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ABSTRACT The Vehicle Routing Problem with Time Windows (VRPTW) is paramount in elevating
operational efficiency, driving cost reductions, and enhancing customer satisfaction. It is a renowned
challenge with diverse real-world applications, where the core objective is determining the most efficient
routes for a fleet of vehicles. This research introduces a cutting-edge Hybrid Genetic Algorithm-Solomon
Insertion Heuristic (HGA-SIH) solution, reinforced by the powerful Solomon Insertion constructive heuristic
to solve the VRPTW as an NP-hard problem. The performance of the proposed HGA-SIH is validated
against Solomon’s VRPTW benchmark instances. The results showcase the outstanding performance of
HGA, achieving Best-Known Solutions (BKS) for 11 instances and enhancing BKS solutions in one instance.
Experimental findings validate that HGA-SIH consistently delivers results on par with or surpasses those
obtained by several cutting-edge algorithms when evaluated based on various solution quality metrics. HGA-
SIH consistently excels in efficiently managing the number of vehicles while minimizing travel distances,
resulting in slight deviations from BKS that remain within practical limits. The research highlights the
adaptability and efficacy of HGA-SIH in addressing a wide range of VRPTW scenarios, thereby making
substantial contributions to logistics and supply chain optimization.

INDEX TERMS Hybrid Genetic Algorithm (HGA), logistics and transportation, Solomon Insertion
Heuristic, supply chain optimization, vehicle routing problem with time windows (VRPTW).

I. INTRODUCTION
The logistics industry plays a crucial role in supporting
the functioning of society, encompassing the transportation,
storage, communication, and related sectors and the overall
well-being of individuals. Consequently, the progress of the
contemporary economy and the enhancement of people’s
living standards are closely intertwined with the growth of
the logistics industry. Today, transportation is a vital element
of a nation’s economy, significantly influencing its economic
development due to its essential role in infrastructure.

The associate editor coordinating the review of this manuscript and

approving it for publication was Shanying Zhu .

It encompasses activities present in all sectors, continuously
impacting the production, distribution, and consumption
of goods and services. The existence and feasibility of a
country’s overall progress and advancement depend on the
availability of transportation networks, supporting facilities,
equipment, and a suitable fleet. In the current global economy
and the expansion of trade, transportation systems play
a pivotal role in cost optimization, travel time reduction,
increased speed, safety enhancement, and service levels,
making their significance undeniable.

The Vehicle Routing Problem (VRP) is a pivotal trans-
portation challenge with extensive real-life applications,
particularly in logistics and transportation. It was initially
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formulated as ‘‘The Truck Dispatch Problem’’ [1]. It can
be seen as a broader and more generalized version of the
Traveling Salesman Problem [1], encompassing many poten-
tial solutions. For instance, when dealing with 15 locations
to be visited, there are a staggering 15! Possible routes,
which equates to 653,837,184,000 valid and viable route
permutations. The complexity arises from the daunting task
of determining the most optimal solution, as the search
space is vast and highly combinatorial. Initially, the Traveling
Salesman Problem focused on minimizing mileage, but
in contemporary applications, other factors such as time
and fuel consumption have become crucial optimization
criteria since they are often interconnected with distance.
VRP is a combinatorial integer programming problem and
is classified as NP-hard [2], adding to its computational
challenge. Optimizing vehicle routing can yield substantial
cost reductions in specific business domains where efficient
transportation adds value to the product, potentially up to
25% in total [3]. VRP plays a pivotal role in realizing
economic benefits in more open markets. Additionally,
technological advancements have facilitated VRP solutions
in dynamic, real-time environments, where calculations can
be performed based on live data [4]. This adaptability to
real-time data makes VRP a valuable tool for enhancing
transportation efficiency and cost-effectiveness.

The Vehicle Routing Problem with Time Windows
(VRPTW) is a computationally challenging problem clas-
sified as NP-hard. Its primary objective is to determine an
optimal set of routes for servicing a group of customers
using a fixed fleet of vehicles within a geographical area that
includes a central warehouse. Each customer in this problem
has a specific demand for goods that must be delivered to
them.

The key objectives of the VRPTW are as follows:
1) Each customer should be visited exactly once by a

vehicle.
2) The total demand of customers on each tour must

not exceed the predetermined capacity of the vehicle,
denoted as Q.

3) The overarching goal is to minimize the total cost/dis-
tance/time associated with all the vehicle tours.

In practical scenarios, the VRP often introduces various
additional constraints across different classes. These con-
straints could encompass restrictions on vehicle capacity [5],
[6], designated time windows for customer service [7],
[8], limitations on route lengths, or constraints related to
the working hours of drivers or distribution personnel.
A comprehensive overview of the diverse VRP variants and
their classification can be found in recent literature [9],
[10]. Similar to the fundamental VRP, most of its variants
are recognized as NP-hard.In the context of the VRPTW,
the problem entails routing a set of vehicles, each with a
limited capacity, starting and ending their routes at a central
depot. The customers are distributed across the geographical
area, and their demands and predefined time windows for

service are known. The primary optimization objectives are
to minimize the fleet size of vehicles required and the total
travel time while ensuring that capacity and time window
constraints are not violated.

