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ABSTRACT This article investigates the fixed-time stabilization (XTS) of a class of stochastic memristive
inertial neural networks (MINNs) with time-varying delays using interval matrix method (IMM) within
the framework of the Filipov solution. To streamline the analysis, the second-order differential system
is converted into an ordinary first-order differential system through suitable variable transformations.
Afterwards, three types of state feedback controllers were designed. It’s worth noting that the third controller
represents an improvement over the first two controllers. Consequently, we have derived several sufficient
conditions for XTS. This approach results in a more conservative upper estimate for the settling time function
(STF). In addition, the finite-time stabilization (FTS) criterion can be derived. Ultimately, the validity of the
theoretical findings were confirmed by numerical simulation outcomes.

INDEX TERMS Feedback control, fixed-time stabilization, interval matrix method, inertial memristive
neural networks.

I. INTRODUCTION
Nowadays, neural networks (NNs) have seen significant
advancements in various engineering and scientific fields,
including signal processing, image processing, pattern recog-
nition and robotics [1], [2]. The stability of neural networks,
as a prerequisite for ensuring task completion, has also
emerged as a prominent research topic among scholars.

Meanwhile, memristive neural networks (MNNs) have
become a research hotspot, replacing traditional resistors
in artificial neural networks with memristors. The concept
of memristors was initially proposed by scientist Chua in
1971, defining the resistance based on the amount of charge
flowing through it [3]. However, the HP Lab team didn’t
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confirm the physical existence of memristors until 2008
[4]. Due to their similarity to the memory characteristics
of human brain synapses, memristors exhibit significant
potential for a wide range of applications [5], [6], [7], [8].
Therefore, studying the dynamic behavior [9], [10], [11] of
MNNs, which can simulate the human brain, is of significant
importance. Furthermore, numerous studies have focused
on the stability of MNNs. For example, in [12], Wen and
Zeng analyzed the exponential stability of recurrent MNNs.
Reference [13] investigated the globalMittag-Leffler stability
and synchronization of fractional order MNNs. These studies
contribute to a deeper understanding of the behavior and
potential applications of MNNs.

As we know, traditional NNs are usually described
by first-order differential equations. Nonetheless, in 1986,
Babcock and Westervelt introduced the concept of INNs,
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as described in [14], by incorporating inductors into neural
network circuits, which can be modeled using second-order
differential equations. In addition, due to the physical signif-
icance and biological background of inertia and memristors,
their combination can simulate more complex dynamic
behaviors in nature. Consequently, a class of MINNs can
be constructed by combining INNs with MNNs [15], [16],
[17]. In recent years, there have been publications focusing on
MINNs. For instance, the stability and existence of periodic
solutions for delayed inertial BAM neural networks were
studied [18]. In [19], Wang and Zeng studied FTS problem
of MINNs with distributed time delays.

Undeniably, in the past few decades, theoretical and
applied research on FTS and control has received consider-
able attention due to its qualitative transient characteristics
within a given finite time [20], [21], [22]. Reference [23]
revisited the concept of FTS using linear matrix inequality
(LMI) theory and proposed fewer conditions to ensure the
FTS of linear continuous time systems, and in [24], Meng and
Shen investigated the FTS of linear systems. Additionally,
Zhang et al. [25] explored the finite time control problem
and derived certain sufficient conditions. References [26]
and [27] examined finite time control for linear and nonlinear
stochastic systems separately.

We observe that the literature on FTS often emphasizes
the reliance of stability time on initial conditions, which
may not always be available [28]. Consequently, XTS, which
represents a novel approach to stability analysis, warrants
further investigation. Notably, in [21], the fixed-time control
problem of delayed recurrent MNNs ware examined through
the use of Lyapunov functions and control algorithms.
Similarly, [22] focused on the fixed time synchronization
of impulsive NNs using differential inequalities. Moreover,
[18] explored the concepts of FTS and XTS for high-order
BAM. These studies make significant contributions towards
comprehending and applying XTS in various research and
engineering domains [18], [21], [29].
It is important to mention that in the field of engineer-

ing applications, models of time-delay stochastic neural
networks are more common. Therefore, researchers have
never stopped researching neural networks for time-delay
stochastic systems. While some researches have been done
on the XTS problem of stochastic MINNs with time
delays, there is still much room for further exploration and
development. Additionally, the predominant focus within
current literature on MINNs revolves around FTS and
exponential stability. For instance, [30] delved into the
global exponential synchronization of MINNs. Furthermore,
in [31], Chen and Li explored the notion of fixed-time
projection synchronization for MNNs featuring discrete time
delays. Recent investigations in [32] presented novel findings
on global exponential non-divergence analysis for MINNs.
Nonetheless, to the best of the author’s knowledge, there
remains a scarcity of research outcomes pertaining to theXTS
of stochastic MINNs, which has been a driving force behind
our research endeavors.

In particular, this article’s main contributions can be
summarized as follows: Firstly, efficient controllers are
developed for the two-layer structure of MINNs, ensuring
FTS and XTS of stochastic MINNs. Additionally, a time
delay term is incorporated into the controller to effectively
address delays, and new results on the XTS of MINNs
are presented using LMI. Finally, the theoretical results
are validated for correctness and effectiveness through
simulation examples.

The rest of this paper is structured in the following manner.
The Section II will outline the necessary preliminary work.
Theoretical results will be presented in Section III. The
effectiveness of these theoretical results will be demonstrated
through numerical simulations in Section IV. Finally, the
conclusion can be found in Section V.

II. PROBLEM STATEMENT AND PRELIMINARIES
A. MODE DESCRIPTIONS
Now, we present the mathematical model of stochastic
MINNs, along with a set of assumptions, definitions, and
lemmas. Contemplate a category of stochastic MINNs
featuring time-varying delays

dṁi(t) = [−a⋆i ṁi(t) − b⋆imi(t)

+

n∑
j=1

cij (mi(t)) fj
(
mj(t)

)
+

n∑
j=1

dij
(
mi(t)gj

(
mj(t − ı(t))

))
]dt

+ϖi (t,mi(t),mi(t − ı(t))) dw(t), (1)

with the initial values

mi (s) = ψi (s) , ṁi (s) = ϕi (s) , s ∈ [−ı, 0] . (2)

In the given context, mi(t) is identified as the state variable,
where both a⋆i > 0 and b⋆i > 0. The second derivative
of mi(t), also referred to as the inertial term, is pertinent to
system (1). The nonlinear function, fi, serves to exemplify the
activation function of the neural network. Concurrently, ı(t)
designates a time-varying delay, complying with 0 ≤ ı(t) ≤

