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ABSTRACT Classroom learning behavior recognition can provide effective technical support for teaching
and learning. However, in natural classroom teaching scenarios, classroom learning behaviors are often
missed or falsely detected due to character occlusion and the small object. To tackle the above issues,
this study proposed an improved classroom learning behavior recognition algorithm (YOLOv8n_BT) based
on YOLOv8n. On the one hand, for the occlusion problem of classroom learning behaviors, this study
incorporated the BRA into the Backbone to better capture feature information; on the other hand, for the
small object problem of classroom learning behaviors for back-row-students, this study expanded a Tiny
Object Detection Layer (TODL) to detect small targets better. Experiments show that the BRA and the
TODL can significantly improve the model performance. The YOLOv8n_BT model, which incorporated
both the BRA and the TODL into the YOLOv8n(baseline) model simultaneously, has the most significant
performance improvement. Compared with the YOLOv8n(baseline), the YOLOv8n_BT model improved
by 3.0%, 6.7%, 5.0%, 3.6%, and 9.0% on P, R, F1, mAP50, and mAP50-90, respectively. The detection
performance of YOLOv8n_BT also outperforms other state-of-the-arts.

INDEX TERMS YOLOv8, BRA mechanism, learning behavior recognition, target detection, occluded
targets, small targets.

I. INTRODUCTION
The performance of the student’s learning behavior is
crucial to instruction and assessment [1], [2]. Assessment
of classroom learning behaviors usually includes manual
and automated measures [3]. Manual measurement mainly
includes self-reporting, interviews, and observation. How-
ever, they have the problems of retrospective bias, high
subjectivity, and low efficiency [4]. With the development
of artificial intelligence in the education community, using
smart technology to track and detect classroom learning
behaviors has become a new trend. Classroom learning
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behavior recognition results can be utilized to analyze and
visualize behavior statistics, teaching patterns, etc. This
is important for conducting learning situation analysis,
learning diagnostics, and achieving comprehensive, process-
oriented, ‘‘multidimensional’’ assessments. Classroom learn-
ing behavior analysis is a data-drivenmechanism. It promotes
the integration of objective and quantitative assessment,
improving the accuracy of classroom instruction assessment.

Currently, deep learning is progressively improving the
automatic measurement of classroom behavior. Automatic
classroom behavior measurement methods have become a
research hotspot in the field of education informatization [6],
[7] due to their highly automated, real-time, and efficient
features [5]. Object detection algorithms based on deep
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learning have become mainstream, such as YOLO technol-
ogy [8], SSD technology [9], and fasterRCNN [10] technol-
ogy. However, classroom learning behavior recognition is a
complex issue. The difficulties are (1) classroom learning
behaviors are often obscured; (2) The learning behaviors for
back-row-students are small objects. The object detection
methods are not friendly to recognizing occluded objects
and small objects in natural classrooms [11]. As a result,
classroom learning behaviors are often missed or falsely
detected. This leads to low recall and precision in identifying
classroom learning behaviors, ultimately failing to provide a
comprehensive and accurate response to classroom learning
engagement. Therefore, for the problem of missed and false
detection of classroom learning behaviors due to occlusion
problems and small object problems for classroom learning
behaviors, improving the recall and precision of classroom
learning behavior recognition is a pressing issue in current
education.

Among the existing algorithms for object detection, YOLO
is popular due to its perfect speed-accuracy balance. YOLOv8
is the next major update to YOLOv5, open-sourced by
Ultralytics, on January 10, 2023. The YOLOv8 model
exhibits a faster and more accurate performance, thereby
delivering enhanced technical support for classroom learning
behavior recognition. Therefore, this study creates a dataset
of learning behavior detection for elementary students in
natural classroom scenarios. To address the above issues,
this study proposed an improved classroom learning behavior
recognition algorithm YOLOv8n_BT using YOLOv8n as the
baseline model. The main contributions of this study are as
follows:

(1) Constructing a classroom learning behavior dataset.
A small-scale classroom learning behavior dataset was
constructed based on regular elementary classroom videos;

(2) Incorporating Bi-Level Routing Attention(BRA) [12].
Aiming at the occlusion problem of classroom learning
behaviors, the BRA was incorporated into the Backbone to
preserve fine-grained detail information and better capture
global information and rich contextual information;

(3) Adding a Tiny Object Detection Layer(TODL).
To address the problem of small objects for classroom
learning behaviors, a TODL was added to improve the
performance of capturing small object feature information;

(4) Proposing an improved classroom learning behav-
ior recognition algorithm, YOLOv8n_BT. On the self-
constructed dataset of this study, the P-value, R-value,
and mAP (50-90) of YOLOv8n_BT are improved by 3%,
6.7%, and 9.0%, respectively, compared with the YOLOv8n
(baseline). The improved model(YOLOv8n_BT) effectively
addresses the problem of missed and falsely detected
classroom learning behaviors.