Due to its inherent intricacies and practical relevance, the
Vehicle Routing Problem with Time Windows (VRPTW)
has consistently garnered attention among researchers and
established itself as a prominent issue within the domain
of network optimization. Time window constraints introduce
extra algorithmic complexities. For instance, when applied
to customers, time windows set specific deadlines for the
earliest and latest allowable departures and arrivals of
vehicles at each demand point [11]. The incorporation of
time windows in VRP models, which inherently pose an
NP-hard problem, serves as the foundation for building the
Supply Chain Network (SCN), thereby adding complexity to
the issue. As a result, researchers in this field are compelled
to tackle the presented challenge on a broader scale by uti-
lizing heuristic, meta-heuristic, or optimization enhancement
algorithms. As a result, numerous authors have dedicated
their efforts to devising various solution methodologies, for
solving VRP models involving both exact and heuristic
methods [12]. Within the domain of exact algorithms [13],
contemporary contributions have emerged, which harness
state-of-the-art branch and cut techniques explicitly designed
to address routing problems. It is noteworthy that exact
methods demonstrate their efficacy in scenarios where the
solution space is confined by stringent time windows. This
constraint results in reduced combinatorial complexity, given
the limited permutations of customer sequences to establish
feasible routes [14]. Consequently, a multitude of researchers
have undertaken investigations into the VRPTW, employing
heuristic and meta-heuristic strategies to seek practical and
computationally efficient solutions for this intricate problem.

Research in combinatorial optimization, particularly
focusing on metaheuristic techniques, has experienced a
surge in interest, notably since the 1990s. These approaches
are designed to obtain approximate solutions within a
polynomial time frame, in contrast to exact solutions, which
would entail prohibitively high computational costs. There
are many variants of VRP models, and VRPWTW is one
of them. Various meta-heuristic methods, including but not
limited to genetic algorithms (GA) [15], [16], [17], [18],
[19], evolution strategies [20], simulated annealing [21],
tabu search [22], [23], [24], [25], [26], and ant colony
optimization [14], [27], have been introduced and applied
to address the Vehicle Routing Problem with Time Windows
(VRPTW). Evolutionary algorithms have undergone substan-
tial advancements in recent years [28]. For instance, Srinivas
and Deb introduced the Elitist Non-dominated Sorting
Genetic Algorithm (NSGA) [29]. Building upon NSGA,
Deb et al. further refined the approach with NSGA-II [30]
and NSGA-III [31]. Similarly, Jiang et al. proposed the
Strength Pareto-Optimal Evolutionary Algorithm (SPEA)
[32] followed by enhancements such as SPEA-II [33] and
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PESA-III [34]. Zhang et al. contributed to the field with the
introduction of the multi-objective evolutionary algorithm
based on decomposition (MOEA/D) [35] which gained
significant attention, among others. Additionally, game
theory principles have seen extensive application [36], [37].
In the context of addressing the Vehicle Routing Problem

with Time Windows (VRPTW), researchers have not only
explored metaheuristic approaches but have also considered
alternative heuristics like constraint programming and local
search [38], [39], [40] to name a few. Furthermore, in a
distinct application domain, Agrawal et al. [15] introduced
a genetic algorithm (GA) model designed for optimizing
the Vehicle Routing Problem (VRP) when dealing with
perishable products, taking into consideration various factors,
including time windows and quality requirements. The
genetic algorithm (GA) model in question is designed
to optimize the Vehicle Routing Problem (VRP) with a
multi-objective fitness function. This fitness function simul-
taneously seeks to minimize transportation costs, reduce
the number of vehicles employed, and maximize customer
satisfaction by adhering to quality requirements. The authors
evaluate the performance of this GA model by subjecting it
to various benchmark instances and comparing its outcomes
with those generated by other state-of-the-art algorithms.
The results reveal that the proposed GA model excels in
terms of solution quality and computational efficiency when
compared to alternative algorithms

In a related study, Khoo and Mohammad [41] intro-
duced a genetic algorithm (GA) tailored for addressing the
multi-objective vehicle routing problem with time windows
(MOVRPTW). This particular GA leverages a two-phase dis-
tributed hybrid ruin-and-recreate strategy that amalgamates
aspects of both sequential and parallel processing to enhance
the algorithm’s overall performance.

Furthermore, Pierre and Zakaria [42] proposed a stochastic
partially optimized cyclic shift crossover (SPOCS) oper-
ator for application in multi-objective genetic algorithms
(MOGAs) designed to solve the vehicle routing problemwith
time windows (VRPTW). The SPOCS operator amalgamates
elements of cyclic shift crossover and partially mapped
crossover techniques to generate novel solutions. The authors
assessed the SPOCS operator’s performance by applying it
to diverse benchmark instances and subsequently comparing
the outcomes with those obtained using other state-of-
the-art Multi-Objective Genetic Algorithms (MOGAs). The
outcomes highlight that the proposed SPOCS operator excels
over alternative MOGAs in terms of solution efficacy and
computational expeditiousness.

In their study, Ursani el al. [43] introduces a localized
genetic algorithm (LGA) specifically designed to address
the complex problem of the Vehicle Routing Problem with
Time Windows (VRPTW). The LGA incorporates a local
search procedure that integrates tabu search techniques aimed
at augmenting the algorithm’s overall performance. The
authors conducted a comprehensive performance evaluation

of the LGA, applying it to diverse benchmark instances
and subsequently comparing the obtained results with those
generated by other state-of-the-art algorithms. The results
of this analysis clearly indicate that the proposed LGA
consistently outperforms alternative algorithms in terms of
both solution quality and computational efficiency.

In their research, Ghoseiri and Ghannadpour [44] put
forward a multi-objective optimization model tailored for
addressing the Vehicle Routing Problem with Time Win-
dows (VRPTW). This model combines goal programming
and a genetic algorithm (GA) to optimize the VRPTW,
employing a goal programming framework that accounts
for multiple objectives. These objectives encompass the
minimization of transportation costs and the maximization
of customer satisfaction. The authors conducted an extensive
performance evaluation of their proposed model, subjecting
it to a range of benchmark instances, and subsequently
conducted a comparative analysis against other state-of-
the-art algorithms. In relation to solution effectiveness and
computational proficiency, the findings consistently affirm
that the proposed model surpasses alternative algorithms.