ı, ı̇(t) ≤ X ≤ 1, where ı and X are constants. cij(mi) and
dij(mi) symbolize the memristive connection weights.

cij(mi) =

{
ĉij, |mi| ≤ ϒi,

čij, |mi| > ϒi,
(3)

dij(mi) =

{
d̂ij, |mi| ≤ ϒi,

ďij, |mi| > ϒi,
(4)

where ĉij, čij, d̂ij, ďij are known constants with respect to
memristors, i, j = 1, 2, . . . , n.
To establish the primary results, we introduce some

assumptions.
Assumption 1: For each i, the neuron activation function

of neurons fi and gi are bounded and meet the Lipschitz
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condition with li > 0, ji > 0, i ∈ In,

l⋋i ≤
fi(m1) − fi(m1)
m1 − m2

≤ l⋌i , li = max{l⋋i , l
⋌
i },

j⋋i ≤
gi(m1) − gi(m1)

m1 − m2
≤ j⋌i , ji = max{j⋋i , j

⋌
i },

L⋇
= diag{l⋋1 l

⋌
1 , l

−

2 l
⋌
2 , · · · l

⋋
n l

⋌
n },

L⋇⋇
= diag{

l⋋1 + l⋌1
2

,
l⋋2 + l⋌2

2
, · · ·

l⋋n + l⋌n
2

},

hold for all m1,m2 ∈ R, m1 ̸= m2.
Assumption 2: There exist matrices S1 ≥ 0, S2 ≥ 0 and

σ (t, 0, 0) = 0, such that

trace[ϖ T (t,m(t,m(t − ı(t))))ϖ (t,m(t,m(t − ı(t))))]

≤ m(t)T S1m(t) + mT (t − ı(t))S2m(t − ı(t)).

Definition 1 [33]: If for any open set T that encompasses
�(m0), a set-valued map � with non-empty values is
considered to be upper semi-continuous atm0 ∈ 0 ⊂ Rn, and
there exists a neighborhood M of m0 such that �(M ) ⊂ T ,
then �(m) is a closed (convex, compact) image for every
m0 ∈ 0.
Definition 2 [34]: For ṁ(t) = f (m(t)), where m ∈ Rn

with right endpoints that exhibit discontinuities, the Filippov
set-valued mapping can be delineated in the subsequent
manner:

�(m(t)) =

⋂
δ>0

⋂
µ(T )=0

co [f (B(m(t), δ) \ T )] .

B. INTERVAL MATRIX METHOD
let cij = max

{
c⋇
ij , c

⋇⋇
ij

}
, cij = min

{
c⋇
ij , c

⋇⋇
ij

}
. Mean-

while, we can get d ij, d ij in the same way.
By using differential inclusions and set-valued mapping

theory, this can be clearly seen that

dṁi(t) ∈ [−a♯imi(t) − b♯imi(t)

+

n∑
j=1

co[cij (mi(t))]fj
(
mj(t)

)
+

n∑
j=1

co[dij
(
mi(t)]gj

(
mj(t − ı(t))

))
]dt +ϖidwi(t),

(5)

for t ≥ 0, i, j ∈ 0n, there exist ĉij (mi) ∈ [cij, cij] =

co[cij (mi)], d̂ij (mi) ∈ [d ij, d ij] = co[dij (mi)] and ϖi =

ϖi (t,mi(t),mi(t − ı(t))), thus

dṁi(t) = [−a♯i ṁi(t) − b♯imi(t) +

n∑
j=1

cij (mi(t)) fj
(
mj(t)

)
+

n∑
j=1

dij
(
mi(t)gj

(
mj(t − ı(t))

))
]dt +ϖidw(t),

(6)

or equivalently,

ĉij (mi) = λ
†
ij(t)cij + (1 − λ

†
ij(t))c̄ij, 0 ≤ λ

†
ij(t) ≤ 1,

d̂ij (mi) = λ
‡
ij(t)d ij + (1 − λ

‡
ij(t))d̄ij, 0 ≤ λ

‡
ij(t) ≤ 1.

Choosing λ†ij =
1−o†ij(t)

2 , λ
‡
ij =

1−o‡ij(t)
2 , we have

ĉij (mi(t)) = ćij + o†ij(t)c̀ij,

d̂ij (mi(t)) = d́ij + o‡ij(t)d̀ij,

where ćij =
c̄ij+cij

2 , d́ij =
d̄ij+d ij

2 , c̀ij =
c̄ij−cij

2 , d̀ij =
d̄ij−d ij

2 .
The intervals [cij, cij] can be characterized by their midpoints
ćij and d́ij, as well as the half-lengths c̀ij and d̀ij. Then, two
measurable function o†ij(t) and o

‡
ij(t) ∈ co[−1, 1] are selected

dṁi = −[a♯i ṁi − b♯imi
n∑
j=1

(ćij(mi) + o†ijc̀ij)fj(mj)

+

n∑
j=1

(d́ij(mi) + o‡ijd̀ij)gj(mj)]dt +ϖidwi. (7)

Let

Ĉ(m) = ĉij(mi), D̂(m) = d̂ij(mi),

O†(t) = o†ij(t),O
‡(t) = o‡ij(t),

A⋆ = diag(a⋆1, a
⋆
2, · · · , a

⋆
n)
T ,

f (m) = (f1(m1), f2(m2), · · · , fn(mn))T ,

g(m) = (g1(m1), g2(m2), · · · , gn(mn))T ,

ϖ = (ϖ1,ϖ2, · · · ,ϖn),w(t) = (w1(t),w2, · · · ,wn(t)).

