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ABSTRACT Vision-based smart agriculture is an important way to improve the efficiency of agricultural
production. Labeling images for deep learning in complex field photos is a difficult task. In this paper,
an image augmentation method that can help reduce the workload of image labeling based on synthetic
images is proposed. The synthetic images consisted of three parts: crop, weed, and soil. The crop and weeds
were obtained automatically by Excess Green (ExG) and minimum error threshold segmentation. The data
augmentation method was tested on image classification, object detection, and semantic segmentation tasks
by Resnet, YOLOVS, and DeeplabV3. The accuracy of the classification model reached 0.99. The IoU of
object detection and semantic segmentation were 0.98 and 0.96, respectively. The results showed that the
method in this paper was acceptable despite slight overfitting. This method was proposed based on the
characteristics of field images, and it was meant for reducing the workload of labeling images.

INDEX TERMS Data augmentation, deep learning, field, synthetic samples.

I. INTRODUCTION

Agriculture plays a vital role in food security and social
development [1]. Traditional agriculture has problems such as
sloppy management, low production efficiency, and pesticide
pollution [2]. Precision agriculture is an important direction
for upgrading the the industry [3]. Machine vision-based
precision agriculture is of high practical value [4]. Therefore,
the development of machine vision technologies that can
be applied in the agricultural industry has a crucial role in
upgrading traditional agriculture.

In recent years, many scholars have studied the application
of machine vision technology in agriculture, including
disease detection, plant recognition, weed discrimination,
and harvesting of fruits [5]. Three-dimensional cameras,
spectral cameras, and thermal cameras are new technologies
that have been developed in recent years. These techniques
have also been studied by some scholars in precision
agriculture [6], [7], [8], [9]. However, the high price of
such devices, and the requirement for a stable working
environment, make it difficult to use them in complex
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agricultural industries nowadays [10]. Digital cameras are the
most common cameras. After decades of development, they
have many advantages such as low price, high stability, and
low requirements for working environment [11]. However,
these cameras can only acquire the color information of three
channels, red, green, and blue. Therefore, it usually needs to
be used combined with an excellent algorithm.

Generally, artificial intelligence algorithms combined with
machine vision can achieve good results [5]. Before the
popularity of deep learning, machine learning algorithms,
represented by neural networks, support vector machines,
decision trees, and other algorithms, achieved state-of-the-
art results [12]. These algorithms usually had to manually
define image features such as color, texture, and contours.
Then, machine learning models were constructed using the
image features as input. Such algorithms achieved better
applications in pest and disease identification, seedling and
grass classification, and fruit harvesting [13], [14], [15], [16].
With the advent of convolutional neural networks, deep
learning neural networks have gradually dominated the state-
of-the-art models [5]. It replaces the manual definition
of image features with convolutional layers. This greatly
improves the adaptability of artificial intelligence algorithms.
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Deep learning is highly applicable to complex agricultural
environments. Numerous scholars have applied convolutional
neural networks to solve difficult problems in agricultural
production [17], [18], [19], [20]. However, deep learning
network models are usually more complex and have more
parameters. This requires more computing power and a larger
number of samples to train the model. Therefore, developing
a technique that can reduce the number of training samples is
crucial for the application of deep learning in agriculture.

Data augmentation is a suite of techniques that enhance
the quantity and quality of training datasets. It makes
deep learning models can be trained better [21]. Early
data augmentation was dominated by simple graphical
transformations such as Geometric transformations, Flipping,
Color space, Rotation [22], [23], [24], [25], [26], [27].
These image data enhancement methods were simple and
effective. They are still widely used today. But these
data augmentation methods are only graphically enhanced.
Therefore, their effect is limited. Another important class of
image data augmentation methods is based on the cropping
of images [28]. This type of method initially crops off an
arbitrary part of the image. Later on, the method of Cut-Mix
was developed. In this method, a part of the image is cropped
out and pasted on top of another image to form a new
image. This method replaces the background and noise to
the detection object and therefore can achieve good results.
This method was applied to plant disease detection with good
results by Douarre et al [29]. In the field, target, noise, and
background are relatively fixed. The background of farmland
is usually soil. Soil is relatively stable. Soil types in the
world are fixed. The noise, in the farmland environment,
is generally weeds, weeds are also generally fixed about a
dozen species of weeds occupy more than 90% of the total
weeds. Therefore, this method has a greater potential for
application in agricultural fields.