Vidal et al. proposed a hybrid genetic algorithm (HGA)
with adaptive diversity management (ADM) to solve a
large class of vehicle routing problems with time win-
dows (VRPTWs) [45]. The HGA-ADM approach combines
elements of GA and ADM to improve the algorithm’s
performance. The authors evaluate the performance of the
proposed approach using various benchmark instances and
compare the results with other state-of-the-art algorithms.
The results show that the proposed approach outperforms the
other algorithms.

Meta-heuristics possess the ability to handle supplemen-
tary constraints and produce near-optimal path solutions
within acceptable computational timeframe, applicable to
networks of varying scales, from small to large [46]. Meta-
heuristic approaches like Genetic Algorithms (GAs), Particle
Swarm Optimization (PSO) algorithms, and Ant Colony
Optimization (ACO) algorithms have found extensive appli-
cation in addressing shortest path problems across various
research domains; for example, Kumar and Kumar [47]
utilized genetic algorithms (GA) to identify the shortest
path in data networks. Rares tackled the shortest path
routing issue in rapidly evolving networks with heavy
traffic loads, employing an enhanced GA incorporating an
adaptive mutation operator [48]. Mohiuddin et al. devised
a fuzzy evolutionary Particle Swarm Optimization (FEPSO)
algorithm to optimize routing paths and improve network
operational efficiency [49]. Dudeja introduced a fuzzy-based
modified PSO algorithm to address the shortest path problem
in scenarios with uncertain edges, aiming to reduce both cost
and time consumption [50]. Gupta and Srivastava addressed
the distance optimization problem using both PSO and ACO
algorithms, conducting a comparative analysis to determine
their performance, with simulated results demonstrating
the superior efficacy of the latter optimization approach
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[51]. Wang et al. introduced an enhanced ACO algorithm
tailored for managing time-triggered flows within time-
sensitive networks [52]. Zangina et al. applied an improved
non-dominated sorting genetic algorithm (INSGA-III) to
devise a resilient vehicle routing scheme for autonomous
robot navigation, optimizing both crop yield and quality
while minimizing costs. Given the prevalence of uncertain or
imprecise data in network designs, recent literature increas-
ingly explores hybrid algorithms aiming to enhance system
performance on both local and global scales [53]. Among
these, Dib et al. proposed a solution method coupling GA
with variable neighborhood search (VNS) [54]. Additionally,
Dib et al. developed an advancedGA-VNS heuristic approach
to address multicriteria shortest path problems in multimodal
networks [55]. Garg introduced a hybrid algorithm merging
GAwith the gravitational search algorithm (GSA) to improve
system performance, particularly for analyses based on
uncertain data, focusing on critical components for cost,
labor, and time savings [56]. Garg introduces a hybrid
PSO-GA technique for addressing constrained optimization
problems [57]. Patwal et al. devise an integrated heuristic
method by combining a time-varying acceleration coefficient
PSO algorithm with mutation strategies (TVAC-PSO-MS)
to investigate optimal power generation scheduling for
renewable energy sources [58]. Garg employs a hybrid
GSA-GA algorithm to tackle constrained nonlinear optimiza-
tion problems with mixed variables [59]. De Santis et al.
address the challenge of minimizing travel distances for
pickers in manual warehouses, proposing a metaheuristic
routing algorithm that merges the ACO metaheuristic with
the Floyd-Warshall algorithm [60]. Lastly, Sedighizadeh and
Mazaheripour present a hybrid algorithm combining PSO
with an artificial bee colony (ABC) algorithm to resolve the
multi-objective vehicle routing problem under precedence
constraints among customers [61].
Metaheuristics are widely recognized as effective strate-

gies for tackling numerous challenging optimization prob-
lems [62]. A taxonomic review of VRP literature, analyzing
developments from 2009 to 2017 is analyzed by [63]. They
classified 299 articles, focusing on metaheuristic algorithms
solving VRP and evaluated their contributions. Metaheuristic
algorithms can be primarily grouped into two categories:
single solution-based and population-based. Single-based
heuristics are categorized into eight types (SA, TS, GRASP,
VNS, GLS and ILS) [64]; [62]. In addition, the other two
algorithms are the large neighborhood search (LNS) and the
adaptive large neighborhood search (ALNS) heuristic [65].
Conversely, there are 16 population-based methods: ten
Evolutionary Computation (EC) (GA, ES, EP, GP, EDAs,
DE, CoEA, CA, SS and PR), and six Swarm Intelligence
(SI) (ACO, PSO, BFOA, BCO, AIS and BBO). Six more
metaheuristics are: two EC algorithms: Memetic algorithm
(MA) [66] and Electromagnetism-Like Algorithm (EMA)
([67]; [68] and four SI algorithms: Firefly algorithm (FA),
Cuckoo search (CS), Intelligent Water Drops Algorithm

(IWD) and Shuffled Frog Leaping Algorithm (SFLA) [69];
[70]. The conclusion of the paper provides valuable insights
into the use of metaheuristic algorithms for solving Vehicle
Routing Problems (VRP), examining 386 different scenarios.
The taxonomic review explicitly confirms that among evolu-
tionary computation (EC) algorithms, the genetic algorithm
(GA) is the most utilized method for addressing VRPmodels.
Consequently, in our specific case, we have chosen to
implement the Genetic Algorithm approach from the range
of available Evolutionary Computation methods for solving
our model.