Then, we set

Ć = (ćij)n×n,♢C(m(t)) = o†ij(t)c̀ij = H1FG1,

D́ = (d́ij)n×n,♢D(m(t)) = o‡ij(t)d̀ij = H2FG2,

H1 = (
√
c̀11i1, · · · ,

√
c̀1ni1, · · · ,

√
c̀n1in, · · · ,

√
c̀nnin),

G1 = (
√
c̀11i1, · · · ,

√
c̀1ni1, · · · ,

√
c̀n1in, · · · ,

√
c̀nnin)T ,

ip(p = 1, · · · , n) is the recognition matrix, provided F = {f |

diag{o11, · · · , o1n, · · · , on1, · · · , onn}}, where ∥ oij ∥≤ 1 ,
and FTF ≤ I . Obviously, MINNs (7) are transformed into

dṁ(t) = [−A⋆ṁ(t) − B⋆m(t) + (Ć + H1FG1)f (m(t))

+ (D́+ H2FG2)g(m(t − ı(t)))]dt +ϖdw(t). (8)

C. PRELIMINARIES
Then, the linear variables is transformed

ℏ(t) = 2m(t) + ṁ(t),

To formulate criteria for XTS, we devise the following
feedback controller{

u1 = −K1m(t) − K2sign(m(t)) − K3sign(m(t))|m(t)|q

v1 = −Z1ℏ(t) − Z2sign(ℏ(t)) − Z3sign(ℏ(t))|ℏ(t)|q,
(9)
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is the designed feedback control law, K1,K2,K3,Z1,Z2,Z3
are control strength matrices, q > 1.
Therefore, the controlled close-loop system is obtain as
ṁ = −2m(t) + ℏ(t) + u1(t)
ℏ̇ = −Am(t) − Bℏ(t) + (Ć + H1FG1)f (x(t))

+(D́+ H2FG2)g(m(t − ı(t))) +ϖdw(t) + v1(t).

(10)

where2 > 0, B = A⋆ −2, A = B⋆ − A⋆2+22. Generally,
2 is given, which makes B > 0.
Definition 3 [35]: The system (1) is globally FTS at

the origin if it exhibits Lyapunov stability and finite-time
convergence (FTC). FTC implies that, for any initial state
m0 ∈ Rr+n, there exists a function T : Rn+m

\ {0} →

(0,+∞), known as the STF, such that lim
t→T (m0)

m(t,m0) =

0 and m(t,m0) = 0 for all t ≥ T (m0).
Definition 4 [36]: The origin of system (1) is globally

XTS if it exhibits both global FTS characteristics and if T (m0)
is bounded. In simpler terms, there is a positive constant Tmax
for which T (m0) ≤ Tmax holds for all m0 ∈ Rr+s.
Lemma 1 (Schur Complement [37]): It’s generally accep-

ted that there is a given symmetric matrix 3 =

[
311 312
∗ 322

]
,

where 311 ∈ Rn×n, which is equivalently written as follows:
(1) 3 < 0;
(2)311 < 0,322 −3T

123
−1
11 312 < 0;

(3)322 <,3123
−1
22 3

T
12 < 0.

Lemma 2 [38]: If we have ΞT
= Ξ , Γ and Z with

suitable dimensions,

Ξ + Γ FZ + ZTFTΓ T < 0,

satisfies FTF ≤ I , and there exists ε > 0,

Ξ + ϵ−1Γ Γ T
+ ϵZTZ < 0.

Lemma 3 [39]: We can make the assumption that V (·) :

Rn
→ R+ ∪ {0} is C-regular, and the vector function m(t) ∈

Rn is absolutely continuous within any compact subinterval
of [0,+∞). If V (m(t)) ≤ −ðV n(m(t)) for all t ≥ 0, where
ð > 0 and 0 < η < 1, then it follows that V (m(t)) ≡ 0, and
the STF can be calculated as T ∗

=
V 1−η(m(0))

ð(1−η) .

Lemma 4 [40]: If m1,m2, · · · ,mn > 0, 0 < p ≤ 1, q >
1, then

n∑
i=1

mpi ≥

(
n∑
i=1

mi

)p
,

n∑
i=1

mqi ≥ n1−q
(

n∑
i=1

mi

)q
.

Lemma 5 [41]: If there exists a continuous and radically
unbounded function V : Rn

→ R+ ∪ {0} such that LV (m) ≤

−γV p(m) − τV q(m), where γ > 0, τ > 0, 0 < p < 1,
and q > 1, then the zero solution of systems (11) is deemed
FTS, and the corresponding STF can be estimated as Tmax =

1
γ (1−p) +

1
τ (q−1) .

Lemma 6 [42]: Suppose V (·) : Rn
→ R+ ∪ {0} is a

continuously and radically unbounded function that satisfies

the inequality LV (m) ≤ −γV p(m) − τV q(m), where γ > 0,
τ > 0, p = 1−

1
2ζ and q = 1+

1
2ζ for ζ > 1. Then, the origin

of the systems (11) is XTS, and Tmax =
πζ

√
γ τ

. Furthermore,

the STF can be estimated as Tmax =
πζ

√
γ τ

.

III. MAIN RESULTS
Theorem 1: If Assumption 1 is satisfied. The MINNs (10)

can achieve stochastic XTF if there exist several posi-
tive definite matrices X1,X2, positive diagonal matrices
M1,M2, two general matrices W1,W2, and some scalars
ε1, ε2, ε3, ε4, ε5, ε6 > 0, P < βI , such that

ψ1 0 0 L⋇⋇M̌1 0 ψ2

∗ β̌S2 − L⋇⋇M̌2 0 0 L⋇⋇M̌2 ψ3
∗ ∗ ψ4 0 0 ψ5

∗ ∗ ∗ − M̌1 0 0
∗ ∗ ∗ ∗ − M̌2 0
∗ ∗ ∗ ∗ ∗ ψ6

 < 0,

(11)

ψ1 = −2Γ X1 + ε1I − 2W1 + β̌S1 − L∗M̌1,

ψ2 = (X1,X1LT ,X1LTGT1 , 0, 0, 0),

ψ3 = (0, 0, 0,X2JT ,X2JTGT2 , 0),

ψ4 = −2BX2 − 2W2 + ε2AAT + ε3ĆĆT
+ ε4H1HT

1

+ ε5D́D́T + ε6H2HT
2 ,

ψ5 = (0, 0, 0, 0, 0,X2),

ψ6 = diag(−ε2I ,−ε3I ,−ε4I ,−ε5I ,−ε6I ,−ε1I ),

Š1 = X1S1XT1 ,

Š2 = X2S2XT2 ,

β̌ = X1βIXT1 ,

M̌1 = X1M1XT1 ,

M̌2 = X2M2XT2 .