In this paper, a data augment method for agriculture
environments was investigated. The field image was divided
into three parts, object, noise, and background. The main
research target of this paper is to investigate the cut-mix
method for data augment in the field environment. The
specific research targets are: (1) to study the implementation
of cut-mix in field images; (2) to investigate the augment
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FIGURE 1. Experiment site.
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effect of the method on classification, object detection, and
semantic segmentation tasks.

Il. MATERIALS AND METHODS

A. EXPERIMENTAL IMAGES ACQUISITION

In this study, digital cameras (RERVISION USB8MPO02G,
China) were mounted on the tractor and sprayer equipment
to capture images. It was controlled by embedded devices
(Raspberry Pi 4B, IMX6ULL, IMX8) when capturing
images. The cameras were 140 cm from the ground. The size
of the image acquisition area was 90 x 120cm. There were
no sundries and shadows in the collection area.

There were three experimental sites in this study. Exper-
imental site A is located at Qixing Farm, Jiansanjiang,
Jiamusi, Heilongjiang Province, PR China(132°35° 32 E,
47°10° 58” N), shown in Figure I(a). Corn and soybean
were cultivated at this experimental site. The main species
of weeds growing here are Green bristlegrass, Thistle,
Acalypha copperleaf, Equisetum arvense, Goosefoots. The
soil here is fertile black soil. Experimental site B is located
at Shangzhuang Experimental Station, China Agricultural
University, No.2 Yuanmingyuan West Road, Haidian District,
Beijing, PR China (116°46” 57 E, 40 °01” 7 N, shown in
Figure 1(b)). Wheat is cultivated here. The main weeds in this
area are Horsetail, Plantain, Parsnip, Endive, and Ashwort.
The soil of this place is mainly cinnamon soil. Experimental
site C is located at Unit 11, Hadatu Ranch, Hailar City,
Inner Mongolia Autonomous Region, China(120°03’ 22" E,
49 °58’ 23 N, shown in Figure 1(c)). Beet is cultivated here.
The main weeds in this area are Barnyard, Chenopodium,
Amaranth, Cichorium, Endive, Millet, Ductars grass, Setar-
grass. The soil of this place is mainly chernozem.

In the corn field at experimental site A, 700 images
containing weeds and corn were collected, 700 images
containing only corn were collected, 700 images containing
only weeds were collected, and 700 images containing only
soil were collected. In the soybean field at test site A,
700 images containing weeds and soybeans were taken,
700 images containing only soybeans were taken, 700 images
containing only weeds were taken, and 700 images with
only soil were taken. In the wheat field at experimental
site B, 700 images containing weeds and wheat were taken,

“weorTN Lk

16 ° 46'57T"E ¢

37433



IEEE Access

K. Zou et al.: Deep Learning Image Augmentation Method for Field Agriculture

(d)

FIGURE 2. Sample images: (a)Crop and weed; (b)Crop; (c)Weed; (d)Soil.

700 images containing only wheat were taken, 700 images
containing only weeds were taken, and 700 images with
only soil were taken. In the sugar beet field at experimental
site C, 700 images containing weeds and sugar beet
were taken, 700 images containing only sugar beet were
taken, 700 images containing only weeds were taken, and
700 images with only soil were taken. In total, 11,200 images
were taken at the three experimental sites(shown in Figure 2).

For each type 700 images containing weeds and crops were
manually labeled with crop classification, object detection,
and semantic segmentation. Of each type of crop image,
400 were used as the training set, 100 as the validation set,
and 200 as the test set. The 700 images containing only crops
were also manually labeled for crop classification and object
detection.

B. DATA AUGMENTATION METHOD

In this paper, the data augmentation method was implemented
by artificially synthesizing new images. The artificially
synthesized image consists of three main parts: target, noise,
and background. Targets in the field were crops. In the
field, the noise was normally weeds. The background in the
farmland was usually the soil. Synthesizing images in this
paper consisted of two main steps: (1) segmenting crops and
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weeds in the image; (2) attaching crops and weeds to the soil
image to form synthetic images. The flow chart is shown in
Figure3.