The extensive review studies conducted above in the field
consistently highlight the effectiveness of integrating Genetic
Algorithms (GA) with either local search techniques or
hybrid approaches when addressing various vehicle routing
problems. These methods have shown notable success in
optimizing intricate routing scenarios, which has motivated
our choice to incorporate GA into our proposed algorithm.

Genetic Algorithms are a well-established category of
metaheuristic techniques inspired by the principles of
biological Darwinian evolution. The core process involves
randomly selecting solutions from a pool of all potential
solutions and applying genetic operators to introduce varia-
tions that generate the next generation of solutions. Critically,
evaluation occurs at each iteration of the algorithm, meaning
that assessment takes place every time a new generation is
created. The algorithm then concludes once a predefined
termination event is reached, such as a specific number of
generations or the achievement of an adequately optimal
solution, as highlighted in various studies [16], [19], [71],
and [72]. Furthermore, [40] introduced an evolutionary
search approach grounded in mutation. In this method, each
offspring undergoes optimization to enhance the overall
distance by employing a combination of local search and
route elimination strategies. This demonstrates the versatility
of genetic algorithms in addressing routing problems, further
reinforcing our rationale for incorporating GA into our
proposed approach. A many-objective gradient evolution
algorithm for solving a green vehicle routing problem
with time windows and time dependency for perishable
products is addressed by [73]. Their proposed algorithm
showed improved results; however, they suggested that better
population generation models are still in need of better
solutions. The aim of the hybridization and communication
strategies is to maintain the diversity of populations to
prevent the proposed algorithm from falling into local
optima and overcome the drawbacks of a single swarm
Firefly Algorithm (FA) [74]. In conclusion, metaheuristic
algorithms that have been proposed to solve VRP still have
drawbacks, which lead to low-quality solutions. However, the
appropriate hybridization techniques and cooperative models
improve their performance dramatically. The performance of
a metaheuristic algorithm can be improved by integrating a
component of a particular metaheuristic algorithm instead
of the entire algorithm. Another direction of improvement
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is the use of multiple populations (cooperative model) of
a metaheuristic algorithm. It has been proven from the
literature and practical point of view that the hybridization
and the cooperative model improve the performance of the
algorithm significantly [75], [76], [77], [78]. The conven-
tional VRP is classified among NP-hard problems [79]. Thus,
achieving optimal or near-optimal solutions for medium
and large-sized instances of the problem using commercial
optimization packages in reasonable computational time
is not possible. Therefore, in this paper, a metaheuristic
approach (i.e., model-based metaheuristics) is developed
to tackle this complexity. Matheuristic methods, developed
based on the combination of meta-heuristic and exact
methods, benefit the advantages of both methods to reach a
high-quality solution with acceptable computational efforts
([80]; [81]; [82]. In this section, a metaheuristic algorithm
is developed based on the combination of the MOKA
with a MILP model, namely Mb-MOKA. The mathematical
model is responsible for improving generated solutions in
each iteration of the MOKA. Moreover, due to the high
complexity of CoCEVRP, a customer clustering approach
based on a MILP model is developed [83]. Note that
the Solomon insertion I1 heuristic only generates feasible
solutions to this model without considering the quality or
the objective value. The process of finding better solutions
will be conducted by the GA operator [84]. The review
above explicitly demonstrates that within the domain of
meta-heuristic methodologies employed for addressing VRP
models, GA has exhibited noteworthy superiority over
alternative techniques. Additionally, the literature presented
underscores the potential for enhancing the efficacy of a
particular meta-heuristic approach through the refinement of
its constituent components and not all components, thereby
yielding improved solutions. Furthermore, it is explained that
the incorporation of elementary meta-heuristic algorithms
with exact and constructive heuristics serves to mitigate the
inherent limitations associated with convergence to local
optima, thus enhancing the overall performance of meta-
heuristic methodologies.

Hence, keeping all the above factors, in this research
paper, we have introduced an innovative hybridized genetic
algorithm named the Hybrid Genetic Algorithm-Solomon
Insertion Heuristic (HGA-SIH) that incorporates the
Solomon heuristic, which is a constructive heuristic
developed to address the Vehicle Routing Problem with
Time Windows (VRPWT). Solomon develops the algorithm
based on five initial solution heuristics that have been
evaluated [85]. The effectiveness of Solomon’s Initial
Heuristics (SIH) lies in both the quality of the solution
it produces and the computational efficiency it demon-
strates [86]. Moreover, we have added the SIH within the
population generation section of GA. This combination of
methodologies exhibits considerable promise for efficiently
addressing complex routing challenges, particularly those
with time-sensitive constraints. To validate the effectiveness
of our approach, we conducted a comprehensive evaluation

using widely recognized Solomon instances. In the results
section, we provide an in-depth comparative analysis between
the solutions generated by our model and the best-known
solutions documented in the existing literature. Detailed
insights into the components and workings of our developed
algorithm are presented in the subsequent subsections.

II. HYBRID GENETIC ALGORITHM (HGA-SIH)
The VRP is a complex challenge within Operations Research,
aiming to optimize vehicle routes for efficient customer
service while adhering to capacity constraints and cost
minimization. It extends the Traveling Salesman Problem
(TSP), with each vehicle forming a tour from a central
depot. Unlike TSP, VRP has wider practical applications
and receives substantial research attention. Both are NP-
Hard problems, making exact solutions challenging for
larger instances. For VRP with over 50 customers, heuristic
methods are often necessary due to the computational
infeasibility of exact algorithms [3].