The controlled (10) systems are XTS. Meanwhile, K1 =

W1X
−1
1 ,Z1 = W2X

−1
2 , furthermore,

Tmax =
2
λ

+
2

ρ(q− 1)
,

where

λ =
2min {λmin(P1K2), λmin(P2Z2)}
√
max {λmax(P1), λmax(P2)}

,

ρ =
2min {λmin(P1K3), λminP2Z3} · n

1−q
2√

max {λmax(P1), λmax(P2)}p+1
, (12)

that is to say,

λ = λ1λ
−

1
2

2 , ρ = λ3λ
−
p+1
2

2 ,

λ1 = 2min {λmin(P1K2,P2Z2)} ,

λ2 = max {λmax(P1), λmax(P2)} ,

λ3 = 2n
1−q
2 min {λmin(P1K3), λmin(P2Z3)} .
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Proof: The Lyapunov functional is constructed as

V (t) = m(t)TP1m(t) + ℏ(t)TP2ℏ(t), (13)

then,

dV (t)

= LV (t)dt + 2ℏ(t)P2ϖdw(t), (14)

LV (t)
= trace(ϖ TP2ϖ ) − 2m(t)TP1Γm(t) + 2m(t)TP1ℏ(t)

+ 2m(t)TP1u1(t) − 2n(t)TP2Am(t) − 2ℏ(t)TP2Bℏ(t)
+ 2ℏ(t)TP2(Ć + H1FG1)f (m(t))

+ 2n(t)TP2(D́+ H2FG2)g(m(t − ı(t))) + 2ℏ(t)TP2v1(t),
(15)

2m(t)TP1ℏ(t) − 2ℏ(t)TP2Am(t)
≤ ε1m(t)TP1P1m(t) + ε−1

1 ℏ(t)Tℏ(t) + ε2ℏ(t)TP2AATP2ℏ(t)
+ ε−1

2 m(t)Tm(t), (16)

2ℏ(t)TP2(Ć + H1FG1)f (m(t))

≤ ε3ℏ(t)TP2ĆĆTP2ℏ(t) + ε−1
3 m(t)TLTLm(t)

+ ε4ℏ(t)TP2H1HT
1 P2ℏ(t) + ε−1

4 m(t)TLTGT1G1Lm(t),

(17)

2ℏ(t)TP2(D́+ H2FG2)G(m(t − ı(t)))

≤ ε5ℏ(t)TP2D́D́TP2ℏ(t) + ε−1
5 m(t − ı(t))T JT Jm(t − ı(t))

+ ε6ℏ(t)TP2H2HT
2 P2ℏ(t) (18)

trace(ϖ TP2ϖ )

≤ β(m(t)T S1m(t) + m(t − ı(t))T S2m(t − ı(t))). (19)

Therefore, we have

2m(t)TP1u1(t) + 2n(t)TP2v1(t)

= −2m(t)TP1K1m(t) − 2m(t)TP1K2sign(m(t))

− 2m(t)TP1K3sign(m(t))|m(t)|q − 2ℏ(t)TP2Z1ℏ(t)
− 2ℏ(t)TP2Z2sign(ℏ(t)) − 2ℏ(t)TP2Z3sign(ℏ(t))|ℏ(t)|q.

(20)

Therefore, according to Assumption 1, for positive diag-
onal matrices M1 and M2, we can satisfy the following
inequalities:

−

(
m(t)
f (m(t))

)T ( L⋇M1 − L⋇⋇M1
−L⋇⋇M1 M1

)(
m(t)
f (m(t))

)
−

(
m(t − ı(t))
f (m(t − ı(t)))

)T ( L⋇M2 − L⋇⋇M2
−L⋇⋇M2 M2

)
×

(
m(t − ı(t))
f (m(t − ı(t)))

)
≥ 0. (21)

Combining the above equations, one gets

LV (t) ≤ m(t)TΦ11m(t) + m(t − ı(t))TΦ22m(t − ı(t))

+ ℏ(t)TΦ33ℏ(t) + f (m(t))T (−M1)f (m(t))

+ f (m(t − ı(t)))T (−M2)f (m(t − ı(t)))

+ f (m(t))TL∗∗M1m(t) + m(t)TL∗∗M1f (m(t))

+ f (m(t − ı(t)))TL∗∗M2m(t)

+ m(t − ı(t))TL∗∗M2f (m(t − ı(t)))

− 2m(t)TP1K2sign(m(t))

− 2m(t)TP1K3sign(m(t))|m(t)|q

− 2ℏ(t)TP2Z2sign(ℏ(t))
− 2ℏ(t)TP2Z3sign(ℏ(t))|ℏ(t)|q, (22)

where

Φ11 = −2P12+ ε1P1P1 + ε−1
2 I + ε−1

3 LTL

+ ε−1
4 LTGT1G1L − 2P1K1 + βS1 − L∗M1

Φ22 = ε−1
5 JT J + ε−1

6 JTGT2G2J + βS2

Φ33 = −2P2B+ ε−1
1 2+ ε2P2AATP2 + ε3P2ĆĆTP2

+ ε4P2H1HT
1 P2 + ε5P2D́D́TP2 + ε6P2H2HT

2 P2
− 2P2Z1

Then, it follows that

LV (t) ≤ −λmin(P1K2 + KT
2 P1)

n∑
i=1

|mi(t)|

− λmin(P2Z2 + ZT2 P2)
n∑
i=1

|ℏi(t)|

− λmin(P1K3 + KT
3 P1)

n∑
i=1

|mi(t)|q+1

− λmin(P2Z3 + ZT3 P2)
n∑
i=1

|ℏi(t)|q+1. (23)

From lemma 4 and q > 1,
n∑
i=1

|mi(t)|q+1
≥ n

1−q
2 (m(t)Tm(t))

q+1
2 ,

letting

λ1 = 2min {λmin(P1K2), λmin(P2Z2)} ,

λ2 = max {λmax(P1), λmax(P2)} ,

λ3 = 2n
1−q
2 min {λmin(P1K3), λmin(P2Z3)} ,

we can get

E {dV (t)} ≤ −
2λmin(P1K2,P2Z2)

√
λmax(P1, λmax(P2))

E(V (t))
1
2

−
2λmin(P1K3,P2Z3) · n

1−q
2

(
√
λmax(P1), λmax(P2))ρ+1

E(V (t))
q+1
2

= −λE(V (t))
1
2 − ρE(V (t))

q+1
2 , (24)

where λ = λ1λ
−

1
2

2 , ρ = λ3λ
−
q+1
2

2 . Then, from Lemma 3, the
system (10) can achieve XTS,

Tmax =
1

λ(1 −
1
2 )

+
1

ρ( q+1
2 − 1)

=
2
λ

+
2

ρ(q− 1)
.
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Remark 1: Now, let’s examine a specific case of Theo-
rem 1. Assuming the conditions of Theorem 1 remain valid,
if q = 2, then the MINNs (10) can achieve XTS under
controller (9), the gain matrices of the controller are K1 =

W1X
−1
1 ,Z1 = W2X

−1
2 , furthermore, Tmax =

π
√
λρ

, where

λ = λ1λ
−1
2 ,

ρ = λ3λ
−

3
2

2 , λ1 = 2min {λmin(P1K2), λmin(P2Z2)},
λ2 = max {λmax(P1), λmax(P2)},
λ3 = 2n−

1
2min {λmin(P1K3), λmin(P2Z3)}.

