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ABSTRACT Deep learning has achieved tremendous success in the field of object detection. The efficient
detection of infrared small targets using deep learning methods remains a challenging task. Infrared small
targets are often detected in high-resolution features. Extracting high-level semantic features layer by
layer in the network may lead to the loss of deep-layer targets. However, performing global detection on
high-resolution feature maps results in high computational costs. To address this issue, we propose the
aware distribute and sparse network (ADSNet) to preserve deep-layer small target features while accelerating
inference speed. Specifically, we design the aware fusion distribute module (AFD) to aggregate global
features and enhance the representation capability of deep-layer features. Subsequently, the aware cascaded
sparse module (ACS) is utilized to guide step-by-step high-resolution feature sparsification. Experimental
results demonstrate that the proposed method achieves accurate segmentation in various detection scenarios
and for diverse target morphologies, effectively suppressing false alarms while controlling computational
expenses. Ablation experiments further validate the effectiveness of each component.

INDEX TERMS Object detection, infrared imaging, infrared small target detection, feature fusion.

I. INTRODUCTION
Infrared sensors capture the radiant heat emitted by targets,
allowing imaging in low-light conditions or harsh atmo-
spheric environments, making infrared target detection an
essential part of rapid warning systems [1], precise guid-
ance [2], and ground surveillance. The increasing complexity
of the battlefield environment has led to advances in defense
systems, which should prioritize the accurate detection of
targets as early and as far as possible. Long-range targets
occupy only a few pixels in the infrared image, lack distinct
shape characteristics, and are easily confused with complex
low-altitude backgrounds. As such, the detection of infrared
small targets presents a challenging task.

With the enhanced maneuverability of the aircraft, the
large trajectory changes in image sequences significantly
affect the detection performance of methods based on
multi-frame [3]. Consequently, single-frame based detection
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methods have gained widespread attention [4]. Most tradi-
tional single-frame detection approaches depend on local
contrast information between the target and the surrounding
environment for infrared small target detection, specifically
gray-scale discontinuity outliers in a slowly transitioning
background. The Local Contrast Method (LCM) [5]interprets
the position of the infrared target as the central point
with the maximum contrast in the neighborhood grayscale
values. The Local Energy Factor (LEF) [6], building upon
LCM, introduces local dissimilarity to enrich the description
of local differences. The Tri-layer Local Contrast Mea-
sure (TLLCM) [7] proposes core, reserve, and surrounding
layers with filtered windows, each purposefully enhanc-
ing the contrast between the core and the background to
extract multi-scale targets. These traditional methods are
based on manual assumptions about infrared small target
characteristics. Such assumptions cannot accurately distin-
guish background clutter that resembles preset features and
are susceptible to false alarms [8]. Traditional methods are
also highly sensitive to hyper-parameters like preset window
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size and segmentation threshold, requiring specific tuning
for different scenarios. When dealing with non-point targets
that have a complex structure, it is challenging to accu-
rately predict the segmentation boundary, resulting in poor
generalization.

Supervised deep learning methods are driven by labeled
data and modify the feature parameters according to
the set loss function, which can classify multiple labels
and localize to achieve target detection, and play an
important role in various fields such as transportation,
military, and people’s livelihoods [9]. In the realm of
infrared small target detection, several deep learning-based
approaches have been proposed. Attentional Local Con-
trast Networks (ALCNet) [4] and Dense Nested Attention
Network (DNANet) [10] emphasize the contextual infor-
mation for small targets and high-level feature fusion.
ALCNet employs bottom-up attention modulation to high-
light and preserve small target features, incorporating a
cyclic shift accelerating scheme for long-distance infor-
mation contextual interaction. DNANet introduces dense
nested interaction module and channel and spatial attention
module to achieve progressive feature fusion and adaptive
feature enhancement. In addition, Interior Attention-Aware
Network (IAANet) [11] proposed a two-stage segmentation
method, utilizing the Region Proposal Network (RPN) struc-
ture to obtain target bounding boxes for feature extraction,
followed by encoding the feature map with the Trans-
former structure to acquire aware features. ALCNet and
DNANet enhance the deep feature representation of small
targets, but produce more redundant computations for global
segmentation of small targets, while IAANet introduces addi-
tional computations for target potential region prediction as
well.

