distribution provides a
clear indication of the superior performance of aggregated
models, reinforcing the efficacy of collaborative approaches
in contrast to individual models within the supervised
system.
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FIGURE 4. The box plot depicts the distribution of Equal Error Rates (EER)
for both supervised individual and federated models across 1000 devices.
The analysis considers scenarios both with and without using a Secure
Aggregator (SA). Additionally, the influence of impostor selections, with
and without the incorporation of Generative Adversarial Network (GAN),
is highlighted.

TABLE 2. The table provides a comparison of Equal Error Rates (EER) for
supervised face verification systems, considering both individual and
federated approaches, with and without the use of a Secure Aggregator
(SA). The inclusion of GAN-generated data for impostor face images is
also accounted for in the comparison.

3) UNSUPERVISED SYSTEMS
In Fig. 5, the Equal Error Rates (EERs) are presented for
both individual and aggregated face image models within the
unsupervised system, with and without the implementation of
a secure aggregator. As depicted, the EER for all 1000 devices
exceeds 2.57 when each device utilizes its individual model.
However, when the federated model does not employ a secure
aggregator, as shown in Fig. 5 (a), approximately 680 devices
achieve an EER below 2.35.

This visual representation underscores a notable improve-
ment in EER when transitioning from individual models
to federated models without a secure aggregator in the
unsupervised system. The collaborative approach appears
to enhance the performance of the face image models,
contributing to lower EER values for a significant portion of
the devices.

In contrast to the results depicted in Fig.5 (b), the
use of a secure aggregator results in a deterioration of
Equal Error Rates (EERs), leading to inferior results
when compared to the individual models. This observation
highlights a significant discrepancy in performance when
incorporating a secure aggregator within the unsupervised

FIGURE 5. The Equal Error Rate (EER) across 1000 devices is reported for
the comparison between the individual and federated models in the
unsupervised system.

TABLE 3. The Equal Error Rate (EER) is compared between the
unsupervised face verification systems, considering both individual and
federated approaches, with and without the use of a Secure Aggregator
(SA).

system. The visual representation in Fig. 5 (b) underscores
the importance of carefully evaluating the influence of
a secure aggregator on EER results, revealing a poten-
tial trade-off between privacy-enhancing measures and
model performance in the context of the unsupervised
system.

Table 3 displays the average Equal Error Rate (EER)
of individual models across the 1000 persons within the
unsupervised face verification system, amounting to 2.57.
In contrast, the table reveals that the average EER for the
1000 devices in the federated model, under the same system
but without a secure aggregator, is 2.35. This signifies an
8.56% relative improvement in EER compared to the baseline
unsupervised system. However, it is noteworthy that the
inclusion of a secure aggregator in the federated model
results in a worse outcome compared to the baseline system,
as indicated in the table.
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FIGURE 6. A box plot is presented to illustrate the distribution of Equal
Error Rates (EER) for unsupervised individual and federated models
across 1000 devices. The analysis encompasses scenarios both with and
without the utilization of a Secure Aggregator (SA).

D. DISCUSSIONS
The results presented in Table 2 and 3 consistently highlight
that, regardless of the face verification system (supervised
or unsupervised), the introduction of a secure aggregator
tends to reduce the performance of the federated model.
Conversely, when the federated model operates without a
secure aggregator, EER results improve in comparison to the
individual models. Despite the slight deterioration caused
by the secure aggregator, it’s essential to consider that its
inclusion ensures the privacy of the data.

It’s worth noting that, while the EER results experience
a slight decline with the secure aggregator, the overall
performance remains satisfactory. The compromise in EER
is balanced by the privacy-preserving benefits offered by the
secure aggregator. The EER results, even with the use of a
secure aggregator, are acceptable, emphasizing the trade-off
between privacy protection and model performance.

In addition to the individual and federated models, another
experiment was conducted by pooling all face image samples
from the 1000 persons and training a single generic face
image model on a single computer. The results demonstrate
that the average EER of the global model on the supervised
and unsupervised face verification systems is 1.2% and 2.2%,
respectively. These results are comparable to the federated
model’s performance (see Fig. 4 and 6). The federated model
achieves similar EER values as the global model while
preserving the privacy of face image data. This underscores
the advantage of using federated learning for face recognition
systems.

The work employs 1000 devices to compare the per-
formance of individual versus federated models. Statistical
analysis using Student’s t-test supports the significance of
the observed differences. The computed P-values for both

comparisons, where the federated model selects impostor
face images from CelebA (federated model 1) and where
GAN is used for impostor face image generation (federated
model 2), are both less than the standard significance level
of 0.05. Thus, we reject the null hypothesis, affirming that
the mean EER differences between individual and federated
models are statistically significant.

Finally, the experiment considered the impact of updating
local models more than once. The results indicate that
updating local models more than once does not lead to
an improvement in EER. This could be attributed to the
similarity in training data among devices during each training
phase. Although updating more frequently did not yield
enhanced performance, this decision was driven by the need
to maintain data privacy.

V. CONCLUSION
In this work, we propose the adoption of federated learning
as a safeguard for the privacy of facial image data residing
on edge devices, applicable to both supervised and unsu-
pervised face recognition systems. Our approach centers on
decentralized training, eliminating the need for devices to
transmit their raw image data to centralized servers. Instead,
each user’s data remains securely stored and processed
solely on their respective edge device. Consequently, training
occurs exclusively at the local level, with each device
contributing updates to a central model. Subsequently,
a secure aggregator consolidates these local models into a
single federated model, which is then distributed via the
main server back to the individual devices. Furthermore,
our research delves into an analysis of the influence of the
secure aggregator on the performance of face recognition
systems.

Our proposed system offers two primary advantages.
Firstly, as raw data remains confined to individual devices,
the privacy of facial images is preserved. Secondly, exper-
imental findings reveal that the federated model, devoid
of a secure aggregator, achieves a superior average Equal
Error Rate (EER) compared to individual models. However,
when the federated model incorporates the secure aggregator,
the aggregated model yields EER results that are slightly
less favorable than those of individual models. Nonetheless,
the EER results remain commendable, emphasizing the
importance of weighing the trade-offs between privacy and
performance.

Future research works should delve into refining aggre-
gation techniques beyond simplistic averaging methods.
Additionally, exploring the effects of scaling up the number
of devices beyond the 1000 devices employed in this work
holds promise for further enhancing the effectiveness of
privacy-preserving face recognition systems.
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