The images to make synthetic samples in this paper
have two components, including plant and soil. The plant
contained weeds and crops. There is a clear difference
between plants and soil in terms of color. Plants are usually
green. The color of the soil varies depending on the soil
type and may be yellow or black. But it cannot be green.
Therefore, the green color can be used to segment plants and
soils. Excess Green (ExG) is a common color index used to
extract the green color [30]. It can amplify the differences in
green features without being disturbed by red and blue. It is
the green channel two times minus the red channel and then
minus the blue channel. It is calculated by the formula shown
in 1. ExG was calculated for each image in this paper. The
optimum segmentation threshold was calculated on the ExG
image using minimum error method.

ExG=2xg—r—> €))

The minimum error method is a threshold segmentation
method based on the normal distribution [31]. When two
probability density distributions present normal distributions,
the intersection of the two normal distribution curves is the
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FIGURE 3. Data augmentation process.
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FIGURE 4. Diagram of minimum error method: (a) Normal distribution
curve of foreground; (b) Normal distribution curve of background;
(o) Intersection point of the two normal distributions curves.

theoretical optimal segmentation threshold. The schematic
diagram of this threshold segmentation method is shown in
Figure 4. Where the Figure 4(a) curve represents one class of
samples, the Figure 4(b) curve represents the other class of
samples, Figure 4(0) is the intersection point, and the x value
corresponding to “0” is the optimal segmentation threshold.

The error could be defined as Equation 2. In order to obtain
the minimum value of E(t), let the partial derivative of E(¢)
with respect to t be 0, and the conditions for minimizing the
error fraction were as Equation 3. When both weeds and bare
land obey normal distribution, the equation to solve for o
could be expressed as Equation 4. The ¢ value of Equation 4
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Synthetic image

Data augmentation result

could be solved as Equation 5 and Equation 6:

t o0
E()=w / £ + (1= w) / KO @
—0o0 t

where w represents the proportion of one kind of samples in
the whole image, while 1 — w represents the proportion of the
other kind of samples in the whole image.
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c= /Lgobz — u%af + 2030272 (ln ;a +In p ) (6)

where u, and w; are the mean value of two kind of smple
pixels, o, and o}, are the root means square error of two kind
of smple pixels.

In this paper, 5 images of each crop were randomly
selected. Five images of weeds on different lands were also
randomly selected. A total of 10 images were selected. For
each of these 10 images, 75 points were randomly selected
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FIGURE 5. Part of the sample points for green plant segmentation.

as sample points, for a total of 750 sample points. Each pixel
was manually labeled soil pixes(the value set as 0) or plants
(the value set as 1). In these pixels, 500 pixels were used
to calculate the segmentation threshold, and 250 pixels were
used to test the accuracy of segmentation. Part of the sample
points and labels are shown in Figure 5.

C. PERFORMANCE EVALUATION

In this study, three types of tasks, including image classifica-
tion, object detection, and semantic segmentation, were used
to test the effectiveness of the proposed data augmentation
method. The first task was crop classification. There were
images of four crops: corn, soybeans, sugar beets, and wheat.
The image classification network was used to discriminate
which crop was in the image. This task Resnet50 network
was selected [32]. The second task was object detection. The
location of the crop was marked in the image. For this task,
YOLOVS was selected. The last task was the image semantic
segmentation task [33]. The crop images were segmented out
of the mixed crop and grass images. Deeplabv3 was used in
the semantic segmentation task [34].

There were two training methods. The first was real image
training. This stage used real images. The training result
was used for comparison with the synthetic image. The
second time, the images of the training set were replaced
with composite images, and the validation set and the test
set were unchanged. In the image classification task, real
images were first used for training. There were 1600 images
in the training set, 400 images in the validation set, and
800 images in the test set. The model was trained with a
total of 100 epochs. In the synthetic image training stage,
1600 synthetic images consisting of crops, weeds, and soil
were randomly selected. These synthetic images were used
as the training set. Both the validation set and the test
set were the same as in the real image training. In the
object detection task, only the soybean dataset was used.
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In the real image training, the training set of each kind of
crop had 400 images, the validation set had 100 images,
and the test set had 200 images. In the synthetic image
training stage, object detection labels were consistent with the
object detection labels of the crop images. The training was
performed for 20 epochs each. In the semantic detection task,
the soybean was used. In the real image training, the training
set for each kind of crop had 400 images, the validation set
had 100 images, and the test set had 200 images. In the
synthetic image training stage, the semantic segmentation
labels were derived from the crop images automatically
segmented in the synthetic image stage. The training was
performed for 20 epochs each. In the image classification and
semantic segmentation tasks, the loss values and accuracies
of the training data and validation data were recorded
during the training process. In the object classification
and semantic segmentation task, only the loss values of
the training data and validation data were recorded. The
hardware environment was Intel Core 17-9700 K CPU, 16 GB
memory, NVIDIA GeForce RTX 2080 Super. The software
environment was Windows 10, CUDA 10.1, Python 3.6, and
Tensorflow 2.3.