In this paper, inspired by the preservation of deep features
for small targets through multiscale feature fusion and the use
of sparse patches to accelerate inference in remote sensing
images, we propose the Aware Distribute and Sparse Net-
work (ADSNet) for efficient infrared small target detection.
ADS consists of two key modules. Firstly, we design the
Aware Fusion Distribute module (AFD) to integrate global
features, enhance attention aware, and overcome the loss
of details caused by passing information layer by layer
in the feature map. Subsequently, to accelerate inference,
we design Aware Cascaded Sparse module (ACS), acti-
vating multi-instance perception and enriching the criteria
for decision mask judgment. Afterward, deep-layer features
predict decision masks layer by layer, guiding the sparsifi-
cation of shallow features to enhance detection efficiency.
The main contributions of this article are summarized as
follows.

1) We propose an ADSNet that utilizes instance activation
to sparse shallow features to efficient object detection for
small infrared targets.

2) An Aware Fusion Distribute module is proposed to
enrich the deep features to avoid the disappearance of small
target information.

3) We conducted extensive analysis on the NUDT-SIRST
[10] and IRSTD-1k [12] datasets. Experimental results
demonstrate that our approach outperforms existing state-of-
the-art algorithms for small infrared target detection while
maintaining low computational costs.

II. RELATED WORKS
A. INSTANCE SEGMENTATION
Instance segmentation requires algorithms to assign a
pixel-level mask with category labels for each instance in
the image [13]. Two-stage instance segmentation methods
consist of a bounding box detection stage and a mask seg-
mentation stage, such as Mask-RCNN methods [14], [15].
One-stage methods like RetinaNet [16] and CondInst [17]
eliminate the region proposals and directly generate mask
segmentation for improved detection efficiency. However,
it may not be conducive to identifying small targets.
To enhance the accuracy of segmentation masks, some
scholars focus on instance edges. Contour-based [18], [19]
methods attempt to generate a coarse initialization of the con-
tour and then iteratively regress each edge node to obtain the
final instance contour. Boundary Refinement [20] methods
re-predict the coarse mask to recover the lost details during
upsampling. These methods perform well in conventional
object segmentation but cannot be directly applied to infrared
small targets.

B. SMALL OBJECT DETECTION
When dealing with the challenges of few pixels, limited fea-
tures, and imbalanced target background samples that arise
with deep learning for detecting small targets, researchers
suggest four potential solutions: 1) multi-scale feature
fusion [21], [22], 2) adding contextual information [23],
[24], [25], 3) balancing class examples [24], and 4) super-
resolution [24]. In addition, some researchers concentrate
computational resources on the potential regions of the target
to improve detection efficiency. QueryDet [27] predicts target
positions at low resolution and guides high-resolution sparse
predictions. OAN [28] divides remote sensing images into
patches, uses a lightweight fully convolutional network to
determine if a patch contains a target, and applies the detec-
tion head only to patches with objects. We aim to use various
implicit activation methods to provide a more stable decision
mask, cascade sparse feature layers to improve detection
efficiency.

C. MULTI-SCALE FEATURE FUSION
In order to realize the interaction of target detail informa-
tion in high-resolution feature maps with high-level semantic
information in low-resolution feature maps. The efficient
cross-scale fusion of features by FPNs has pioneered this
type of research. EfficientDet [29] repeatedly utilizes BiFPN
for bidirectional fusion of information. YoloF [30] employs
dilated encoder and uniform matching to achieve single-level
feature map detection. In the context of small infrared target
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FIGURE 1. The architecture of the proposed ADSNet.

FIGURE 2. The process of feature aggregation.

detection, ALCNet [4] proposes a bottom-up feature fusion
to retain detailed features. However, small infrared target
features are limited, and the layer-wise transmission leads
to more information loss. To address this issue, we focus
on highlighting the features of weak small targets and
implementing cross-layer fusion.

D. SPARSE SIGNAL PROCESSING
Signal sparsifiability is applied in many fields such as radar
signal processing, image processing, information cluster-
ing, etc., while sparse information processing techniques
have been developed tremendously in the past decades,
and only a few representative works are presented here.
In order to enhance the ISAR image recovery perfor-
mance, [31] introduced a multiple measurement vector
sparse recovery model to obtain sparser and more accu-
rate results. Reference [32] proposed a re-weighted total
generalized variation model to denoise the image while pre-
serving the target edges. Reference [33] uses a paradigm
to efficiently generate sparse solutions to enhance stable
multiview clustering in complex noise for high dimensional
data.