The problem becomes even harder when a time window
constraint is added. Hence, solving a model of VRPwith time
windows becomes harder to solve than a simple VRP model.
This issue is addressed by constructing a hybrid genetic
algorithm where population generation is divided into two
parts. The first part involved random generation, as explained
earlier; however, diversification is crucial to the performance
of the population-based algorithm, but the initial population
in the GA algorithm is generated using a random generation,
which has insufficient diversification [87]. Hence, the second
part involved the use of the Solomon Insertion heuristic
algorithm [85]. The solutions obtained through the Solomon
insertion method were added to the previously generated
population. By incorporating the Solomon heuristic in the
initial solution generation, feasible solutions with good
starting fitness were obtained, which aided the developed
genetic algorithm in converging towards better solutions
more efficiently. Furthermore, the inclusion of random
solution generation expanded the search space, leading to the
discovery of even better solutions. Additionally, the Solomon
heuristic serves as a local search operator within the genetic
algorithm, enhancing the quality of the solutions generated
by the algorithm.

Constructed hybrid GA is shown as a flowchart in Fig.1
and is detailed below:

A. CHROMOSOME REPRESENTATION
To initialize the GA, we first devised a chromosome repre-
sentation strategy rooted in integer encoding. A chromosome
is conceptualized as an ordered sequence of demand points,
signifying a prospective route. Notably, the sequencing
doesn’t delineate the specific routes for the vehicles.
Instead, it offers an organized set of demand points, which
are subsequently segmented into distinct sub-routes. Each
chromosome represents a feasible vehicle route, encoded as
an ordered list of K integers, where each integer refers to a
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FIGURE 1. Flow chart of hybrid genetic algorithm.

specific demand point. The complete population consists of
multiple such chromosomes.

B. INITIAL POPULATION FORMULATION
The commencement of the algorithm requires populating the
initial solution pool. The magnitude of this population is
contingent upon the pre-specified parameters for the genetic
algorithm. Each entity within this pool is represented as a
chromosome.

C. TECHNIQUES FOR CHROMOSOME GENERATION
1) STOCHASTIC INITIALIZATION
The algorithm employs a stochastic method to generate
chromosomes by arranging the demand points in a random
sequence. Given 10 demand points as an instance, a potential

chromosomal configuration might be [3, 5, 7, 4, 2, 8,
1, 10, 9, 6].

2) INITIALIZATION VIA SOLOMON’S INSERTION HEURISTIC
In a divergence from entirely random configurations, the
algorithm can harness the capabilities of Solomon’s heuris-
tic.The pseudo-code of Solomon Insertion is shown in
Algorithm 1. This heuristic is instrumental in discerning
viable routes, keeping in perspective the constraints of
time windows and other pertinent conditions. By initiating
chromosomes via this method, there’s a conceivable elevation
in the likelihood of pinpointing an optimal solution within
a condensed number of generations. As a demonstration,
a chromosome derived through the heuristic could appear as
[2, 1, 4, 5, 9, 7, 6, 8, 10].
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Algorithm 1 Solomon’s I1 Insertion Heuristic

Data: A path of JSON file having Solomon
instances dataset (e.g. C101)

Result: A sequence of n customers that minimizes
the distance and time required to visit all
customers

Initialize the route with the first customer as the
seed and set the current capacity and time to 0;

while there are still unrouted customers do
for each unrouted customer i do

Calculate its best insertion position in the
current route using criterion c1;

end
Select the unrouted customer u with the best
insertion position according to c1;
Calculate the best feasible insertion position
for u using criterion c2;
if the insertion of u violates any capacity or
time constraint then

Discard u and repeat the loop;
end
Insert u at the best feasible position found,
update the current capacity and time, and
mark u as routed;

end

FIGURE 2. Population generation.

This population was generated using the DEAP (Dis-
tributed Evolutionary Algorithms in Python) module.
Our methodology incorporates solutions derived from
the Solomon heuristic algorithm into the initial random
population that is visualized in Fig.2. This amalgamation
yielded significant improvements in the quality of generated
solutions, as highlighted in Table.3.

D. CONVERSION MECHANISM FROM CHROMOSOMES TO
VEHICLE ROUTES
In the course of our HGA-based approach to solving the VRP
with demand requirements, a pivotal step post-generation of
a comprehensive set of chromosomes is the transformation of
these chromosomes into vehicle sub-routes. This transforma-
tion depends on several primary factors: the total number of

accessible vehicles, the time window constraints tied to every
demand point, and the limitations related to the resources or
demand requirements. The primary aim of this algorithmic
step is the minimization of the cumulative time expended in
the delivery operation.

The structured algorithmic procedure underscoring this
transformation is depicted in Fig.3

To provide a quantitative illustration, consider a represen-
tative chromosome:

[5, 3, 2, 7, 1, 6, 9, 8, 4]

Implementing the above-outlined algorithm results in the
subsequent vehicle sub-routes:

• Route for Vehicle 1: Initiated from the depot (denoted
as 0), traversing through demand points [5, 3, 2], and
culminating at the depot. This is denoted as [0 − 5 −

3 − 2 − 0].
• Route for Vehicle 2: [7, 1, 6]
• Route for Vehicle 3: [9]
• Route for Vehicle 4: [8, 4]

Here, the nomenclature ’0’ is indicative of the primary depot.

E. MATHEMATICAL MODEL AND FITNESS EVALUATION
Following the delineation of chromosomes into sub-routes
and the consequential update of processing times, the
evolution of the algorithm gravitates towards the computation
of the fitness function. Central to the theme of this
investigation is the identification of an optimal chromosome
that substantially curtails the total completion duration of the
relief operation.

Given the heightened emphasis on temporal constraints,
this study incorporates time windows into its purview.
To reinforce the pursuit of solutions that abide by these con-
straints while concurrently reducing the overall completion
time, a penalty factor is instituted. This factor is thoroughly
designed to penalize those solutions that violate the specified
time windows.