After the training, accuracy, recall, and precision were
used to evaluate the effectiveness network. Intersection over
Union(IoU) was used to evaluate the object detection task and
the semantic segmentation task. The calculation formula is as
Equations 7-10.

TP TN

Acc = 2TP+2 x 100% (7)

> TP+ > TN +> FP+ > FN

Pr = l x 100% 8)

TS TP+ > FP 7
TP

IoU = 2. TP x 100% (10)

STP+ 3 FN + > FP
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FIGURE 6. Histograms and fitted probability density function curves.

where: TP is true positive; TN is true negative; FP is false
positive; FN is false negative.

Ill. RESULTS AND DISCUSSION

A. SYNTHETIC SAMPLE RESULTS

After calculation, the u, of soil sample points was 2.97 and
the o, was 11.46. The w; of plant sample points was
112.30 and the 0, was 34.07. The best segmentation threshold
was calculated to be 30. Histograms and fitted probability
density function curves are shown in Figure6 The error of
the results obtained using this threshold to segment the test
set was 4%. Some of the synthetic images and their semantic
segmentation label are shown in Figure?7.

The results show that ExG can effectively enlarge the color
difference between plants and soil. It can make threshold
segmentation easier. The segmentation thresholds obtained
using the minimum error method can effectively segment
plants and soil in images. This method had a 4% error, but
it can save a lot of labor on manually marking the samples.

B. IMAGE CLASSIFICATION RESULTS

The change of loss and accuracy with epochs during the
training process using real samples is shown in Figure 8.
From Figure 8a, it can be seen that in the first 20 epochs,
accuracy fluctuates and rises as the training proceeds.
Compared with the training set, the fluctuation of the
validation set was larger. This was because the training set
had a smaller number of samples and was less stable and more
prone to fluctuations. Also, the accuracy of the validation set
never exceeds that of the training set. After 20 epochs, the
whole training process was gradually stabilized. The training
set and validation set accuracy gradually stabilized at 100%.
The change of loss and accuracy with epochs during the
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training process using real samples is shown in Figure 8b.
Loss values showed the same trend.

The accuracy and loss of training with synthetic samples
are shown in Figure 9. From Figure 9a, it could be seen
that the accuracy increases in fluctuation in the training of
25 epochs. The latter gradually tended to be stable. The
change of loss value is shown in Figure 9b. The overall
change trend was basically the same. The accuracy of the
training set with synthetic samples eventually tended to 1,
but the accuracy of the validation set stops rising after
reaching 99%. There is a little bit of overfitting here. This
was due to the difference between the synthetic samples and
the real samples. The neural network was only trained by the
synthetic samples, not by the real samples, and some of the
features in the real samples could not be recognized correctly.
This led to some errors.

The evaluation results of the real sample-trained and
synthetic sample-trained models are shown in Table 1 and
Table 2. From Table 1, it could be seen that the accuracy
of the real value trained samples was better. However,
the precision, recall, and Fl-score of soybean and beet
were 0.99. By looking at the confusion matrix Figure 10,
it could be found that one sample of soybean and beet was
classified wrongly. Despite this, the classification results
were satisfactory.

TABLE 1. Classification results of real sample training.

Sample Type Precision  Recall  Fl-score
Corn 1.00 1.00 1.00
Soybean 0.99 0.99 0.99
Wheat 1.00 1.00 1.00
Beet 0.99 0.99 0.99
Overall accuracy 1.00

TABLE 2. Classification results of synthetic sample training.