III. METHODOLOGY
In this section, we provide a detailed description of the pro-
posed end-to-end infrared small target detection network. The
overall architecture of ADSNet is illustrated in Fig. 1. From
the base object detection network, we employ a multiscale

deep feature pyramid. The Aware Fusion Distribute mod-
ule integrates multi-scale features, preserving information
for small targets. Then, the Aware Cascaded Sparse module
utilizes activation maps to predict sparse scores for deci-
sion mask prediction, implementing a cascaded sparsity from
coarse to fine, thus decreasing the computational cost of
high-resolution feature maps.

A. AWARE FUSION DISTRIBUTE MODULE
During the process of layer-wise upsampling, small infrared
target features are relatively fragile, making them suscepti-
ble to information loss due to operations such as pooling.
Additionally, the layer-wise propagation of features exacer-
bates the loss of information. The intricate details of small
targets in high-resolution feature maps are challenging to
transmit effectively to deeper layers. In order to break this
information transfer limitation and realize feature cross-layer
information interaction, we propose Aware Fusion Distribute
module. It aggregates and fuses information from different
layers to form global information. This global information is
then injected into different levels, reinforcing the preservation
of information for small targets in the FPN. as illustrated
in Fig. 1. Intermediate features Bl (l = 2,3,4) in the
down-sampling stage of the backbone network are taken as
input, and the downsampling step size is set to 2l .

The feature aggregation process is shown in Fig. 2.
We align the features to maintain computational efficiency
while preserving small target information. we choose B3 as
the feature alignment size consideration criterion. Specifi-
cally, we use max pooling and bilinear interpolation to adjust
the sizes of the B2 and B4 feature maps to match the size of
B3. The feature maps are concatenated, and 1×1 convolution
is employed to adjust the channel sizes. Then, a residual block
is utilized to further enhance the fused feature map, and the
output is Fglobal. The feature map generated by the residual
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FIGURE 3. The process of feature activation. The green-highlighted
portion indicating the replacement of regular convolutions with sparse
convolutions during the 2nd and 3rd stages of inference.

block is split into two groups, namely Fglobal_3 and Fglobal_4,
for the fusion of features at different levels. The formula is as
follows:

Fglobal = Res(concat[Falign(B2),B3,Falign(B4)]) (1)

where Falign denotes the alignment of Bl to the size of B3.
To effectively distribute global information to different

levels, an attention-enhanced mechanism is employed to fuse
information. The aware distribute process is illustrated in
Fig. 3. After pixel-wise addition of Bl and Fglobal_l , the
combined features undergo channel attention (CA) branch
and spatial attention (SA) branch to generate a 1D channel
attention map Fc ∈ RCi×1×1 and a 2D spatial attention
map Fs ∈ R1×Hi×Wi , respectively. CA captures the channel
responses in each spatial location and aggregates the infor-
mation scattered across the channels. We perform channel
dimension max-pooling on the feature maps, compressing
them into a one-dimensional tensor, so that the inverse gradi-
ent computation process only targets the maximum values in
the feature maps. SA simulates the localization process of the
human eye to quickly target visually salient locations, and we
compute the maximum values in the feature maps to ensure
that the model focuses on the target’s potential locations.
The global feature distribution process can be summarized
as follows:

F′
= Falign(Bl) + Fglobal_l (2)

Fc = σ (B(C1×1
2 (δ(B(C1×1

1 (Pc
max(F

′))))))) ⊗ Fglobal_l (3)

Fs = σ (B(C1×1
3 (Ps

max(F
′)))) ⊗ Fglobal_l (4)

F = (Fc + Fs) ⊗ Flocal + Fglobal_l (5)

whereFalign denotes the alignment ofBl to the size ofFglobal,
Pc
max denotes max-pooling, Ps

max denotes channel-wise max-
pooling, C1×1 represents a 1×1 convolution, B denotes batch
normalization, δ denotes the ReLu function, and σ denotes
the sigmoid function.