Objective Function: Fitness

C =

n∑
i=1

Ti + λ

m∑
j=1

Pj (1)

where:

• C represents the fitness of chromosome C .
• Ti denotes the completion time of the ith vehicle route.
• n is the total number of vehicle routes.
• Pj signifies the penalty associated with the jth time-
window violation.

• m stands for the total number of time-window violations
observed.

• λ is a pre-determined weight emphasizing the gravity of
time-window violations in the context of the study.
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Constraints:

1. Each customer must be visited exactly once:
n∑

j=1,j̸=i

xij = 1 ∀i ∈ V , i ̸= 0 (2)

2. Vehicles must leave and return to the depot:
n∑
i=1

x0i = m (3)

n∑
i=1

xi0 = m (4)

3. Flow conservation constraint:
n∑

i=1,i̸=j

xij −
n∑

k=1,k ̸=j

xjk = 0 ∀j ∈ V , j ̸= 0 (5)

4. Time window constraints:

ai ≤ ui ≤ bi ∀i ∈ V (6)

5. Capacity constraint:
n∑
i=1

qi · xij ≤ Q ∀j ∈ V (7)

6. Arrival time computation:

ui ≥ uj + qj + cji−M · (1 − xij) ∀i, j ∈ V , i ̸= 0, j ̸= 0

(8)

7. Route duration constraint:

ui ≤ T ∀i ∈ V (9)

where G = (V ,E) is the complete graph representing the
set of all nodes and edges, V = {0, 1, 2, . . . , n} is the set
of vertices with 0 representing the depot, E is the set of
edges connecting vertices, cij is the cost (distance or time)
of traveling from node i to node j, qi is the demand of
customer i, ai and bi are the earliest and latest time windows
for servicing customer i, Q is the capacity of each vehicle,
and T is the maximum allowable route duration. Also, M is
a large positive constant, and m is the number of vehicles.
This objective function thus serves to encapsulate the essence
of the research, guiding the algorithm towards solutions that
both minimize completion time and honor the designated
time windows.

F. SELECTION, CROSSOVER, AND MUTATION
1) SELECTION
The selection process utilizes a two-pronged approach: the
roulette-wheel method and elitism.

ROULETTE-WHEEL SELECTION
Thismethod involves choosing individuals from a population,
denoted as P = {G1, . . . ,Gs}. Selection probabilities are
computed based on the individual’s fitness scores. Specifi-
cally, individuals with higher fitness values are endowed with
a greater likelihood of being chosen. The probability P(Gg)

of selecting an individual Gg is defined as:

P(Gg) =
f (Gg)∑
f (Gi)

(10)

where f (Gg) is the fitness of individual Gg, and the
summation encompasses all individuals Gi in the population.

ELITISM
This method ensures that a portion of the best-performing
individuals from the current population are directly trans-
ferred to the next generation without undergoing crossover
or mutation. The rationale behind incorporating elitism is
to prevent the loss of high-quality solutions that have been
discovered. By preserving these top-performing individuals,
the algorithm is guided toward faster convergence and often
yields better results.

2) CROSSOVER
The recombination process brings two parental solutions,
represented as Pr1 and Pr2, into the fold. They undergo
a crossover using the Partially Mapped Crossover (PMX)
mechanism, which operates with a probability cr . The PMX
operator, credited to Goldberg and Lingle [88], crafts an
offspring solution, denoted as O.

The PMX operation unfolds as follows:

1) Two random crossover points are uniformly chosen
along chromosome Pr1. Indices nestled between these
points are labeled as the ‘‘mapping segments.’’

2) Given parent solutions Pr1 and Pr2 with a length
l = 10 customers and with bolded Xs indicating the
crossover points, the mapping segment might consist of
pairs such as 4-2, 5-8, and 6-7 (as illustrated in Fig. 4).

3) Pr1’s mapping segment is mirrored onto the first
offspring, O1, whereas Pr2’s segment finds a home
in the second offspring, O2. Following this, O1 is
populated with elements from Pr1 andO2 is populated
with elements from Pr2. If any redundancy in indices
crops up within an offspring, it’s realigned according to
the preset mapping.

The offspring, O1 and O2, are then procured. Their fitness
values are then compared against a benchmark, z∗. The fittest
offspring is labeled as O.

G. INVERSE MUTATION IN GENETIC ALGORITHMS FOR
VRPTW
Mutation is an essential mechanism in genetic algorithms,
pivotal in enabling the algorithm to deviate from local
optima within the solution landscape. In the context of the
Vehicle Routing Problem with Time Windows (VRPTW),
mutation aids in diversifying the search process, enhancing
the algorithm’s chances of finding a globally optimal solu-
tion. Nevertheless, an unrestrained application of mutation
might compromise evolved beneficial patterns. Thus, it’s
imperative to apply mutation judiciously. For this study,
the mutation probability is strategically set at 0.10 for each
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FIGURE 3. Chromosome to vehicle route generation.

FIGURE 4. Example of crossover recombination.

chromosome. This value ensures a harmonious blend of
exploration (searching for new solutions) and exploitation
(refining existing solutions). Considering the significance of

maintaining time window constraints in VRPTW, any muta-
tion technique employed should introduce subtle changes
to the chromosome to preserve its fundamental structure.
In line with this objective, our research adopts an adapted
form of the ‘‘inversion’’ mutation technique, as delineated
by [89]. This method, predominantly used in the context
of the Traveling Salesman Problem (TSP), capitalizes on
permutations to represent the sequence of locations to be
visited. The procedure entails the selection of two distinct
cut points within the chromosome. Subsequently, the genetic
sequence between these cut points is inverted. For illustrative
purposes, let’s consider a typical TSP chromosome: 7 5 8 4 1
3 6 2 9. Given two cut points, the section of the chromosome
encompassed by them undergoes inversion: 7 5 8 4 1 3 6
2 9 → 7 5 8 2 6 3 1 4 9. This nuanced alteration ensures
the chromosome’s inherent characteristics remain intact yet
infuses a requisite degree of diversity to the solution.