Sample Type Precision  Recall  Fl-score
Corn 0.97 0.99 0.98
Soybean 0.99 0.99 0.99
Wheat 1.00 1.00 1.00
Beet 1.00 0.97 0.99
Overall accuracy 0.99

It could found from Table 2 very good results were also
achieved with synthetic sample training. The accuracy rate
reached 99%. However, the precision, recall, and F1-score of
corn were 0.97,0.99,0.98, respectively. precision, recall, and
F1-score of soybean were all 0.99. recall of beet was 0.98 and
the F1-score was 0.99. By looking at the Figure 10b, it could
be found that one corn was classified as soybean. A soybean
was classified as corn. A soybean was classified as wheat.
Five beets were classified as corn.

Both synthetic and real samples achieve good results in the
classification task. Although the synthetic samples achieved
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FIGURE 7. Artificially synthesized images and semantic segmentation labels: (a) Synthesized images;

(b)Labels.
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FIGURE 8. The loss and accuracy during training with real samples in
classification task: (a)Accuracy; (b) Loss.
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FIGURE 9. The loss and accuracy during training with synthetic samples
in classification task: (a)Accuracy; (b) Loss.

poorer results than real samples. But this difference was not
significant. However, the synthetic samples could be applied
to more fields by changing the soil type and weed species.
This was the advantage of the synthetic sample approach
proposed in this problem.

C. OBJECT DETECTION RESULTS

The IoU of the object detection neural network trained on
real samples was (.96, and the result of training on synthetic
samples was 0.94. The loss values of the training process for
the object detection task change with training as shown in
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Figure 11. From Figure 11a, it could be seen that the loss
of the real sample training gradually decreases in the first
10 epochs as the training progresses. It gradually stabilized
around 1. The difference between the training and test set
samples was less than 0.05. This level of overfitting was
acceptable.

The training process using synthetic samples is shown in
Figure 11b. The process was basically the same as the real
sample. However, its loss value was always greater than the
value of the real sample, both in the training and validation
sets. The YOLOVS network used in this paper was pre-
trained. The pre-trained data were real data. Therefore, the
pre-trained network was less adaptable to the synthetic data.
This was an important reason why the training effect of
synthetic samples was worse than the training effect of real
samples. The results of some test set samples are shown in
Figure 12. The precision, recall, and F1-score of of the real
sample-trained and synthetic sample-trained object detection
models are shown in Table 4 and Table 3. Comparing
Figure 12 and Figure 12, it could be seen that although
there was some difference in IoU, this difference was not

TABLE 3. Object detection results of synthetic samples training.

Sample Type Precision  Recall ~ Fl-score
Background 0.98 0.99 0.98
Soybean 0.87 0.84 0.85
Overall accuracy 0.97

TABLE 4. Object detection results of real samples training.

Sample Type Precision ~ Recall ~ Fl-score
Background 1.00 0.99 0.99
Soybean 0.89 0.95 0.92
Overall accuracy 0.99
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FIGURE 10. Confusion matrix: (a)Training by real sample; (b)Training by synthetic sample.

—— Training Loss
1.25F ——— Validation Loss
1.20

» 1.15F
1]
Q
|
1.10F
1.05F
1.00
1 1 L .
5 10 15 20
Epochs
(a)

14r —— Training Loss
—— Validation Loss
1.3F
12}
3
S 12
1.1F
1.0 1 1 1 1

FIGURE 11. The accuracy and loss during training in object detection: (a)Training by real sample;

(b)Training by synthetic sample.
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FIGURE 12. Results of object detection: (a)Training by real samples; (b)Training by synthetic samples.

significant. The difference mainly came from the edges. The
edges of the target detection were more accurate for the model
trained with real samples. The edges of the synthetic sample
training were relatively poor. If the application was more
sensitive to edges, the model can be improved by fine-tuning.

D. SEMANTIC SEGMENTATION RESULTS
The training process in the semantic segmentation problem
is shown in Figure 13 and Figure 14. The evaluation results

VOLUME 12, 2024

of the real sample-trained and synthetic sample-trained
semantic segmentation models are shown in Table 5 and
Table 6. In the training of real samples, the first 4 epochs
rise faster. The decreasing process of loss value was basically
the same. The overall accuracy of the model without the
final model was 0.99. The precision, recall, and F1-score of
the background segmentation were all 0.99. The precision,
recall, and Fl-score of soybean were 0.95, 0.93, and 0.94,
respectively. The average IoU was 0.92.
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FIGURE 13. The loss and accuracy during training with real samples in
semantic segmentation: (a)Accuracy; (b) Loss.
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FIGURE 14. The loss and accuracy during training with synthetic samples
in semantic segmentation: (a)Accuracy; (b) Loss.