B. AWARE CASCADED SPARSE MODULE
Small targets are often detected in high-resolution feature
maps. However, computing the entire image for sparsely
distributed targets can lead to a waste of computational
resources. To address this issue, we utilize an activation map
to perform cascaded sparsification on the high-resolution
feature map. Instance activation maps are instance-aware

FIGURE 4. The process of aware distribute.

weighted maps that utilize implicit activation methods (e.g.,
categorization [34] or segmentation [35]) to highlight objects,
which can uncover richer semantic information about each
target. In this paper, we guide the sparsification of shal-
lower levels by predicting decision masks at deeper levels.
Although deep-level features may not be suitable for detect-
ing smaller targets, they can still infer their approximate loca-
tions and provide high-level semantic information, guiding
the subsequent stages of small target detection, as illustrated
in Fig. 1.

Dense Activation takes F4 as input. In the deep-level net-
work, target features gradually become blurred. To recover
different feature details, we use a multi-scale convolu-
tional structure. Meanwhile, we employ multi-angle super-
vision to activate instance awareness. Specifically, Dense
Activation employs three encoding structures in parallel,
1 × 1, 3 × 3, and two sets of 3 × 3 convolutions,
to achieve different receptive fields. The results of the
three sets are concatenated, and 1 × 1 convolution is
used to reduce the feature dimension. Subsequently, three
linear layers are used for classification, decision mask,
and IoU-aware score. The specific structure is shown in
Fig. 4.
Decision Mask. In order to achieve dynamic sparsification

of the feature map, we plan to divide the input image into
N = HMWM patches (and discuss the impact of the value
of Non the detection results in Table 7 ). Then, we predict
a binary decision mask M ∈ {0, 1}N to determine whether
to retain each patch. All elements in the decision mask
are initialized to 1 and gradually updated. We additionally
apply max pooling before predicting the decision mask for
the F3 layer to ensure that the resolution of the decision
mask prediction matches that of the F4 layer. To address the
issue of the non-differentiability of the binary decision mask,
making end-to-end training impractical, we use the Gumbel-
Softmax [36] trick to transform the predictive probabilities
pm into mask:

M = Gumbel-Softmax(pm) (6)
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TABLE 1. Parameter settings of traditional methods.

IoU-aware score. In the prediction of small targets, calcu-
lating the IoU leads to a highly imbalanced foreground-
background ratio. Matching the ground truth to each target
one-to-one can result in excessive redundant predictions for
the background, and it is prone to misaligning the classi-
fication scores with the segmented targets. The paper [37]
points out the irrelevance between IoU and classification
predictions. Based on this, we adopt IoU between the final
predicted mask and the ground truth as the objectness targets.

Sparse Activation takes the bilinear interpolation upsam-
pling of the coarse feature map in the previous stage and
the pixel-by-pixel summation of the feature map in the cur-
rent stage as input. The result is then multiplied by the
decision mask from the previous stage to obtain a sparse
matrix, accelerating inference. During training, no sparsi-
fication is performed, and prediction is done with dense
convolutions, similar to Dense Activation. During infer-
ence, we replace 3 × 3 dense convolutions with 3 × 3
sparse convolutions, utilizing the weights of the dense con-
volution to construct the sparse convolution [38] kernel.
Finally, a residual structure is added to enhance contextual
preservation.

In addition to the implicitly supervised activation described
above, the injection of global features into the deeper features
at AFD similarly complements the small target information in
the deeper features of the network, which becomes the basis
for the activation of the features in ACS. Enable the decision
mask predicted by deep features to have the capability to
guide the sparsification of shallow features.

C. LOSS FUNCTION
The training loss for ADSNet is the sum of the classification
loss Lcls, IoU-aware prediction loss LIoU, and the final mask
segmentation loss Lseg:

L = Lcls + LIoU + Lseg (7)

We supervised IoU-aware learning using binary cross entropy
loss, and both classification and final mask segmentation
were supervised using focal loss [16].

IV. EXPERIMENTS
A. IMPLEMENTATION DETAILS
Resnet has been shown to extract features with finite network
depth [39], but the large sensory fields that are too deep

in it are not suitable for small targets. In order to make
the predicted decision mask suitable, we chose ResNet-18
as the downsampling backbone network, with output levels
B2- B4 and output strides [4], [8], [16]. The experiment used
Stochastic Gradient Descent (SGD) optimizer for 50,000
training iterations. The learning rate reached a base learning
rate of 0.02 after 4,000 warm-up iterations and decreased
tenfold after 30,000 and 40,000 iterations, respectively. All
experiments were conducted on a computer with an Nvidia
A4000 GPU and Intel i7-8550U CPU.