H. GA PARAMETER TUNING AND SETTINGS
Optimizing the parameters of a GA is a crucial and time-
consuming task. Researchers have explored both parametric
and non-parametric techniques to expedite the process of
identifying optimal GA parameters. These techniques aim
to mitigate the computational burden associated with the
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TABLE 1. Taguchi orthogonal matrix.

iterative nature of traditional tuning methods Parametric
techniques involve the systematic exploration of predefined
parameter spaces, while non-parametric approaches, such as
machine learning-based methods, seek to model the complex
relationships between parameters and performance. Both
avenues offer the potential to streamline the parameter-tuning
process and enhance the efficiency of GA optimization. One
notable technique employed to refine parameter values is the
Taguchi Method. The Taguchi techniques [90], have seen
extensive application in engineering analysis for optimizing
performance characteristics across various combinations of
design parameters in recent years. This methodological
approach, rooted in robust design principles, systematically
explores the parameter space using a fractional factorial
experimental design. By conducting a series of controlled
experiments, the TaguchiMethod facilitates the identification
of influential parameters and their optimal settings, mini-
mizing the need for exhaustive iterations. The adoption of
the Taguchi Method introduces a structured and systematic
dimension to parameter tuning, offering a more strategic and
resource-efficient pathway compared to traditional trial-and-
error methods. This formalized approach not only reduces the
computational overhead but also enhances the reliability of
the parameter optimization process. Hence, for our parameter
settings, we opted for this technique.

In this study, a Taguchi orthogonal matrix of 16 experi-
mental settings was generated by considering all higher and
lower values of GA parameters. Taguchi Orthogonal matrix
is shown in Table 1. Here, 1 represents the smallest value, and
2 represents the highest value of GA parameters. The range of
values for Population size,number of generations,crossover
and mutation rate were (200-1200,200-1000, 0.1-0.8, 0.01-
0.1 200-1000) respectively. Based on experimental setups
of Taguchi orthogonal matrix, the algorithm was run, and
parameters were set for those values where best-known
solution was obtained, as shown in Table 2.The best-
known solution obtained from the best experimental setup is
presented in Table 3.

TABLE 2. HGA parameters settings.

III. COMPUTATIONAL RESULTS
In this computational section, we investigate the application
of our developed HGA-SIH to evaluate its effectiveness
using Solomon’s VRPTW benchmark available at [91].
This benchmark comprises 56 samples, each containing
100 customers, and is categorized into six groups based on
customer geographical locations, encompassing both random
(R1 and R2), clustered (C1 and C2), and mixed random
and clustered locations (RC1 and RC2). The HGA-SIH
implementation was coded in Python and executed on a
computer equippedwith an Intel Pentium IV 1.6MHz proces-
sor and 512 MB of memory. Significantly, the performance
of meta-heuristic methods hinges on the judicious selection
and fine-tuning of key parameters. These parameters include
population size (N), crossover and mutation rates, the number
of generations, and the selection criteria. The quest for
appropriate parameter values is pivotal for optimizing the
algorithm’s performance.

Within our proposed HGA-SIH approach, parameters
related to the genetic algorithm, namely population size,
crossover and mutation rates, and the number of generations,
have undergone extensive fine-tuning through multiple runs
of the algorithm and using the Taguchi method. These
runs involved experimenting with different parameter set-
tings across all Solomon problem instances, leading to
the determination of optimal parameter values. Table. 2,
as presented herein, showcases the parameter values where
HGA-SIH yielded the most favorable results after a series of
rigorous experiments. Furthermore, to ensure the robustness
and reliability of our approach, the HGA-SIH algorithm is
executed 30 times on each tested instance. This rigorous
methodology allows us to obtain the best results, thereby
ensuring the credibility of our findings and the efficacy of
the HGA-SIH in tackling the VRPTW problem.

The results depicted in Table 3 and Figure 6 underscore
the outstanding performance of our proposed HGA-SIH
in addressing standard instances. Notably, the algorithm
achieves the Best-Known Solutions (BKS) for 11 instances,
clearly highlighted in boldface. Moreover, it surpasses BKS
solutions in 1 instance, denoted by boldface and a star.

In the domain of logistics and supply chain optimization,
effective vehicle management holds paramount importance,
leading to reduced operational costs, optimized fleet uti-
lization, and alleviated road congestion. Remarkably, our
HGA-SIH demonstrates its prowess in this domain by
efficiently managing the number of vehicles (NV) while
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TABLE 3. Best known vs HGA.

simultaneously minimizing total travel time.This underscores
the algorithm’s balanced approach, not favoring one objective
over the other but rather achieving the dual goals of minimiz-
ing travel times and vehicle count.Despite its commendable
performance, the HGA-SIH does exhibit minor drawbacks.
Specifically, there are instances where the total distance
deviates slightly from the best-known solutions, ranging from

1.15% to 4.65%.While these deviations are within acceptable
bounds for practical applications, they underscore the need
for ongoing refinement and fine-tuning of the algorithm to
achieve even greater precision.