The rest of the paper is organized as follows. Section II
describes the related work of this study, reviewing object
detection, occluded object detection, and small object
detection. Section III describes the overall framework and
implementation details of the YOLOv8n_BTmodel proposed

in this study. Section IV shows specific experiments and
experimental results. Section V presents conclusions and
future work.

II. RELATED RESEARCH WORK
A. OBJECT DETECTION
Object detection task involves recognizing both the posi-
tion of objects (localization) and categorizing each object
(classification) within a given image [13]. Object detection
broadly consists of traditional and deep learning-based algo-
rithms [14]. The latter can be categorized into single-stage
and two-stage detection algorithms based on the prediction
stage required by the detector [15]. Single-stage algorithms
perform relatively poor accuracy [16] but can significantly
improve the computational speed. With the development
of deep learning, single-stage algorithms have achieved
comparable accuracy to two-stage algorithms. However,
their performance on small object detection should be
improved [17], [18], especially in severe occlusion situations.
SSD [9] and YOLO [8] are the main single-stage algorithms.
The YOLO (You Only Look Once) algorithm family is
trained end-to-end to improve accuracy and have good
compatibility. With the advent of the YOLO architectural
successor, the detection accuracy of YOLO is improving
significantly. Sometimes, the detection accuracy of YOLO
is better than that of two-stage algorithms [19]. The YOLO
is adopted in various fields. For example, Bie et al. [20]
proposed an improved lightweight YOLOv5 algorithm
(YOLOv5n-L) that can be applied to mobile terminal devices
to achieve real-time accurate detection of vehicle targets.
Yang et al. [21] used the YOLO neural network for end-to-
end prediction of the travel area of agricultural machinery.
YOLOv8 is the latest version of YOLO series at present,
which was released on January 10, 2023. Aiming at the
features and shortcomings of YOLOv8, many researches
have improved and applied YOLOv8 by combining the
features and needs of their respective research fields. Finally,
better experimental results were achieved. For example,
to cope with dense fish populations and underwater plants
that obscure them, Li et al. [22] integrated an innovative
module in Real-time Detection Transformer (RT-DETR) into
YOLOv8 and applied repulsion loss; aiming at the large-scale
changes of different forms of traffic signs and the rapid speed
of vehicles, Zhang et al. [23] implemented multi-scale traffic
sign detection based on YOLOv8 by introducing the attention
module and RFB module and improving the loss function;
in response to the blurriness of UAV-collected images and
the large number of small target objects, Wang et al. [24]
introduced a small target detection structure (STC) and the
global attention GAM into YOLOv8.

The YOLO series is also widely used in the field
of educational research. Chen and Guan [25] proposed
an improved YOLOV4 behavior detection algorithm to
recognize the behavior of teachers and students based
on classroom teaching scenarios. Kumari et al. [26] used
YOLOV4 to detect mobile eye-tracking data in a student
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laboratory session. Xu et al. [27] introduced the simAM
attention module into YOLOv8 to detect students’ cognitive-
behavioral engagement. However, the above studies do not
take into account the challenges of traditional classroom
target detection, such as severe occlusion and small scale
of students in the back rows, which lead to high miss
and false detection rates for student behavior recognition.
In conclusion, the YOLO algorithm family is widely
used in various industries due to its good speed-accuracy
balance.However, YOLO needs to be further adapted and
improved by combining the characteristics of application
scenarios and research needs in the traditional classroom.

B. SMALL OBJECT DETECTION
In deep learning, current object detection algorithms have
achieved good results on medium and large targets. However,
the performance of small target detection is not satisfactory.
Because small targets have a small percentage of area in
the image, which makes it difficult for the model to obtain
adequate feature information [28]. There are four challenges
for small object detection: insufficient feature information,
limited contextual information, uneven distribution of cat-
egories, and insufficient positive instances. To address the
above challenges, the existing solutionsmainly include super-
resolution techniques, context-based information, multi-scale
representation learning, data augment, and loss function-
based [29]. Liu et al. [30] proposed an algorithm to generate
clear, high-resolution faces directly from blurred small
faces using GAN. References [11], [31], [32], and [33]
incorporated attention mechanisms into models to acquire
contextual detail information, alleviating the problem of
small target detection in their respective research areas.
To address the limitations of visual tracking due to target
scale changes, Gu et al. [34] proposed a novel parallel
Transformer network architecture based on the attention
mechanism. References [35] and [36] added detection heads
for small targets to capture multi-scale information, signifi-
cantly improving the model’s performance in detecting small
targets. References [37] and [38] improved the model’s small
object detection performance by optimizing the loss func-
tion. Data augment (e.g., geometric transformations, color
transformations, random occlusion, etc.) is also an effective
way to improve the robustness of the model for small object
detection. For example, Gao et al. [39] increases the training
set by random flipping, Bochkovskiy et al. [40] uses a mosaic
enhancement technique for small object detection in images,
and Zhang et al. [41] uses a flipping mosaic algorithm to
enhance the network’s perception of small targets. The results
show that all the above methods are beneficial in improving
the detection performance for small objects in images.

