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ABSTRACT Understanding liquid spray is essential for spray applications, including but not limited to
designing fuel-efficient engines. Due to the challenges involved in collecting real-world liquid spray images,
a synthetic liquid spray was generated using fluid simulation based on the atomization of the liquid jet.
Semantic segmentation was chosen to analyze the liquid spray, as it reflects the precise location of the objects
in the image. This paper presents a workflow to train a U-Net with a small sample (only 24 training images)
dataset under the constraint that no ground truth is provided. An image is selected from the generated images
of liquid spray and edited by randomly masking some objects. After the chosen image is annotated, a data
augmentation technique that includes rotation and Gaussian smoothing is applied, resulting in 24 images
available as the training set. The RGB original-sized images are fed to U-Net for training. Due to how
the liquid spray images are obtained in the real world, Gaussian smoothing is explored as the inductive
bias. Gaussian smoothing is incorporated between the convolutional layers of U-Net to enhance its feature
extraction ability. The experiment results showed that the segmentation output improved when smoothing
was incorporated into the U-Net. By visualizing the convolutional feature map of trained U-Net, we discover
that smoothing makes convolution less biased to texture information. Going through this workflow, the
trained U-Net is found to generalize well to the test images despite learning from few samples. Code is
available at https://github.com/lynerlwl/spray-unet

INDEX TERMS Computer vision, image processing, image statistics, semantic segmentation, scene
understanding, convolutional network.

I. INTRODUCTION
Efficient combustion is a fundamental aspect for optimizing
engine performance. For efficient combustion to occur in a
propulsion engine, the fuel must mix well with air, creating
a homogeneous mixture that burns and releases energy to
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approving it for publication was Yizhang Jiang .

power the vehicle. In liquid-fuelled systems, atomization is
crucial for creating this fuel-air mixtures. Atomization breaks
liquid jets into a spray of smaller ligaments called droplets,
that will be dispersed into gas [1]. If the fuel remains in
large droplets, it will not mix properly with the air, leading
to inefficient combustion. Therefore, understanding the spray
formation process is essential for the development of air-
breathing propulsion systems [2]. Thus, analysis of the size,
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distribution, and spatial arrangement of the ligaments in the
spray is necessary.

The spray was photographed using a high-speed cam-
era [3]. Thus, image segmentation comes naturally as the
suitable method to be applied to the photographed liquid
spray image to analyze the ligaments. This research attempts
to showcase the process of preparing liquid spray images
for semantic segmentation under the condition that no
ground truth is available. Since obtaining real-world liquid
spray images is challenging, computer-generated liquid spray
images are used for this research. The trained model can
later be adapted to real images using domain adaptation tech-
nique without requiring the annotations [4]. Alternatively,
augmenting the real images with synthetic images can also
improve the segmentation accuracy of the trained model [5].
Four object classes exist in the computer-generated liquid
spray images, differentiated by the ligament shape and aspect
ratio.

Most of the works on liquid spray analysis performed
segmentation on small droplet areas, and a simple U-Net
trained on a limited number of computer-generated liquid
spray images proved that convolutional networks is capable
of recognizing the different ligament classes in the test
images with dense object segmentation [6]. However, the
convolutional network is found to be biased towards texture.
Thus, increasing shape bias will increase the robustness of
the network [7]. It is best if the network have a balance
bias towards texture and shape, not just shape-biased [8].
As mentioned, the main feature of liquid spray images is
shape. If the learning of the model relies less on texture
and more on shape, it would produce a better segmentation
model. One of the ways to achieve that is by applying
smoothing to the image to emphasize the edge structure.
Due to the nature of liquid spray images taken with high-
speed cameras likely exposed to motion or defocus blur,
Gaussian smoothing is applied to the test images to check
the robustness of the trained model [9]. Through an empirical
discovery, inducing an appropriate blurring artifact into the
test image significantly maximize the contour boundary
visibility. This inductive bias allows U-Net to recognize
the initially undetected ligaments in the image. However,
an adaptive blurring is necessary to provide an optimal
recognition rate [10].
Gaussian smoothing applied to the image could enhance

the contour visibility. What if Gaussian smoothing is
incorporated into the network architecture? As the subsam-
pling layers in the convolutional network, such as max-
pooling or strided convolution, do not follow the Nyquist
sampling theorem, the high-frequency components might not
be adequately sampled, causing the convolutional feature
map to have aliasing [11]. Inclusion of a pooling layer
is essential to semantic segmentation as it enlarges the
receptive field of the network. An information-preserving
downsampling module is needed to minimize the information
lost such that boundary, scale, and texture information can
be preserved [12]. Though applying anti-aliasing before