In order to compare with XTS, we also studied the FTS
of the system, the following feedback controller has been
designed: {

ũ1 = −K1m(t) − K2sign(m(t)),
ṽ1 = −Z1ℏ(t) − Z2sign(ℏ(t)),

(25)

where K1,Z1 are control gains to be determined later,
therefore, the following corollary can be easily derived from
lemma 3.
Corollary 1: Suppose Assumption 1 holds. The MINNs

will achieve stochastic FTS if there exist several positive
definite matrices X1, X2, positive diagonal matrices M1,
M2, two general matrices W1, W2, and some scalars
ε1, ε2, ε3, ε4, ε5, ε6 > 0. P < βI , such that

ψ1 0 0 L⋇⋇M̌1 0 ψ2

∗ β̌S2 − L⋇⋇M̌2 0 0 L⋇⋇M̌2 ψ3
∗ ∗ ψ4 0 0 ψ5

∗ ∗ ∗ − M̌1 0 0
∗ ∗ ∗ ∗ − M̌2 0
∗ ∗ ∗ ∗ ∗ ψ6

 < 0,

where

ψ1 = −22X1 + ε1I − 2W1 + β̌S1 − L∗M̌1,

ψ2 = (X1,X1LT ,X1LTGT1 , 0, 0, 0),

ψ3 = (0, 0, 0,X2JT ,X2JTGT2 , 0),

ψ4 = −2P2X2 − 2W2 + ε2AAT + ε3ĆĆT
+ ε4H1HT

1

+ ε5D́D́T + ε6H2HT
2 ,

ψ5 = (0, 0, 0, 0, 0,X2),

ψ6 = diag(−ε2I ,−ε3I ,−ε4I ,−ε5I ,−ε6I ,−ε1I ),

Š1 = X1S1XT1 ,

Š2 = X2S2XT2 ,

β̌ = X1βIXT1 ,

M̌1 = X1M1XT1 ,

M̌2 = X2M2XT2 .

What is more, the upper bound of the STF for stabilization

can be estimated as Tmax =
λ2(E||x(0)||

1
2 + E||y(0)||

1
2 )

α
, α =

λ1λ
−

1
2

2 .

Now, we consider another feedback controller, which is a
more common case, where 0 < p < 1, q > 1.{
u2=−K1m(t)−K2sign(m(t))|m(t)|p−K3sign(m(t))|m(t)|q

v2=−Z1ℏ(t)−Z2sign(ℏ(t))|ℏ(t)|p−Z3sign(ℏ(t))|ℏ(t)|q.
(26)

Theorem 2: If Assumption 1 holds. The MINNs (10)
can achieve stochastic XTS if there exist several posi-
tive definite matrices X1,X2, positive diagonal matrices
M1,M2, two general matrices W1,W2, and some scalars
ε1, ε2, ε3, ε4, ε5, ε6 > 0, P < βI , such that

ψ1 0 0 L∗∗M̌1 0 ψ2

∗ β̌S2 − L∗∗M̌2 0 0 L∗∗M̌2 ψ3
∗ ∗ ψ4 0 0 ψ5

∗ ∗ ∗ − M̌1 0 0
∗ ∗ ∗ ∗ − M̌2 0
∗ ∗ ∗ ∗ ∗ ψ6

 < 0, (27)

where

ψ1 = −22X1 + ε1I − 2W1 + β̌S1 − L∗M̌1,

ψ2 = (X1,X1LT ,X1LTGT1 , 0, 0, 0),

ψ3 = (0, 0, 0,X2JT ,X2JTGT2 , 0),

ψ4 = −2BX2 − 2W2 + ε2AAT + ε3ĆĆT
+ ε4H1HT

1

+ ε5D́D́T + ε6H2HT
2 ,

ψ5 = (0, 0, 0, 0, 0,X2),

ψ6 = diag(−ε2I ,−ε3I ,−ε4I ,−ε5I ,−ε6I ,−ε1I ),

β̌ = X1βIXT1 ,

M̌1 = X1M1XT1 ,

M̌2 = X2M2XT2 .

Then, the controlled system (10) is XTS with K1 =

W1X
−1
1 , Z1 = W2X

−1
2 . What is more,

Tmax =
2

α(1 − p)
+

2
β(q− 1)

.

where α = λ1λ
−
p+1
2

2 , β = λ3λ
−
q+1
2

2 , λ1 =

2min{λmin(P1K2), λmin(P2Z2)}, λ2 = min{λmax(P1),

λmax(P2)}, λ3 = 2min{λmin(P1K3) · n
1−q
2 , λmin(P2Z3) · n

1−q
2 }.

Proof:

V (t) = m(t)TP1m(t) + ℏ(t)TP2ℏ(t), (28)

Similarly, we have

LV (t) ≤ m(t)TΦ11m(t) + m(t − ı(t))TΦ22m(t − ı(t))

+ ℏ(t)TΦ33ℏ(t) + f (m(t))T (−M1)f (m(t))

+ f (m(t − ı(t)))T (−M2)f (m(t − ı(t)))

+ f (m(t))TL⋇⋇M1m(t) + m(t)TL∗∗M1f (m(t))

+ f (m(t − ı(t)))TL⋇⋇M2m(t)

+ m(t − ı(t))TL∗∗M2f (m(t − ı(t)))
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− 2m(t)TP1K2sign(m(t))|m(t)|p

− 2m(t)TP1K3sign(m(t))|m(t)|q

− 2ℏ(t)TP2Z2sign(ℏ(t))|ℏ(t)|p

− 2ℏ(t)TP2Z3sign(ℏ(t))|ℏ(t)|q, (29)

where

Φ11 = −2P12+ ε1P1P1 + ε−1
2 I + ε−1

3 LTL

+ ε−1
4 LTLGT1G1L − 2P1K1 + βS1 − L⋇M1

Φ22 = ε−1
5 JT J + ε−1

6 JTGT2G2J + βS2

Φ33 = −2P2B+ ε−1
1 I + ε2P2AATP2 + ε3P2ĆĆTP2

+ ε4P2H1HT
1 P2 + ε5P2D́D́TP2 + ε6P2H2HT

2 P2
− 2P2Z1.

By Lemmas 1, in conjunction with inequality (11) with P1 =

X−1
1 and P2 = X−1

2

LV (t) ≤ −λmin(P1K2 + KT
2 P1)|

n∑
i=1

mi(t)|p+1

− λmin(P2Z2 + ZT2 P2)|
ℏ∑
i=1

ℏi(t)|p+1

− λmin(P1K3 + KT
3 P1)|

n∑
i=1

mi(t)|q+1

− λmin(P2Z3 + ZT3 P2)|
n∑
i=1

ℏi(t)|q+1. (30)