C. OCCLUDED OBJECT DETECTION
Occlusion is the other challenge for object detection in
real-world scenarios [42], [43], [44]. The difficulties in
dealing with occluded objects are: (1) Occlusion interferes
with feature extraction. (2) Occlusion causes overlapping

prediction frames, which can be wrongly filtered out by
non-maximal suppression (NMS), leading to missed detec-
tions. (3) Complex occlusion datasets make it difficult for
the model to have strong robustness. To address the above
difficulties, optimization mainly includes data augment,
objective structure improvement, loss function improvement,
and non-maximal suppression improvement. Yun et al. [45]
performed image augment by cutting and pasting masking
blocks on the training image, so that the negative effect
of uninformative pixels can be avoided during the training
process, making the training more effective. References [46],
[47], and [48] incorporated different attention mechanisms in
models to capture global and rich contextual information. The
visible part is fully utilized for detection, thereby effectively
reducing the effect of occlusions. To cope with the occlusion
problem of target tracking, Yuan et al. [49] developed an
Aligned Spatial-Temporal Memory network-based Tracking
method (ASTMT), and Gu et al. [50]proposed a novel shared-
encoder dual-pipeline Transformer architecture. Compared
to the Common Mean Square Error Loss Function, L1 Loss
Function, and L2 Loss Function, more new loss strategies
are proven to be useful, such as IoU Loss [51], Focal
Loss [52], GIoU Loss [53], DIoU Loss [54], EIoU Loss [55]
and so on. Wang et al. [56] proposed a repulsion loss
specifically designed for crowded scenes. This loss function
plays a good optimization role in pedestrian-dense occlusion
detection. Tan et al. [57] introduced soft non-maximum
suppression to minimize the occurrence of missed targets due
to occlusion. Guo et al. [58] optimized the NMS algorithm by
linear attenuation confidence score to improve the detection
accuracy of occluded vehicles. It has been shown that all the
above methods help to improve the detection performance of
occluded targets in images.

YOLO is the leading target detector due to its perfect
speed-accuracy balance [59]. However, the YOLO family is
not friendly to detecting small objects and occluded objects,
because YOLO lacks shallow network information and does
not have full access to global and contextual information [11].
To overcome YOLO’s limitations and meet research needs,
studies have optimized the model, successfully apply-
ing improved versions in various fields [60], [61], [62].
In summary, referring to the above optimization schemes
of occlusion target detection and small target detection, this
study carried out model improvement based on YOLOv8n.
The improved model is expected to increase the recall and
precision of classroom learning behavior recognition and
thus reflect classroom learning more comprehensively and
accurately.

III. METHODOLOGIES
A. BASELINE MODEL YOLOv8N
YOLO is the leading target detector due to its good speed-
accuracy balance. YOLOv8 is the update to YOLOv5,
open-sourced by Ultralytics, on January 10, 2023. It provides
the most advanced object detection performance. Compared
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with YOLOv5, YOLOv8 improvements are mainly as
follows:

(1) The C3 module in YOLOv5 is replaced with the C2f
module to achieve further lightweight;

(2) YOLOv8 abandons the previous Anchor-Base and uses
the Anchor-Free idea;

(3) YOLOv8 uses Decoupled-Head to decouple the
classification and detection processes;

(4) It uses the sample matching method of TaskAlignedAs-
signer [63]. There is no Objectness loss branch compared to
the YOLOv5.

The YOLOv8 consists of four layers: Input, Backbone,
Neck, and Head. It includes five architectures of YOLOv8n,
YOLOv8s, YOLOv8m, YOLOv8l, and YOLOv8x. The
architectures are suitable for datasets of different sizes.
Because the dataset in this study is relatively small,
we chose YOLOv8n as the baseline experimental model. The
YOLOv8n architecture is shown in Fig.1.