Specifically, in problems R101, R105, R109, R110,
R11, and R112, our HGA-SIH excels in minimizing the
total number of vehicles while maintaining only modest
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TABLE 4. Efficacy evaluation of HGA-SIH versus various heuristic approaches.

FIGURE 5. Schematic representation of optimal solutions for four distinct
vehicle routing problems.

FIGURE 6. Best known VS Our HGA-SIH results for R, C and RC category
problems.

deviations in total distance. This strategic trade-off is
invaluable, particularly when optimizing for efficient vehicle
utilization to meet specific logistics requirements. Overall

on 56 Solomon instances,the HGA-SIH algorithm offers
a compelling solution for logistics and supply chain opti-
mization, combining the advantages of minimizing both
travel time and vehicle count. However, continuous efforts in
refining its performance will be necessary to address minor
deviations and further enhance its efficacy in real-world
scenarios.

The effectiveness of HGA-SIHwas assessed by comparing
its results to those obtained from state-of-the-art methods
designed for the VRPTW problem, including CPLA: Coop-
erative population learning algorithm of Barbucha( [93],
PITSH: Parallel iterated tabu search heuristic of Cordeau
and Maischberger [94], HSFLA: Novel hybrid shuffled frog
leaping algorithm of Luo et.al. [95], S-PSO: Discrete particle
swarm optimization approach of Gong et al. [96], and
ACO-TS: A hybrid approach, which consists of ant colony
optimization (ACO) and tabu search of Yu et al. [97]. The
detailed experimental results can be found in Table 4 and
are visualized in Fig.7., where each instance was tested.
The first column in these tables contains the instance name,
followed by columns indicating the distance traveled (TD)
and the number of vehicles (NV) for each of the methods:
CPLA, PITSH, HSFLA, S-PSO, ACO-TS, and MFGA. The
results are presented for various problem groups (R1, R2,
C1, C2, RC1, and RC2), and the best-performing results are
highlighted in bold. Table 4 presents the average number
of vehicles (NV) and the best quality solutions in terms
of total distances (TD) achieved by our proposed HGA in
comparison to five other algorithms: HSFLA, CPLA, PITHS,
S-PSO, and ACO-TS, across Solomon’s benchmark datasets
(R1, R2, C1, C2, RC1, and RC2). Each row in the table
comprises three parts: NV, TD, and %TD, where %TD
represents the percentage deviation between the algorithms
and the best-known solutions (BKS).
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FIGURE 7. Comparison of HGA with other heuristics.

The analysis of percentage deviation underscores the
consistency of HGA’s performance across the various
datasets under examination. As shown in Table 4, for the
R1 group, HGA stands out by surpassing HSFA, CPLA,
PITHS, and S-PSO, exhibiting a deviation of only 2.27%
from the best-known solutions (BKS). For the instances
in groups C1 and C2, HGA manages to achieve results
on par with the BKS. Within the RC1 instances, HGA
excels by outperforming ACO-TS with a deviation of 4.09%
from the BKS. In the RC2 instances, HGA emerges as
the leading algorithm, showcasing a deviation of 3.5%
from the BKS. However, it’s worth noting that HGA
faces more significant challenges when dealing with R2
instances, where the deviation increases to 19.19% from
the BKS. Overall, our proposed HGA demonstrates highly
promising results, consistently outperforming state-of-the-art
algorithms presented in the existing literature across a range
of problem instances.

IV. CONCLUSION
This research study presents a (HGA-SIH) novel algorithm
tailored to optimize the Vehicle Routing Problem with
Time Windows (VRPTW), addressing a crucial logistics and
supply chain management challenge. The algorithm under-
went thorough computational testing, utilizing Solomon’s
VRPTW benchmark instances, to substantiate its efficacy
and reliability in optimizing dual objectives: minimizing total
travel distance and reducing the required number of vehicles.
Our methodological approach was designed to be robust
and adaptable. A thorough parameter tuning was performed
to calibrate factors such as population size, mutation and
crossover rates, and the number of generations. This allowed

the HGA-SIH to consistently perform well across diverse
problem instances, each presenting unique logistical chal-
lenges. The computational results showed that the HGA-SIH
not only matched but also improved upon best-known
solutions (BKS) for most instances.The reason for this
is the implementation of an initialization strategy (SIH),
which improved the diversification of the initial population.
It showcased an adept ability to effectively balance both
the number of vehicles utilized and the total travel distance,
a critical attribute for practical applications in real-world
logistics scenarios. The deviations from BKS ranged from
1.15% to 4.65%, affirming the algorithm’s practical relevance
in an industrial context. This study contributes significantly
to the existing body of knowledge in logistics optimization by
presenting a reliable and robust tool readily applicable across
various logistical settings. The broad adaptability of HGA-
SIH, as indicated by its performance across diverse customer
geographical distributions, further underscores its utility in
practical scenarios.

V. LIMITATION AND FUTURE DIRECTION
While the current study presents promising results, several
avenues for future research exist. Exploring more complex
variations of VRPTW or combining the HGA with other
optimization algorithms may yield improved outcomes.
Assessing the algorithm’s efficacy across diverse VRP
versions, incorporating ad-hoc techniques, and emphasizing
route planning optimization by considering factors like traffic
conditions, road capacities, and environmental impact would
enhance themodel. Furthermore, validating the HGA through
implementation in real-world logistics scenarios would
provide a comprehensive assessment of its effectiveness.
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In conclusion, the HGA-SIH presented in this paper
provides a resilient and efficient solution to the VRTPW.
The proven computational success robustly advocates for
its practical implementation in tackling logistics and supply
chain optimization challenges. Future research can expand
on these findings by applying the HGA-SIH to more
complex problem variants and real-world applications, thus
reinforcing its significance in the field.
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