Due to 0 < p < 1, together with lemma 4,one gets
n∑
i=1

|mi(t)|p+1
≥ (m(t)Tm(t))

p+1
2 ,

Letting α = λ1λ
−
p+1
2

2 , β = λ1λ
−
q+1
2

3 , we can get

E|dV (t)| ≤ −α[V (t)]
p+1
2 − β[V (t)]

q+1
2 .

Moreover,

Tmax =
2

α(1 − p)
+

2
β(q− 1)

. (31)

Remark 2: Now, let’s consider a special case of
Theorem 1. Assuming that the conditions in Theorem 2 still
hold, if p = 1 −

1
ζ
, q = 1 +

1
ζ
and ζ > 1, then we have

p+ 1
2

= 1 −
1
2ζ

,
q+ 1
2

= 1 +
1
2ζ

. The system (11) can

achieve XTS under the controller (12). Moreover, a more
precise estimation of the STF can be derived using Lemma 8:
Tmax =

πµ
√
αβ

.

Remark 3: For any initial condition, the stability time for
a fixed time is constrained by a predetermined constant,
which can be pre-computed using systems and controller
parameters.

Remark 4: In this article, it is evident that the sign(mi(t))
plays a pivotal role in the controller design. However, it’s
difficult to handle. Therefore, we can use the continuous term

mi(t)
|mi(t)| + δi

as an approximation of sign(mi(t)), where the

constant δi is small enough.
To investigate the FTS of MINNs (10), we have designed

the following feedback controller{
ũ2 = −K1m(t) − K2sign(m(t))|m(t)|p,
ṽ2 = −Z1ℏ(t) − Z2sign(ℏ(t))|ℏ(t)|p,

(32)

Utilizing Lemma 3 as a foundation, we can easily deduce the
subsequent corollary.
Corollary 2: We continue to assume that all the require-

ments specified in Theorem 2 remain satisfied, based on
lemma 9,MINNs (10) can attain FTSwith the controller (12),

where E{T0} ≤
λ2(E||x(0)||

1−p
2 + E||y(0)||

1−p
2 )

χ
with χ =

2λ1λ
−

1−p
2

2 .
Remark 5: From inequality (31), it is evident that the

STF of FTS is influenced by both the initial values and
coefficients. In other words, once the initial values are set,
the upper time bound is solely determined by the coefficients,
which can be manipulated through the gain matrices.

The first few controllers are relatively common and simple,
and a new controller is as follows. In our approach, we not
only introduce a delay term but also incorporate both the
sign(mi(t)) function and absolute value function to more
effectively address time-varying delays in the system (11).
u3 = K1m(t) − K2sign(m(t))|m(t)|p − K3sign(m(t))|m(t)|q,
v3 = Z1ℏ(t) − Z2sign(ℏ(t))|ℏ(t)|p − Z3sign(ℏ(t))|ℏ(t)|q

+Z4sign(ℏ(t))|ℏ(t − ı(t))|+M̃sign(ℏ(t))(
|ℏ(t)|

∥ ℏ(t) ∥2
).

(33)

Theorem 3: If Assumptions 1 and 2 are satisfied, then the
stochastic MINNs (10) can attain XTS provided there exist
several positive definite matrices X1,X2, positive diagonal
matricesM1,M2, two general matricesW1,W2,W3,W4, and
some scalars ε1, ε2, ε3, ε4, ε5, ε6 > 0, P < βI , such that



ψ1 0 0 L∗∗M̌1 0 ψ2

∗ βŠ2 − L∗∗M̌2 0 0 L∗∗M̌2 ψ3
∗ ∗ ψ4 0 0 ψ5

∗ ∗ ∗ − M̌1 0 0
∗ ∗ ∗ ∗ − M̌2 0
∗ ∗ ∗ ∗ ∗ ψ6

 < 0, (34)

(
2W3 X2NTGT2
∗ − ε5I

)
< 0, (35)

D́JX2 +W4 < 0, (36)

where

ψ1 = −22X1 + ε1I − 2W1 + β̌S1 − L∗M̌1,
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ψ2 = (X1,X1LT ,X1LTGT1 , 0),

ψ3 = (0, 0, 0, 0),

ψ4 = −2BX2 − 2W2 + ε2AAT + ε3ĆĆT
+ ε4H1HT

1

+ ε5H2HT
2 ,

ψ5 = (0, 0, 0,X2),

ψ6 = diag(−ε2I ,−ε3I ,−ε4I ,−ε1I ),

β̌ = X1βIXT1 ,

M̌1 = X1M1XT1 ,

M̌2 = X2M2XT2 .

Then the controlled systems are XTS, and K1 =

W1X
−1
1 ,Z1 = W2X

−1
2 ,Z4 = W4X

−1
2 , M̃ = W3X

−1
2 ,

furthermore,

Tmax =
2

ȷ (1 − p)
+

1
k(q− 1)

,

where ȷ = 2λ1λ
−
p+1
2

2 ,k = 2λ1λ
−
q+1
2

3 , λ1 =

min{λmin(P1K2), λmin(P2Z2)}, λ2 = min{λmin(P1K3) ·

n
1−q
2 , λmin(P2Z3) · n

1−q
2 }, λ3 = max{λmax(P1), λmax(P2)}.