B. OVERALL FRAMEWORK OF IMPROVED MODELING:
YOLOv8N_BT
The difficulties of learning behavior recognition in natural
classroom scenarios are: (1) Classroom learning behaviors
are often obscured. There are many students, desks, chairs,
and books in natural lecture scenarios, resulting in classroom
learning behaviors often occluded. The occlusion of behav-
iors interferes with the model for feature extraction, which
makes it difficult for the model to have strong robustness;
(2) Classroom learning behaviors for back-row-students are
small objects. Students in the front or back rows have
different proportions of pixels in the image [64]. Back-
row-students have smaller pixels and have more serious
occlusion problems [65]. As a result, the pixel scales of
classroom learning behaviors are inconsistent, especially
the classroom learning behaviors of back-row-students have
insufficient pixels. So, it is difficult for the model to
extract effective feature information. Aiming at the above-
mentioned problems, this study proposed an improved
algorithm based on YOLOv8n: YOLOv8n_BT. The structure
of the YOLOv8n_BT model is shown in Fig. 2, and the part
of the dashed module is the module added to this study. The
functions of the improved model are as follows:

(1) Introducing the BRA. The BRA can better capture fine-
grained, global, and rich contextual information. It provides
high accuracy and computational efficiency in intensive
prediction tasks [12]. The BRA was introduced in layer 7 in
Backbone to address the occlusion problem for classroom
learning behaviors.

(2) Adding a TODL. The TODL can better extract feature
information for relatively smaller objects. It is specifically
designed to recognize the classroom learning behavior of
back-row-students. This study added an upsampling layer
and a downsampling layer to the 17th -22nd layers of the
Neck and a tiny object detection layer to the Head. This
is to solve the small object problem for classroom learning
behaviors.

C. SPECIFIC IMPROVEMENT MEASURES
1) BI-LEVEL ROUTING ATTENTION
The BRA was introduced to address the occlusion problem
of classroom learning behaviors. The BRA is a dynamic,
query-aware sparse attention mechanism. The key idea
of BRA is to filter out the least relevant key-value pair
vectors at the coarse region level, retaining only a small
fraction of the routing regions. Then, a fine-grained token-
to-token attention mechanism is applied to concatenating
these routing regions [12]. The results show that the BRA
can effectively optimize small targets and dense occlusion in
computer vision tasks such as object detection and semantic
segmentation [12], especially in intensive prediction tasks.
Therefore, this study incorporated the BRA to YOLOv8n for
the occlusion problem of classroom learning behaviors. To fit
our data better, this study has done subsidiary experiments.
We introduced BRA into different model layers to improve
the model performance. Based on the experimental results
(see Section IV-C1), the BRAwas finally added to the seventh
layer of the model, as shown in Layer 7 of Fig. 2. The
40 × 40 network feature maps outputted from Layer 6 are
fed into the BRA. The BRA is shown in Fig. 3.
First, region partition and input projection. Input feature

map X with dimension H×W×C, X∈RH×W×C , divide
this feature map into S×S non-overlapping regions, each
including HW

S2
feature vectors, i.e., turn X into X r , X r ∈

RS2×HW
S2

×C , and then obtain the query, key, value tensor,Q,

K , V ∈ RS2×HW
s2

×C , by linear projections:

Q = X rW q , K = X rW k v = X rWV (1)

where W q,W k ,W v
∈ RC×C are projection weights for the

query, key, value, respectively.
Second, a directed graph is constructed through the

adjacency matrix, and the region-to-region routing of the
directed graph is used to find the attending relationship
corresponding to different key-value pairs. Specifically,
(1) the average values ofQ andK in each region are computed
to obtain Qr , K r

∈ RS2×C ; (2) the adjacency matrix Ar of the
region-to-region affinity graph is computed by matrix mul-
tiplication between Qr and the transposed K r , Ar ∈ RS2×S2 ,
and the entries in the adjacency matrix Ar measure the degree
to which the two regions are semantically related; (3) only
the first k connections of each region are kept to prune
the relevance graph, specifically, deriving a routing index
matrix I r , I r ∈ NS2×k ,which keeps the indexes of the first
k connections row by row, and the ith row of I r contains the
indexes of the first k most relevant regions in the ith region:

Ar
= Qr (Kr )T (2)

Ir = topkIndex(Ar ) (3)

Finally, fine-grained token-to-token attention is applied
using the region-to-region routing index matrix I r . The key
and value tensors are first gathered, then attention is applied
to the gathered key-value pairs:

Kg
= gather (K, Ir ) (4)
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FIGURE 1. Model structure of YOLOv8n.

FIGURE 2. Model structure of YOLOv8n_BT.