subsampling improves shift-equivariance in the convolutional
network, anti-aliasing and data augmentation cannot achieve
fully translation-invariant in the convolutional network
due to non-linear activation functions [13]. A non-linear
sampling layer that selects the sampling grid adaptively,
namely adaptive polyphase sampling (APS), is proposed to
replace the conventional pooling layer in the convolutional
network, allowing the convolutional network to be truly
shift invariant [14]. Since APS is a handcrafted down-
sampling method, a generalization of APS called learnable
polyphase sampling (LPS), which is end-to-end trainable,
is proposed [15].
Inspired by the fact that smoothing before downsampling

is better for retaining spatial information, the pooling layer
in U-Net is replaced by the LPS layer [15]. The new U-
Net will be referred to as the improved U-Net. Fig. 1 shows
the architecture of the improved U-Net used in this research.
An image from the computer-generated liquid spray dataset
is chosen randomly to create the training set. A few random
parts of the chosen image are masked to be different from the
original image. Then, the image is partially annotated. With
the ground truth, rotation andGaussian smoothing are applied
to the image for extra image generation. Fig. 2 depicts the
data preparation workflow. Now, all 24 new images are fed
to improved U-Net for training. The visual comparison of the
segmented outputs from basic and improved U-Net showed
that the improved U-Net produces better results. Since the
ground truth for testing images is unavailable, it is inaccurate
to say a particular model is doing better based on the training
loss or dice score. Thus, a metric that counts the number
of contours in the segmented outputs is proposed to justify
any improvement made to the model. Through evaluating the
visual behavior of the convolutional feature map [16], the
improved U-Net is found to have the feature map with a less
jagged effect, indicating theGaussian smoothing successfully
reduce the texture bias.

In summary, we demonstrated the procedure to train a
semantic segmentation model from a small sample dataset
without any ground truth. With that, we addressed the
research limitations. Firstly, semantic segmentation is known
to be needing many training images. We showed that we
can train a segmentation model using a small sample of
24 with correct data preprocessing. Secondly, the irregular-
shaped liquid spray is hard to detect. We improved the
detection rate with Gaussian smoothing. The rest of this paper
is organized as follows. Section II explains the properties
of the liquid spray images in the dataset. Section III
shows the experiments using U-Net to validate different
experimental settings. The results are presented along with
a detailed discussion in section IV before concluding the
paper in section V. The main contributions of this paper are
as follows:

1) The image size is important in training a semantic seg-
mentation model. The experiments show that training
the model with the original image size yields a more
accurate segmentation outcome than using the resized
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FIGURE 1. This is a description of the architecture of an improved U-Net. The light orange block represents the convolution and ReLU
layer. The dark orange downsampling layer is referred to as LPS and is followed by Gaussian smoothing. The blue layer denotes the
transpose convolution layer. The final layer in magenta is the output layer that consists of the Softmax activation function.

FIGURE 2. A pipeline for preparing training data. The unlabeled liquid
spray in image A is annotated, producing the ground truth in image B.
Then, data augmentation techniques involving rotation and Gaussian
smoothing are applied to both images, creating the training set, as seen
in image C.

image. The color information matters to the feature
learning. Keeping the training images in RGB instead
of grayscale to leverage the color information is better
to differentiate the contour.

2) Incorporating blurring between the convolution layer of
U-Net improves feature learning, thus leading to better
segmentation performance.

II. DATASET — LIQUID SPRAY IMAGES
The dataset used in this research study contains computer-
generated liquid spray images unique to the aerospace
engineering domain, which is uncommon to natural scene
images that can be found and largely used in most computer
vision applications. For example, the ImageNet dataset [17],
which is commonly used by both computer vision researchers
and practitioners in their visual experiments, in contrast, this
computer-generated liquid spray images dataset is primarily
for aerospace engineers designing jet engines. They need
to understand the distribution of ligaments in the spray.
In addition to these images are domain-oriented, apply-
ing segmentation to these computer-generated liquid spray
images is also beyond the usual foreground and background
separation. Indeed, part segmentation is required to analyze
different classes of ligaments specifically. Following on, the
main challenge of segmenting images in this dataset is that no
ground truth has been provided. Therefore, labeling objects in
these images further posts another labor difficulty, especially
when some objects are tiny in size fewer than ten pixels.