Proof:

V (t) = m(t)TP1m(t) + ℏ(t)TP2ℏ(t). (37)

Therefore,

2ℏ(t)TP2(D́+ H2FG2)g(m(t − ı(t)))

≤ 2ℏ(t)TP2D́J |(m(t − ı(t))| + ε−1
5 MTGT2G2M

+ ε5ℏ(t)TP2H2HT
2 P2ℏ(t). (38)

Similarly, we can prove that

LV (t) ≤ m(t)TΦ11m(t) + m(t − ı(t))TΦ22m(t − ı(t))

+ ℏ(t)TΦ33ℏ(t) + f (m(t))T (−M1)f (m(t))

+ f (m(t − ı(t)))T (−M2)f (m(t − ı(t)))

+ f (m(t))TL∗∗M1m(t) + m(t)TL∗∗M1f (m(t))

+ f (m(t − ı(t)))TL⋇⋇M2m(t)

+ m(t − ı(t))TL⋇⋇M2f (m(t − ı(t)))

− 2m(t)TP1K2sign(m(t))|m(t)|p

− 2m(t)TP1K3sign(m(t))|m(t)|q

− 2ℏ(t)TP2Z2sign(ℏ(t))|ℏ(t)|p

− 2ℏ(t)TP2Z3sign(ℏ(t))|ℏ(t)|q

+ 2ℏ(t)P2Z4sign(ℏ(t))|m((t − ı(t)))| + +2P2M̃ .

(39)

where

Φ11 = −2P12+ ε1P1P1 + ε−1
2 I + ε−1

3 LTL

+ ε−1
4 LTLGT1G1L − 2P1K1 + βS1 − L⋇M1

Φ22 = ε−1
5 JT J + ε−1

6 JTGT2G2J + βS2

Φ33 = −2P2B+ ε−1
1 Γ + ε2P2AATP2 + ε3P2ĆĆTP2

+ ε4P2H1HT
1 P2 + ε5P2D́D́TP2 + ε6P2H2HT

2 P2
− 2P2Z1.

The remaining steps of the proof follow the same
procedure.
Remark 6: This study’s innovation stems from the sim-

plification of parameter constraints and the utilization of a
controller grounded in interval matrix methods, thus present-
ing an effective and viable control strategy. In Theorems 1
and 2, controllers are simple and commonly used, making
it easy to verify the obtained system stabilization criteria.
In Theorem 3, we can observe that controller (33) handle
the time delay term differently by incorporating proportional
terms of PID control. Meanwhile, some articles provide
integral terms for PID control. The different forms lead to
different effects of controllers, and these forms are widely
used in engineering.

IV. NUMERICAL SIMULATIONS
Within this section, we substantiate the theoretical findings

with numerical simulations.
Consider the following stochastic MINNs

ṁi = −ξimi + ℏi

ℏ̇i = −aimi − biℏi +
n∑
j=1

cij(mi)fi(mj(t))

+

n∑
j=1

dij(mi)gi(mj(t − ı(t))) +ϖidwi.

(40)

ai = ξ2i − a⋆i ξi + b⋆i , bi = a⋆i − ξi, i = 1, 2, fj(x) =

gj(x) = tanh(x), and the delay with time change is ıj(t) =

0.75+ 0.25sin(2t). Correspondingly, the closed-loop system
is as follows:

ṁi = −ξimi + ℏi + ui

ℏ̇i = −aimi − biℏi +
n∑
j=1

cij(mi)fi(mj(t))

+

n∑
j=1

dij(mi)gi(mj(t − ı(t))) +ϖidwi + vi.

(41)

The system parameters are taken as

A =

(
0.5 0
0 0.07

)
, B =

(
5 0
0 10

)
,

2 =

(
0.05 0
0 0.05

)
,

L⋇
=

(
0.08 0
0 0.08

)
, L⋇⋇

=

(
0.3 0
0 0.3

)
,

C(mi) =

(
c11(mi1) c12(mi2)
c21(mi1) c22(mi2)

)
,

D(mi) =

(
d11(mi1) d12(mi2)
d21(mi1) d22(mi2)

)
,

Select the memristor connection weights:

c11(m1(t)) =

{
−0.2, |m1| ≤ 0.1.
0.2, |m1| > 0.1.
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FIGURE 1. State trajectories without controller.

c12(m1(t)) =

{
−1.5, |m1| ≤ 0.1.
1.5, |m1| > 0.1.

c21(m2(t)) =

{
−0.2, |m2| ≤ 0.1.
0.2, |m2| > 0.1.

c22(m2(t)) =

{
−0.25, |m2| ≤ 0.1.
0.25, |m2| > 0.1.

d11(m1(t)) =

{
−1.4, |m1| ≤ 0.1.
1.4, |m1| > 0.1.

d12(m1(t)) =

{
−0.5, |m1| ≤ 0.1.
0.5, |m1| > 0.1.

d21(m2(t)) =

{
−0.3, |m2| ≤ 0.1.
0.3, |m2| > 0.1.

d22(m2(t)) =

{
−2.5, |m2| ≤ 0.1.
2.5, |m2| > 0.1.

σ1 = σ2 = 0.3m1(t) + 0.1m1(t − ı(t)), therefore

S1 = S2 =

(
0.12 0
0 0.04

)
,

The state trajectories of MINNs (40) are illustrated in
Fig. 1, without the implementation of any controller. From
Fig. 1, the initial values of MINNs (40) are ψ1(s) =

1, ψ2(s) = −1.5, ϕ1(s) = −1, ϕ2(s) = 1.8, s ∈ [−2, 0].We
analyze the behavior of states in the time domain, which leads
to the conclusion that the system (39) is unstable. Hence, our
objective is to design suitable controller capable of stabilizing
the unstable systems within a fixed time.
Next, we choose q = 3.25. Then, the delayed control

law (12) is{
u1 = K1m(t) − K2sign(m(t))|m(t)|−K3sign(m(t))|m(t)|q.
v1 = Z1ℏ(t) − Z2sign(ℏ(t))|ℏ(t)|−Z3sign(ℏ(t))|ℏ(t)|q.

(42)

According to Theorem 1, we get

X1 =

(
0.1638 0

0 0.0195

)
, X2 =

(
0.1192 0

0 0.0990

)
,

FIGURE 2. State trajectories under the controller (42).

W1 =

(
0.6141 0

0 0.52500

)
, W2 =

(
1.9479 0

0 1.2421

)
,

K1 =

(
3.7496 0

0 26.9746

)
, Z1 =

(
16.3400 1.3996
0.6433 12.5510

)
,

Z3 = Z4 =

(
0.5 0
0 0.5

)
, K3 = K4 =

(
0.5 0
0 0.5

)
,

M̌1 =

(
0.8890 0

0 0.8890

)
, M̌2 =

(
0.8890 0

0 0.8890

)
,

β̌ =

(
−6.5195 0

0 − 19.5585

)
.