Vg
= gather (V, Ir ) (5)

O = Attention(Q,Kg,Vg) + LCE(V) (6)

whereKg andVg are gathered key and value tensor, and LCE
(V) is a local context augmentation term, parameterized as a
function by deep convolution with convolution kernel size set
to 5.

This attention mechanism saves the number of parameters
and computation by gathering key-value pairs in the first k
relevant windows and utilizing sparsity operations to skip
the computation of the least relevant regions directly. The
final 40 × 40 network feature map with identified vital
information is then output and fed into layer 8 for feature
learning, as shown in Fig. 2.
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FIGURE 3. Bi-Level routing attention.

2) A TINY OBJECT DETECTION LAYER
The TODL was added to solve the small object problem
for classroom learning behaviors. The head detection layer
of the YOLOv8n(baseline) has only three detection layers.
They detect small, medium, and large targets, respectively.
However, the YOLOv8n(baseline) model often suffers from
missed detection or poor detection accuracy for occlusion
groups of inconsistent size, especially for small target
objects [35]. It has been shown that adding a smaller object
detection layer improves the capture information of different
dimensions and facilitates small object detection [32], [66].
Classroom learning behaviors of back-row-students have a
small proportion of pixels in the image, leading to the fact
that classroom learning behaviors are often missed or falsely
detected. To address this problem, this study added a TODL
to YOLOv8n, as shown in the dashed part of Neck and Head
in Fig. 2. Detailed parameters of the network structure of the
TODL are shown in Table 1.

TABLE 1. Parameters of the tiny target detection layer network.

An upsampling module is added to layers 17-19. The
network feature map of size 80 × 80 output from layer 16
of the model is fed into layer 17 for up-sampling. The
up-sampling will magnify the network feature map by a
factor of 2, resulting in a 160 × 160 network feature map.
The enlarged image allows the model to learn detailed
information about small targets, which improves the model’s
robustness in detecting the students’ learning behaviors
in the back row. At layer 18, the output feature map of
layer 17 is feature-connected to the output feature map of
layer 2 for feature fusion and connecting process information.
In layer 19, the 160 × 160 network feature map is output
through the C2f module to perform convolution and feature

learning. The network feature map output from layer 19 is
delivered to the Detect layer (layer 29), external to layer 19.
This Detect layer (Layer 29, the TODL) is used to detect
relatively more minor targets.

A downsampling module is added to layers 20-22.
At layer 20, the network feature map output from layer 19 is
reduced by half with a step size of 2 through a 3 × 3 con-
volution kernel to obtain an 80 × 80 network feature map;
at layer 21, the network feature map from layer 20 is
spliced with the network feature map from layer 16 to fuse
the features. At layer 22, the spliced network feature map
is convolved by the C2f module to output an 80 × 80
network feature map. The network feature maps output
from layer 22 is conveyed to the Detect layer (layer 30).
The detect layer (layer 30) is used to detect small targets.
Similarly, the feature maps of layers 13 and 24 are spliced
and then convolved to obtain a 40 × 40 network feature
map delivered to the Detect layer (layer 31). The detect layer
(layer 31) is used to detect medium targets. The feature maps
of layers 10 and 27 are spliced, and then a 20 × 20 network
feature map is obtained by convolution and delivered to the
Detect layer (layer 32). The detect layer (layer 32) is used to
detect large targets.

IV. RESULTS AND DISCUSSION
A. DATASETS
1) DATA SOURCES
This study created a dataset of elementary students’ class-
room learning behaviors based on nature classroom videos.
Before the data collection, video capture was agreed upon by
the teacher and students. Image acquisitionwas accomplished
by securing the camera to the front center of the classroom via
a tripod. In the end, we obtained four videos with a duration
of 40 minutes in the format of mp4. We selected one of
the videos (19 students, 10 girls, and 9 boys, respectively)
and extracted one frame of image every 3 seconds. Finally,
we obtained 925 images for a total of 17,575 classroom
learning behavior samples.

2) DATA ANNOTATION
This study adopt the ICAP (Interactive-Constructive-Active-
Passive) framework to classify classroom learning behaviors
into passive, active, constructive, interactive, and disengaged.
The annotation details are in Table 2. The ICAP is a coding
framework that distinguishes cognitive engagement based on
patterns of explicit behaviors. The ICAP framework organ-
ically combines explicit behaviors with implicit cognitive
states, providing a theoretical basis for calculating students’
cognitive engagement through their learning behaviors [67],
[68]. Compared with previous studies that coded behaviors
such as looking up, looking down, looking left, looking
right, and lying down, the ICAP framework can be directly
coded for the student’s learning engagement states, which
allows for a more direct characterization of the students’
learning states. We used an open-source software annotation
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FIGURE 4. LableImage annotation tool interface and annotation
examples.

tool (LableImage) to annotate the images. The interface and
annotation examples of the LableImage annotation tool are
shown in Fig. 4. The software annotation tool can mark
each student’s location (coordinates of the annotation box)
and classroom learning behavior category. Each student in
each image is labeled with a classroom learning behavior
category and corresponding location coordinates. Eventually,
the labeling information of all students in each image is saved
as an XML file named the same as the image. Three graduate
students labeled data. The data with inconsistent coding was
determined by consensus among the three coders. In this
study, the labeled 17,575 data were divided into training and
validation sets according to the ratio of 8:2, with 14,060 data
in the training set and 3,515 data in the validation set.