The computer-generated liquid spray dataset contains
1573 images of the liquid spray transition from a bulk liquid
to liquid spray. The liquid spray images are named as f_n,
where n is the frame number. For example, the first image
is named f_00000, and the last image is named f_01572. All
images in the dataset are horizontal-orientated with irregular-
shaped liquid sprays and captured in different aspect ratios.
Fig. 3 shows some images sampled from the dataset. These
images are generated using Basilisk [18], an open-source
computational fluid dynamics software. All red images in the
dataset are 8-bit RGB images with a scale of 256 intensity
levels and having a spatial size of 1200 × 600 pixels.
An image is selected randomly to be edited as the training

image. This selected image is f_01213. The image histogram
is used to study the color distribution. The primary colors
in the image observed visually are blue (for objects) and
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FIGURE 3. Liquid spray image generation. This figure shows the
progressive transition of the liquid spray test image from the initial
graphic generation stage in image A until the completion of image
formation in image D.

white (for background). The intensity distribution of the
histogram is highly imbalanced as the histogram without
scaling shows the white color as the majority composition
of the image, with the pixel value 255 around 70% of the
image. Thus, the y-axis of the following histogram is limited
to 0.025 to observe other pixel values, as shown in Fig. 4.
The red channel in the image histogram is significantly
higher than the green and blue channels. This color imbalance
suggests that color information is essential to this image.
Thus, continuing to work on this image in grayscale, which
removes the color information, is not recommended. The
range between the darkest and brightest intensities is clear,
which makes the object easily distinguishable from the
background. However, this also means that the objects are
less distinct, making it harder to separate the objects from
each other.

FIGURE 4. The image histogram for image f_01213 of the liquid spray
image dataset.

After exploring the color information, we look at the image
texture in Fig. 5 using the entropy. From different entropy
values, we observe that the object has uneven texture. Take

the droplets in the image D as an example. The region
near the edge has a rougher texture than the hollow inner
region due to low values filtered. By comparing image A
to image D, more objects with low texture can be seen in
images A and B.

FIGURE 5. Entropy image for image f_01213 with 0.01, 1.00, 3.00, and
4.00 threshold settings, respectively.

A. SELECTION OF TRAINING IMAGE
This dataset is prepared for training and validating a semantic
segmentation model. The objects of interest or object classes
in this dataset are droplet, detached ligament, attached
ligament, and lobe. All these classes will be explained in
the ground truth annotation paragraph. An image with all
four object classes clearly visible is chosen from the dataset
and edited as the training image. The edited image has some
objects removed. See Fig. 6 for the comparison. The selected
image is edited to avoid using the same image in the dataset
to train the semantic segmentation model.

FIGURE 6. The droplet masking process used in the dataset preparation.
The example is the image f_01213. The top image is the original, unedited
image, and the bottom image is the edited image with masking applied.
The red circles in the edited image indicate the masked areas.

B. ANNOTATING LABEL
A pixel-wise label is needed for semantic segmentation.
To obtain the pixel-wise label, we annotate the label on the
edited version of that image using labelme [19]. The partially
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labeled image is shown in Fig. 7, as indicated by different
colors in the label. The descriptions of the four object classes
are summarised in Table 1.

FIGURE 7. Ground truth of the training image. The top image is the label
for training, and the bottom image overlays the training image f_01213
with the label.

C. DATA AUGMENTATION
The only preprocessing done to the training image is rotation
and Gaussian smoothing. The training image is rotated in 30-
degree intervals eleven times to complete a full 360-degree
rotation. The rotation allows themodel to learn the orientation
of the spray in the image when the camera position is off-
center. Smoothing highlights the coarse contour structure in
the image, indicating that the edge or shape is an important
feature. Gaussian blurring with 0.5 standard division is
applied to the images after rotation, resulting in a training
dataset of 24 images.

D. SEGMENTATION CHALLENGE
Based on the ground truth of the image, the ligaments
are differentiated by their shape. Using conventional image
segmentation algorithms to segment the object is difficult
due to the complexity of the scene. Fig. 8 shows a few
segmentation results in which the image is hardly partitioned
into the correct segments. The segmentation challenges come
from no identifiable main object appearing significantly
on the image surface for easy segmentation. The objects
are sparse and scattered around the surface of the test
images to seek successful segmentation. In addition, the
success of object segmentation also depends on the formation
of the object’s shape and its spatial distance across the
neighborhood objects. U-Net as a variant of CNN, trained
with a small amount of data, had successfully segmented
the shadowgraph liquid spray [20]. Thus, by using a
convolutional network and the ground truth in supervised
learning, we can develop a computation model to classify
the ligaments in the spray image. However, CNN is known
to be biased towards texture, a less important feature in our
dataset.