ε1 = ε2 = ε3 = ε4 = ε5 = ε6 = 1.0490.
From Theorem 1, it can be concluded that the MINNs (41)

can achieve stabilization within a fixed time using the delayed
state feedback control law (42) with ψ1(s) = 1, ψ2(s) =

−1.5, ϕ1(s) = −1, ϕ2(s) = 1.8, s ∈ [−2, 0]. Fig. 2 illustrates
the state trajectories of system (41) under the controller (42).
Moreover, it is evident that the states approach zero in fixed-
time. This leads to the inference that MINNs (41) accomplish
XTS via the utilization of the control laws (42).

According to Theorem 2, we design the following
controller:{
u2 = K1m(t) − K2sign(m(t))|m(t)|p − K3sign(m(t))|m(t)|q.
v2 = Z1ℏ(t) − Z2sign(ℏ(t))|ℏ(t)|p − Z3sign(ℏ(t))|ℏ(t)|q.

(43)

Similarly, we choose p = 0.3, q = 3.25, and the feasible
solutions can be obtained from LMI.

X1 =

(
2.8956 0

0 4.7489

)
, X2 =

(
2.1154 0

0 1.7562

)
,

W1 =

(
11.9117 0

0 12.0391

)
, W2 =

(
34.5657 0

0 22.0418

)
,

K1 =

(
4.1136 0

0 2.5352

)
, Z1 =

(
16.3400 0

0 12.5510

)
,

Z3 = Z4 =

(
0.5 0
0 0.5

)
, K3 = K4 =

(
0.5 0
0 0.5

)
,

M̌1 =

(
14.1027 0

0 14.1027

)
, M̌2 =

(
14.1027 0

0 14.1027

)
,
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FIGURE 3. State trajectories under the controller (43).

FIGURE 4. State trajectories under the controller (44).

β̌ =

(
−108.1205 0

0 − 324.3616

)
.

ε1 = ε2 = ε3 = ε4 = ε5 = ε6 = 18.6155.
It can be concluded that system (10) is XTS. In Fig.3, it is

clear that the state trajectories converge to zero for ψ1(s) =

1, ψ2(s) = −1.5, ϕ1(s) = −1, ϕ2(s) = 1.8, s ∈ [−2, 0].
By comparing Fig.2 and Fig.3, it can be seen that among

the two universal state feedback controllers of Theorem 1
and Theorem 2, the STF from Theorem 1 is less than that
of Theorem 2, while the state trajectories of Theorem 2 are
smoother.

In Theorem 3, we choose p = 0.9, q = 4.25. Then, adding
a time delay term to the controllers to handle time delay in
different ways, the controller (44) is as follows
u3 = K1m(t) − K2sign(m(t))|m(t)|p − K3sign(m(t))|m(t)|q.
v3 = Z1ℏ(t) − Z2sign(ℏ(t))|ℏ(t)|p − Z3sign(ℏ(t))|ℏ(t)|q

+Z4sign(ℏ(t))|ℏ(t − ı(t))|+M̃sign(ℏ(t))(
|ℏ(t)|

∥ ℏ(t) ∥2
).

(44)

Correspondingly, the system parameters are taken as

A =

(
0.5 0
0 0.07

)
, B =

(
0.5 0
0 0.5

)
, 2 =

(
10 0
0 2

)
,

FIGURE 5. State trajectories of ℏ1 under three controllers.

FIGURE 6. State trajectories of ℏ2 under three controllers.

Then, one gets

X1 =

(
0.0207 0

0 0.2500

)
, X2 =

(
0.5062 0

0 0.4737

)
,

W1 =

(
0.4662 0

0 0.2909

)
, W2 =

(
0.9816 0

0 − 1.1420

)
,

W3 =

(
−0.5024 0

0 − 0.5288

)
, W4 =

(
−0.9924 0

0 − 0.9924

)
,

K1 =

(
22.4908 0

0 1.1636

)
, K2 =

(
8 0
0 8

)
,

K3 =

(
8 0
0 8

)
, M̌1 =

(
0.9007 0

0 0.8802

)
,

M̌2 =

(
0.9025 0

0 0.9025

)
, Z1 =

(
1.9392 0

0 − 2.4107

)
,

Z2 =

(
8 0
0 8

)
, Z3 =

(
8 0
0 8

)
,

Z4 =

(
−1.9605 0

0 − 2.0948

)
, M̃ =

(
−0.9925 0

0 − 1.1163

)
,

β̌ =

(
−6.6180 0

0 − 19.8540

)
,

ε1 = 1.1215, ε2 = 1.0075, ε3 = 1.0612, ε4 = 0.9939, ε5 =

1.0073.
Thus, it is obvious in Fig.3 that state trajectories converge

to zero, which verify the effectiveness of Theorem 3.
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Based on Theorem 1 and Theorem 2, MINNs (41) can
achieve XTS under the controllers (42) and (43). In fact,
according to Theorem 3, MINNs (40) can also achieve
XTS under controller (44). Numerical examples indicate
that, under the same controller parameters, the settling time
under controller (44) is smaller than the settling time under
controllers (42) and (43). Therefore, compared to Theorem 1
and Theorem 2, Theorem 3 can provide a smaller upper
estimate for the settling time.

Observing Figs. 5 and 6, it becomes apparent that the STF
specified in Theorem 3 is shorter than that in Theorem 2.
In other words, Theorem 3 better deals with the delay term
of the systems by adding a delay term to the controllers
and combining the sign(mi(t)) function and absolute value
function, thus providing a smaller upper estimate for the STF.

Furthermore, adopting a controller structured in matrix
form not only simplifies its complexities but also optimizes
computations in higher dimensions, thereby significantly
enhancing the computational efficiency of the control system.
This method enables us to meet various stability requirements
within a unified control framework, simultaneously strength-
ening system stability and reducing control expenses.

V. CONCLUSION
This article has addressed the XTS of a type of stochastic
MINNs. First, the approach begins with transforming the
neural networks into systems with interval coefficients using
the IMM. Simultaneously, by applying Filipov discontinuity
theory and employing variable transformation, the issue
of second-order equations is converted into a system of
first-order equations. Through the design of Lyapunov-
Krasovskii functional, Ito formula and LMI method, three
different controllers are formulated to achieve FTS for
any initial value. Subsequently, the acquired outcomes are
represented in the format of LMI and can be validated
through MATLAB. Additionally, the upper limit of FTS
is estimated, which remains unaffected by the system’s
initial conditions. Furthermore, to emphasize the difference
between FTS and XTS, this article extends some implications
to guarantee FTS of the system. These results contribute
to the advancement and enhancement of previous work on
MINNs. Finally, the theoretical findings are validated through
numerical simulations.
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