B. TRAINING ENVIRONMENT AND EVALUATION
INDICATORS
1) TRAINING ENVIRONMENT
The experimental environment and training parameters for
training in this study are shown in Table 3.

2) EVALUATION INDICATORS
The evaluation metrics used in this study include precision
(P), recall (R), F1 value, mAP50, mAP50-95, and FPS.
Precision (P) indicates how many of the predicted positive
samples are truly positive; recall (R) indicates how many
positive classes in the samples are predicted correctly, and
the F1 value is a combination of precision (P) and recall (R).

For each category, the AP is the average of the precision
calculated at different confidence thresholds. Precision is
measured by calculating the overlap between detected and
real targets (usually using IoU, intersection-union ratio).
The AP is calculated based on the precision-recall curve
(PR curve). The mAP is the value obtained by averaging
the APs of all the categories. The mAP is a critical metric
for evaluating overall object detection system performance,
and it is the average precision of the model when deal-
ing with multiple categories. When calculating the mAP,
a confidence threshold is usually used to determine the
positive samples. The mAP50 is the mAP value calculated
at a confidence threshold of 50%. The mAP50-95 is a

more comprehensive evaluation metric, which calculates the
mAP values for confidence thresholds ranging from 50%
to 95%. The mAP50-95 can better evaluate the robustness
and performance of the model. FPS, the number of images
that can be processed within a second, is used to evaluate the
speed of object detection. The calculation formulas are shown
in Eqs. (7)-(12):

P =
TP

TP+ FP
× 100% (7)

R =
TP

TP+ FN
× 100% (8)

F1 =
2TP
P+ R

× 100% (9)

AP =

∫ 1

0
P(R) dR (10)

mAP =
1
n

n∑
i=1

APi (11)

FPS =
N
t

(12)

where TP refers to the number of samples that are positive
and are predicted to be positive, FP refers to the number of
samples that are negative but are predicted to be positive,
FN refers to the number of samples that are positive but are
predicted to be negative, n is the number of target classes
detected, APi is the AP of the ith target class, N is the number
of detected images, and t is the detection time.

C. EXPERIMENTAL RESULTS AND ANALYSIS
1) COMPARATIVE EXPERIMENTS ON THE LOCATION OF
ATTENTION MECHANISMS
This study added the BRA to different layers of the Backbone
and Neck modules of YOLOv8n, respectively. The positional
ablation experiments of the attention mechanisms were
conducted to evaluate the effect of the added positions of
the BRA on the performance of the YOLOv8n algorithm.
The positions of the BRA are added, as shown in Fig. 5, a-f.
The red dashed modules are the BRA mechanisms added
separately in different layers for this study. The Concat
layer splices the output feature of the previous layer with
those of the other layers to achieve feature fusion. The red
arrows represent the output features of other layers. The
experimental results are shown in Table 4, where the bold
parts are the optimal results.

As seen from Table 4, compared to the YOLOv8n
(baseline), adding BRA to different locations in the Back-
bone and Neck of YOLOv8n significantly improved the
model’s performance. This demonstrates the effectiveness of
the BRA. Among them, when the BRA was integrated into
the 7th layer of the YOLOv8n model, as depicted in Fig. 5b,
it resulted in the most significant enhancement. This change
led to a 3.9% increase in the precision, a 6.7% increase in
the recall, a 4.1% increase in the F1 value, a 3.3% increase
in mAP50, and an 8.1% increase in mAP50-90. Therefore,
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TABLE 2. Detailed rules for classroom learning behavior coding.

FIGURE 5. Location of BRA attention mechanism additions.

TABLE 3. Experimental environment.

TABLE 4. Experimental results of different integration positions in BRA.

based on the experimental results, this study incorporated the
BRA into layer 7 of YOLOv8n.