FIGURE 8. Four conventional segmentation algorithms were applied to
the training image to showcase the difficulties of the segmentation.
Image A is Felzenszwalbs’s Algorithm, image B is SLIC, image C is
Quickshift, and image D is Compact Watershed.

III. EXPERIMENT
A. U-NET
U-Net [21] is an encoder-decoder network in which skip con-
nections link shallow layers with deeper ones. The encoder is
responsible for feature learning, containing convolutional and
pooling layers. On the other hand, the decoder reconstructs
the feature learned in the encoder, and it contains transpose
convolution as the upsampling layer.

Two types of U-Net are developed: a basic U-Net and an
improved U-Net with the shift-invariant mechanism. For the
shift-invariant U-Net, the pooling layers in the encoder part
are replaced with the LPS layer [15]. The reason for having
two models is to observe how the blurring layer in the feature
extraction layer affects the segmentation result.

The U-Net is trained from scratch, meaning no pre-trained
backbone is used in the feature extraction layer. The reason
is that the visual objects of the image used in this research
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TABLE 1. Object classes and their descriptions in training image.

FIGURE 9. Image A is the predicted image from basic U-Net trained with
the original size image. Image B and C are the predicted image from basic
U-Net trained with resized image. Both are the same image with different
resolutions.

for segmentation are visually different from the natural scene
images widely used in most AI/ML applications regarding
visual pattern formation and spatial geometrical appearances.
We will go through the elements that affect model training
next.

B. IMAGE PROPERTIES
The original resolution of the training images is 1200 × 600.
We tried resizing it to 600 × 600 to reduce the size to fit
more images per batch size. The images are fed to basic U-
Net for training. As the image is not resized following the

FIGURE 10. Test image in grayscale and its image histogram.

aspect ratio, the U-Net wrongly predicted the objects in the
testing image, as shown in image C in Fig. 9.
This subsection shows that the semantic segmentation of

this dataset requires the color information for better segmen-
tation. The histogram of the grayscale image, as shown in
Fig. 10, contains less information than the RGB version,
as shown in Fig. 4. We trained two improved U-Net, with
RGB images and grayscale images, respectively. Fig. 11
is the predicted output showing that the model with color
information predicts better than the model without color
information. The model trained with grayscale images loses
information about the lobe class, as the prediction only
contains four classes out of the five, of which the blue-colored
pixel is missing.

C. FINAL SETTINGS ON MODEL TRAINING
BothU-Net are trainedwith original-sized RGB images.With
a 10% train-test split, the train set is 22, and the validation set
is two. The deep learning framework used in the experiment
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FIGURE 11. Prediction outcome of improved U-Net. The top image is from
a model trained with RBG images, and the bottom image is the prediction
outcome of the model trained with grayscale images.

FIGURE 12. Prediction result of horizontal image f_01340. The top image
is the result of improved U-Net that detected 493 droplets while the
bottom is the result of basic U-Net that detected 382 droplets.

FIGURE 13. Scatter plot of droplets count across the dataset.

is PyTorch. The model is trained with ten epochs per run
and one batch size, initialized by a 10-e4 learning rate. The
loss function is the sum of cross entropy loss and dice loss.
The backpropagation algorithm is RMSprop. Bothmodels are
trained on Google Colab with T4 GPU. The basic version
of Google Colab comes with the Intel(R) Xeon(R) CPU @

FIGURE 14. Prediction result of tilt image f_01522. The top image is the
result of the improved U-Net that detected 701 droplets, while the bottom
is the result of the basic U-Net that detected 443 droplets.

2.2GHz and 13 GB RAM. The training time per run for basic
U-Net is around 5 mins, and 15 mins for improved U-Net.

D. COUNTING OF OBJECT AS EVALUATION
The trained U-Net performed inference on the test images to
get the predicted image. The predicted image is also called the
mask. Since no ground truth is available for the test images,
it is not easy to quantify the result. To evaluate the quality
of the segmentation, we counted the object’s occurrences,
specifically the droplets. With a plain assumption that with
more droplets detected, the model learned better.