B. DATASETS AND METRICS
We evaluated our algorithm on the NUDT-SIRST and
IRSTD-1k datasets. The NUDT-SIRST dataset consists of
1327 images with a size of 256× 256 pixels. Approximately
37% of the images have at least 2 targets, and 96% of the
targetsmeet the definition of small targets by the International
Society for Optical Engineering: targets should be smaller
than 0.15% of the entire image area. The IRSTD-1k dataset
comprises 1000 images with a size of 512 × 512 pixels. The
two datasets contain complex scenes such as sea and ground,
with multi pose targets such as points, drones, and airplanes,
simulating most of the actual detection scenarios. The ratio
of training images to test images is set at 1:1.

In this paper, we choose standard performance metrics
for infrared small target detection: normalized IoU (nIoU),
Probability of Detection (Pd), False-Alarm Rate (Fa), and
Receiver Operating Characteristic (ROC) curve. The nIoU is
the normalized intersection over union between the predicted
mask and the ground truth. The ROC curve visually reflects
the relationship between the True Positive Rate (TPR) and
False Positive Rate (FPR) in target detection. The nIoU, TPR,
and FPR are defined as:

nIoU =
1
N

N∑
i=1

TP
T + FP

(8)

TPR =
TP

TP+ FN
(9)

FPR = Fa =
FP
N

(10)

where TP, FP, FN, and T denote the number of detected true
positive, false positive, false negative, and true target, respec-
tively. Note that these are pixel level evaluation metrics. For
pd we use target level to denote:

Pd =
Tpred
Nall

(11)

where Tpred denotes the number of correctly predicted targets.
Nall denotes the number of all target.

C. COMPARISON WITH STATE OF THE ART
We compare our method with SOTA infrared small target
detection methods, including traditional algorithms: Top-hat
[40], LEF [6], AADCDD [41], TLLCM [7]. Deep learning-
based algorithms: ALCNet [4], DNANet [10], RDIAN [42].
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TABLE 2. Comparisons with SOTA methods on NUDT-SIRST and IRSTD-1k in nIoU(%), Pd (%), Fa(10−6).

The hyperparameter settings for traditional methods are
shown in Table 1. To ensure the fairness of the experiments,
all algorithms will be run under the same environment.

As shown in Table 2, the best values for each metric
are indicated in bold, and the second-best values are under-
scored. ADSNet exhibits significant advantages over other
state-of-the-art (SOTA) methods on both NUDT-SIRST and
IRSTD-1k datasets. Since these two datasets encompass
various complex backgrounds and target types, traditional
algorithms are constrained by the prior features designed for
specific scenarios, and the selection of hyperparameters also
fails to achieve good generalization. The deep learning meth-
ods perform much better than the traditional methods, and
the effect of controlling Fa is remarkable. Our method shows
substantial improvement compared to other deep learning
methods. This is attributed to AFD mapping multiscale fea-
tures and ACS activating multi-instance awareness. ADSNet
maintains a high Pd while keeping low Fa, with an nIoU on
IRSTD-1k higher than similar methods by 5.66.

The ROC curves are shown in Fig. 5. Traditional methods
fail to guarantee the TPR at low FPR, making it ineffective
in filtering out background information. Deep learning meth-
ods, driven by image information, can achieve very low FPR.
Our method has achieved good performance, demonstrating
the effectiveness of the proposed method in suppressing the
FPR while maintaining a high TPR.
The inference time of the deep learning algorithm for a

single image in the NUDT-SIRST dataset is shown in Table 3,
with lower values indicating better performance. For images
in the NUDT-SIRST dataset with a size of 2562, the average
speed of inference for a single image using the proposed
method is 0.041s. Due to the cascaded sparsification of
high-resolution features, the control of computational cost is
remarkable.

We visualize results on selected images with complex
backgrounds from the two datasets, as shown in Fig. 6. Our
method can segment targets in most complex background
scenes. Top-hat focuses on high-frequency areas in the image
and cannot distinguish between background object edges and

FIGURE 5. ROC curves of ADSNet and the SOTA methods, (a) ROC on
NUDT-SIRST, (b) ROC on IRSTD-1k.