2) ABLATION EXPERIMENT
We conducted ablation experiments for both the BRA and
the TODL. This was to verify the optimization effects
of each improvement module comprehensively and to
further evaluate the contributions of these enhancement

TABLE 5. Results of ablation experiment.

techniques to the YOLOv8n algorithm. Experiment 1
(YOLOv8n) is the baselinemodel for this study. Experiment 2
(YOLOv8n_BRA) only incorporates the BRA in layer 7 of
the YOLOv8n(baseline). Experiment 3 (YOLOv8n_TODL)
only adds the TODL to the YOLOv8n(baseline). Experi-
ment 4 (YOLOv8n_BT) adds both the BRA and the TODL to
the YOLOv8n(baseline) at the same time. The experimental
results are shown in Table 5, where the bolded parts are the
optimal results. The optimization results of the model based
on YOLOv8n (baseline) are shown in parentheses.

As seen from Table 5, the model’s performance is
significantly improved by adding the BRA and the TODL in
the YOLOv8n, respectively, as well as by adding the BRA
and the TODL simultaneously. The specific improvement
effects are shown in the bracketed data in Table 5. The
results of Experiment 2 show that incorporating the BRA into
the YOLOv8n significantly improves the model’s detection
performance and speed. This result is consistent with the
research result [12]. Zhu et al. [12] found that BRA
could improve the detection performance and computational
efficiency of the model due to its working principle. The
results of Experiment 3 reveal that the TODL can signifi-
cantly improve the detection performance of the model. The
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FIGURE 6. Confusion matrix for the BRA and the TODL ablation experiments.

detection speed is relatively equal to the YOLOv8n. The
results of Experiment 4 show that incorporating both the BRA
and the TODL into the YOLOv8n can significantly improve
the model performance without reducing detection speed.

Comparing Experiment 2 and 3, YOLOv8n_BRA and
YOLOv8n_TODL improve the precision by 3.9% and 2.8%
and the recall by 5.4% and 6.3%, respectively. This indicates
that the BRA improves the precision of the model more than
the TODL. In contrast, the TODL improves the recall of
the model more than the BRA. Comparing Experiment 1,
Experiment 2, Experiment 3, and Experiment 4, the study’s
results indicate that YOLOv8n_BT outperforms YOLOv8n,
YOLOv8n_BRA, and YOLOv8n_TODL in terms of detec-
tion performance for all evaluation metrics, except for the
precision, which is 0.9% lower than that of YOLOv8n_BRA.
The detection rate of YOLOv8n_BT is 312.5 FPS

(i.e., it can detect 312 frames per second). It can fully
satisfy the requirement of real-time detection for daily video
of 24-30 frames per second. When P, R, F1, mAP50,
mAP50-90, and FPS metrics are considered simultaneously,
the YOLOv8n_BT model has the best boost. For the missed
detection and false detection problems of classroom learning
behaviors, which are intended to be solved in this study, the
recall and precision of YOLOv8n_BT are improved by 6.7%
and 3.0%, respectively. It can be seen that YOLOv8n_BT
can effectively improve the model’s recall and precision and
solve the problem of missed detection and false detection for
classroom learning behaviors.

The confusion matrices of YOLOv8n_BT, YOLOv8n_
BRA, YOLOv8n_TODL and YOLOv8n(baseline) are shown
in Fig. 6. Each column of the confusion matrix represents the
predicted category, and each row represents the real attributed
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FIGURE 7. Comparison of recognition cases.

category of the data. The confusion matrix is mainly used
to compare predicted and actual values. Table 6 displays
the improvements in classroom learning behavior detection
performance for YOLOv8n_BRA, YOLOv8n_TODL, and
YOLOv8n_BT compared to the YOLOv8n(baseline). The
bolded portion of Table 6 shows the optimal improvement
effect. Fig. 6 and Table 6 show that the BRA and the TODL
benefit the model’s feature learning for various classroom
learning behaviors. They contribute to enhancing the model’s
performance in detecting these behaviors. YOLOv8n_BT
achieves the best recognition performance for different
classroom learning behaviors, with detection performance
exceeding 0.94 and 5% or more improvements for all cate-
gories of these behaviors. For the category of ‘‘disengage,’’
YOLOv8n_BT’s improvement effect is even 14%. The results
above show that the YOLOv8n_BT model has an excellent
fitting effect, high stability, and detection performance for all
classroom learning behaviors.

TABLE 6. Confusion matrix enhancement results for each type of
classroom learning behavior.

3) COMPARATIVE EXPERIMENTS OF DIFFERENT MODELS
To further prove the superiority of the YOLOv8n_BT
algorithm, the self-constructed dataset of this study
is trained on other classical object detection models,
FasterRCNN [10], YOLOv5_s, YOLOv5_m, YOLOv5_l,
YOLOv7_tiny, YOLOv7 and YOLOv7_X. The testing

TABLE 7. Comparative experimental results of different models.

results are compared with those of YOLOv8n_BT. The
experimental results are shown in Table 7, where the
bolded parts are the optimal results. Compared with other
classical models, YOLOv8n_BT also has the best detection
performance.