How to identify an object from the mask? An assumption
that one contour represents one object is made. The contour
of the droplets class is detected from the mask using a border
following algorithm proposed by Suzuki and Abe [22]. Note
that the droplet is represented by value one in the pixel
intensity. Inspired by inverted binary thresholding, pixels
with an intensity equal to one in the mask will become black,
and pixels with an intensity not equal to one in the mask will
become white. After this process, a binary image is obtained
and used in a border following algorithm. All of the contours
in the image will be retrieved with the approximation that
compresses horizontal, vertical, and diagonal segments and
leaves only their endpoints. Lastly, the number of elements in
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FIGURE 15. The figure displays the convolutional feature maps and their corresponding entropy images of a horizontal test image. The two
left columns present the results from a basic U-Net, while the two right columns present the results from the improved U-Net.

the contour list is counted to get the final number of detected
droplets.

IV. RESULTS AND DISCUSSION
The images in the testing set have horizontal and tilt
orientations. The results and discussion will be based on the
predicted outcome with the number of objects detected as
the metric. Fig. 12 is the result of a horizontal test image
where both the models perform well on the test image, with
all four classes detected. The priority here is the number of
droplet class (the objects in red) detected. The improved U-
Net provides a more promising visual outcome with more
droplets detected, which indicates it performs better than the
basic U-Net in liquid spray segmentation.

Both models are inferred on the complete dataset, and
the plot of droplet detection count is shown in Fig. 13.
The result indicates that the improved U-Net detected many
more droplets than the basic U-Net. The shortcoming of the
current counting evaluation is the inaccurate counts affected
by false contouring in the objects. Supposedly, there is only
one class per object. In the predicted outcome, some objects
have two classes predicted, mainly seen in droplet prediction.
To further evaluate the generalization of the model, the model
is used to predict the tilt orientation of liquid spray with a
resolution of 1600× 1200. Fig. 14 is the result of the tilt test
image. The improved U-Net is better than the basic U-Net in
this visual comparison.

The only difference between improved U-Net and basic
U-Net is the pooling layer. The improved U-Net used the
LPS layer, a non-linear trainable downsampling layer with
anti-aliasing applied. As aforementioned, CNN is biased to
the texture of the image [7]. We had an assumption that
reducing the texture bias guides convolution to rely more on
the edge/shape information. Since both models are trained
with blurred images, the LPS layer with anti-aliasing applied
plays an important role in proving better segmentation
output. Fig. 15 provides a clear visual comparison of the
convolutional feature map between the two models. The third
layer of the basic U-Net starts to show a jagged effect.
The corresponding image entropy also generates irrelevant
texture around the image border. The irrelevant texture
becomes occupied in the last layer of the basic U-Net.
We suspect this is the reason the convolutional networkmakes
decisions based on the wrong features. The improved U-
Net performs better because the blurring layer between the
convolutional feature map reduces texture information and
increases contour information, which is the success factor of
segmentation. The convolutional feature map of the improved
U-Net contains texture information without noise, so the
classifier is less prone to wrong predictions. The result
also shows that texture is still the prominent feature that
convolution learned, which also justifies the occurrence of
false contouring among the objects. For example, in some
droplets, the outer texture differs from the inner texture. Since
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the convolutional network classifies the objects based on the
texture, two classes are predicted in one droplet.

V. CONCLUSION
In general experimental practices, obtaining acceptable
segmentation results for computer-generated liquid spray
images using a semantic segmentation deep learning model
such as U-Net requires intensive pixel-wise annotation and
a large number of training samples. Through our research,
we have demonstrated that with a methodical approach of
pre-processing training images, it is possible to train a U-Net
semantic segmentation model with only partial ground truth
annotations. Our findings suggest that even with limited sam-
ple sizes, such as the 24 training images used in this research,
it is possible to achieve satisfactory segmentation outcomes
for computer-generated liquid spray images, as measured by
visual evaluation. This workflow is helpful to be applied
to a niche dataset, with some prospective applications such
as detecting cultural patterns, differentiating fruit types,
and segmenting medical images. According to our research
findings, we collected some practical directions to train
a U-Net semantic segmentation deep model. We suggest
keeping the original image resolution during training to retain
all spatial information unaffected by resizing and keeping
the image in RGB mode to leverage color information for
the convolutional feature extractor to learn a rich image
representation. Another step to improve the model is to apply
blurring after the convolution layer to highlight the contour
information of the object to enhance the segmentation rate.
Through the visualization of the convolutional feature map,
we found that Gaussian smoothing reduces the jagged effect
caused by downsampling in the convolutional network, thus
improving the segmentation outcome. However, the price of
small sample learning is the occurrence of false contours in
some objects, which falsify the number of predicted objects.
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