TABLE 3. Average inference time of single image for deep learning
methods.

small targets. LEF, AADCDD, and TLLCM have varying
degrees of capture effect on targets by enriching local contrast
judgment criteria, but also generate false positives due to prior
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FIGURE 6. Visualization results for each method. Red boxes indicate that the target is detected and zoomed in, while green boxes indicate that the target
is not detected.

FIGURE 7. Visualization results of feature map fusion under different configurations of AFD.

models set in advance. In contrast, deep learning methods
generate prediction probabilities at relevant positions and
can effectively filter out background clutter. Our method
aggregates multi-scale features, reduces feature vanishing,
and utilizes multi semantic activation instance perception
to enhance detection robustness, which is key to ensuring
effective detection.

D. MODEL ANALYSES
1) IMPACT OF AFD MODULE
We visualize the B4 level, as shown in Fig. 7. With
the assistance of both SA and CA, information can be
provided to the deep-layer features of the network, ensur-
ing the preservation of features for small infrared targets.
As shown in Table 4, compared to the model without
AFD, nIoU increased by 5.02%, PD increased by 5.35%,
and Fa decreased by 4.01 × 10−6. We further conducted
ablation studies by individually ablating the two attention
mechanisms, CA and SA, which brought different improve-
ments to the overall detection performance. CA enhances
the channel-wise information representation for small tar-
gets, while SA strengthens the position information of
small targets, avoiding the introduction of background

TABLE 4. Ablation study of the different configurations of AFD in nIoU
(%), Pd (%), Fa (10−6).

clutter similar to small targets, resulting in better detection
results.

We assigned global features to different down-sampling
stages of the backbone network. As shown in Table 5, assign-
ing Fglobal more to B3 resulted in an increase of 1.42% in
nIoU and 0.96% in Pd, while Fa decreased by 0.89 × 10−6.
However, assigning Fglobal to B2−4 has limited improvement
on the overall detection performance of the network but
significantly impacts the inference speed. This is because
most of the small target features are already present in the
shallow features, and feature supplementation by Fglobal does

40540 VOLUME 12, 2024



Y. Song et al.: Aware Distribute and Sparse Network for Infrared Small Target Detection

FIGURE 8. Visualization of the cascaded sparse patches on feature maps.

TABLE 5. Ablation study of distributing global feature to different stages
in nIoU (%), Pd (%), Fa (10−6), Time.

TABLE 6. Ablation on the IoU-aware in nIoU (%), Pd (%), Fa (10)-(6),
Time.

not result in a significant improvement, but rather slows down
the inference speed due to the high resolution of the shallow
features.

2) IMPACT OF ACS MODULE
As shown in Table 6, we investigated the improvement
in overall detection performance introduced by IoU-aware
supervision. Adding IoU-aware supervision increased nIoU
by 2.19% without adding additional computational burden to
the entire model.

We compared the detection performance of the network
under different numbers of patches (i.e., resolution of deci-
sion mask). Before predicting the mask, the feature hierarchy
was reshaped to the corresponding mask size. As shown
in Table 7, the detection results gradually improved with
an increase in the number of patches. Especially when the
number of patches reached 16 × 16, the network obtains the
highest accuracy.

TABLE 7. Ablation on the number of patches (resolution of decision
mask) in nIoU (%).

TABLE 8. Ablation on different sparse strategies in nIoU(%).

As shown in Fig. 8, we conducted decision mask visual-
ization. Patches covered by the mask are discarded. It can
be observed that the decision mask gradually discards areas
unrelated to the target, helping the network focus on iden-
tifying potential target locations while saving computational
resources.

As shown in Table 8, we conducted an ablation study
on mask sparsity ratio and sparsity position. We initiated
sparsity from layer F3. Compared to the network without
sparsity, nIoU decreased by 0.18, but the inference FPS
increased by 13.9. Sparse activation on F2 alone similarly
did not significantly improve the detection results. However,
a larger sparsity ratio would compromise the overall network
detection performance.
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V. CONCLUSION
To accelerate the inference speed of infrared small target
detection, we propose a cascaded sparse feature map scheme.
However, information about small targets often diminishes
as features are propagated layer by layer. To address this,
we introduce the AFD module to complement deep network
features. Simultaneously, we enhance the robustness of sparse
feature map generation by using instance-aware activation.
In our future work, we plan to apply ADSNet to conven-
tional small target detection and explore its potential for
accelerating the inference of sparse targets in 3D space.
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