4) APPLICATION COMPARISON
The YOLOv8n and YOLOv8n_BT models were applied
to another classroom video to verify the feasibility of
the improved model. The classroom video is a 40-minute
recording including 19 students (9 girls and 10 boys). This
classroom video is another lesson recording of an elementary
math class from the same school as the training set. Fig.7
shows two representative classroom learning behavior recog-
nition results for YOLOv8n and YOLOv8n_BT. In order,
the three columns of images are the original image with the
students’ serial numbers, the YOLOv8n recognition results,
and the YOLOv8n_BT recognition results. In the first case,
as shown in Fig.7a, YOLOv8n missed the classroom learning
behaviors of 4 students, stu1, stu13, stu18, and stu19 as
shown in Fig.7b, and YOLOv8n_BT missed the learning
behavior of only one student, stu18 as shown in Fig.7c.
In the second case, as shown in Fig.7d, YOLOv8n missed
the classroom learning behaviors of 4 students, stu13, stu17,
stu18, and stu19 (as shown in Figure 7e), and YOLOv8n_BT
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missed the learning behavior of only one student, stu18
as shown in Fig.7f. It can be seen that YOLOv8n is
not friendly to the classroom learning behaviors of the
occluded and back-row students. The learning behaviors
of the back-row-students are often missed, as well as the
learning behaviors of stu1. The YOLOv8n_BT model is
better than YOLOv8n in small and densely occluded objects
and has strong robustness. YOLOv8n_BT can improve the
detection performance of classroom learning behaviors and
more comprehensively and precisely respond to students’
classroom learning engagement. This verifies the feasibility
of YOLOv8n_BT model improvement.

5) COMPARISON OF MODELS ON PUBLIC DATASETS
To verify the generalization ability of the improved network
proposed in this paper (YOLOv8n_BT), we compare the
improved network’s object detection performance with other
more networks such as YOLOv8n(baseline) on public data
sets such as Pascal VOC 2012 and COCO. The experi-
mental results for Pascal VOC2012 are shown in Table 8
and for COCO in Table 9. YOLOv8n_BT has the best
overall detection performance in the Pascal VOC 2012 and
COCO public datasets. Because these public datasets cover
information beyond the classroom scenario, this indicates that
YOLOv8n_BT has a robust generalization ability and is not
limited to applications in classroom scenarios.

TABLE 8. The experimental result of the Pascal VOC 2012 dataset.

TABLE 9. The experimental result of the COCO dataset.

V. CONCLUSION
To solve the missed detection and false detection of
classroom learning behaviors due to the target occlusion
and the small target in the natural classroom, this study
proposed an improved YOLOv8n_BT based on YOLOv8n.
The YOLOv8n_BT improvement consists of two main
aspects. On the one hand, for the occlusion problem of
classroom learning behaviors, it incorporated the BRA in
the Backbone to better capture fine-grained, global, and rich

contextual information. On the other hand, for the small
target problem of classroom learning behaviors for back-
row-students, it added a TODL to better capture feature
information about small objects. The results show that
YOLOv8n_BRA, YOLOv8n_TODL, and YOLOv8n_BT
can significantly improve the model performance, among
which the YOLOv8n_BT model performs best. Compared to
YOLOv8n(baseline), YOLOv8n_BT improves the detection
performance of P, R, F1, mAP50, and mAP50-90 by 3.0%,
6.7%, 5.0%, 3.6%, and 9.0%, respectively, and the detection
speed (FPS = 312.5) is relatively flat. This detection speed
can still be detected in real-time. YOLOv8n_BT outperforms
the current classical models, such as fasterRCNN,YOLOv8n,
YOLOv7 and YOLOv5. In summary, YOLOv8n_BT can
significantly improve the model’s detection performance
and solve missed and false detection issues in classroom
learning behavior recognition. This enables the automated
recognition of classroom learning behaviors to provide more
comprehensive and precise data for teachers’ instruction and
classroom assessment.

In future work, first, wewill reduce the network parameters
while ensuring the detection performance. We hope to create
a lightweight network to meet the lightweight requirements
of mobile or embedded devices. Second, we will apply
YOLOv8n_BT to other classroom datasets with different
grades and subjects to validate the validity and generalization
of YOLOv8n_BT. Third, we will develop a system with
YOLOv8n_BT to recognize and analyze natural classroom
learning behaviors.
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