TABLE 5. Semantic segmentation results of real samples training.

Sample Type Precision  Recall =~ Fl-score
Background 0.99 0.99 0.99
Soybean 0.95 0.93 0.94
Overall accuracy 0.99

TABLE 6. Semantic segmentation results of synthetic samples training.

Sample Type Precision  Recall ~ Fl-score
Background 0.99 0.99 0.99
Soybean 0.90 0.94 0.92
Overall accuracy 0.98

The training process with synthetic samples was basically
the same as that with real samples. After the first four epochs,
it gradually tended to stabilize. But the validation set of
synthetic samples fluctuated more. Meanwhile, there were
some differences between the validation set and the training
set. This difference was more obvious compared to the image
classification task and the target detection task. The results
on the final test set showed that The overall accuracy of the
model without the final model was 0.98. The precision, recall,
and F1-score of the background segmentation were all 0.99.
The precision, recall, and F1-score of soybean were 0.90,
0.94, and 0.92, respectively. The average IoU was 0.92.

The results of the partial test set are shown in Figure 15.
From the figure, it could be found that the data trained by
the real samples had higher accuracy for edge segmentation.
The errors of the synthetic samples also mainly originated
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from the edges. This was because the edges in the synthetic
samples were not naturally transitioned and were raw and
directly pasted. There was no such image in the real world.
After the model was trained with such samples when it
predicted a real image, the processing of edges was in error.
The model also had some degree of overfitting. Despite the
degree of overfitting, the results were satisfactory.

E. DISSCUSSION

In this paper, a method of artificially synthesizing training
samples based on ExG and the minimum error threshold was
proposed. Although there was some error in synthesizing,
this error was acceptable. The method could synthesize the
training samples effectively. Compared with other methods,
this method fully addressed the compositional characteristics
of the images of the field by dividing the field images into
three parts, including target, noise, and background. These
three parts were segmented and combined to form a new
image training network. It could achieve better results in
an agriculture environment, although the method does not
necessarily work well in other task types.

There were certain differences between the artificially
synthesized samples and the real sample. This results in
the models trained on synthetic data being slightly less
effective on the test set compared to the models trained
on real images. But this difference was not significant.
If the accuracy requirement was not required particularly
high, the model trained by artificial synthetic samples could
also meet the demand. In the case of particularly high
accuracy requirements, synthetic samples could be used for
pre-training and real samples for fine-tuning. This could
effectively reduce the need for real samples and avoid
overfitting to some extent.

The error of training models with synthetic samples varies
depending on the type of task. From the classification task to
the object detection task to the semantic segmentation task,
the accuracy of manual model training was getting worse
due to the progressively higher requirements of the tasks on
image processing accuracy. This was due to the fact that
the subject image of the synthetic sample was consistent
with the real image, but the details such as edges were not
processed carefully enough. For tasks with higher accuracy
requirements, such as semantic segmentation, this difference
in details also had a significant impact.

Despite the advantages of the method described in this
paper, there was still much further research work to be done
in the future. The Synthetic method used in this paper was
a direct paste method, and this method leads to a difference
between the edges of the synthetic image and the real image.
Therefore, there was a need to investigate the implementation
of sample synthesis with the help of GAN. It could synthesize
closer to the real samples. In this paper, the number of neural
networks to validate the method was limited. Only Resnet,
YOLOVS, and deeplabv3 were validated. More networks
needed to be validated in the future. It also needs to be tested
in more complex images.
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FIGURE 15. Semantic segmentation results.(a) Training by real images; (b) Training by synthetic

images.

IV. CONCLUSION

In this paper, an image augmentation method based on target,
noise, and background was investigated for the characteristics
of the field. Synthesized images were used to train the neural
network. Tests were performed on image classification,
objection detection, and semantic segmentation. By analyz-
ing the results, it could be found that:

1 The accuracy in Resnet, YOLOvS5, and Deeplabv3
trained with synthetic samples were 0.99,0.98 and 0.96
respectively;

2 There was slight overfitting of the model trained by this
method. But it could greatly reduce the workload of sample
labeling;

3 The method was designed for the agriculture industry,
and the method had wide practicality for complex field
environments.
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