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ABSTRACT Unmanned aerial vehicles (UAVs) are predicted to be widely used in both military and civilian
sectors in the coming years due to their high mobility, low cost, and enhancement of the line-of-sight
(LoS) conditions in non-terrestrial networks. Nevertheless, this raises some security concerns if they are
manipulated to cause security threats in restricted locations, or even cause privacy breaches. In order to detect
maliciousUAVs, radio frequency (RF)-based approaches are adopted to detect ambient RF signals, which can
be accomplished with inexpensive RF sensors under both LoS and, in particular, non-line-of-sight (NLoS)
conditions. In this paper, we propose a passive detection technique based on received signal strength (RSS),
and derive analytical expressions on the detection and false alarm probabilities considering realistic air-
to-ground (A2G) channel conditions. A novel low-complexity suboptimal detector is also proposed and its
performance is compared to the optimal detection. Monte Carlo simulations are used to confirm the accuracy
of the derived expressions under the aforementioned channel conditions. Our mathematical framework,
analytical derivations, and simulation results reveal that the sensing node can achieve an accuracy of
0.9 under LoS scenarios, where the NLoS conditions cause some challenges in the accuracy of detection. The
proposed low-complexity suboptimal detector for urban and suburban environments has close performance
compared to the optimal detection.

INDEX TERMS Air-to-ground (A2G), log-likelihood ratio, receiver operating characteristic (ROC),
sufficient statistic.

I. INTRODUCTION
Unmanned aerial vehicles (UAVs) have been widely utilized
in several applications and can provide multiple services
in environmental protection, traffic events and congestion
monitoring [1], agriculture and public safety [2]. However,
as the use of UAVs is rapidly increasing, the potential threats
are increasing as well, especially if they have been controlled
to breach into highly restricted areas as in oil and gas facilities
or possible privacy invasions of others. Threats of UAVs
may include physical threats such as explosives, radioactive
materials and guns or cyber threats such as hijacking,
spoofing, and hacking [3]. There are several examples in
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which the presence of UAVs can be a real threat. One example
of the harmful impact of UAVs is their unauthorized presence
in critical areas, such as airports or restricted airspace. This
poses significant safety risks, including potential collisions
with manned aircraft, interference with air traffic control
systems, and disruption of airport operations. Detecting and
mitigating these unauthorizedUAVs are of utmost importance
to ensure the safety and security of aviation operations.
These man-made flying objects, often known as drones, are
difficult to identify and track in real-time in urban areas
because they typically have a low altitude, moderate speed,
and small radar cross-section (RCS) [4], [5], [6]. Counter
unmanned aerial systems in the market depend on radar [7],
computer vision [8], [9], radio frequency (RF) [10], [11],
and acoustic sensors [12]. These systems struggle to identify
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TABLE 1. Comparison of UAV detection systems.

such intruding UAVs and are susceptible to being tricked,
leading to false alarms or false negatives, i.e. missed targets.
These approaches have advantages and disadvantages of their
own, and occasionally they are combined to improve the
precision of detection and tracking of the intruding UAV.
For example, one of the main advantages of using RF-based
detection techniques is the fact that it is passive. In other
words, the sensing node only receives (or senses) the signal
emitted from the intruding UAV. The use of radar, on the
other hand, will consume more energy compared to our
proposed approach. However, in the case of autonomous or
jammer-aided UAVs [13], the RF-based detection systems
will not detect them while radar-based or similar techniques,
such as those based on computer vision, become essential.
Multiple receiving antenna elements at the RF sensor can
enhance the direction of arrival estimation of the sensed RF
signal. Some of the existing solutions for counter unmanned
aerial systems rely on RF direction finding (RFDF) sensors
which effectively detect the signal of interest in congested
spectrum environments. A summary of the advantages and
disadvantages of each approach is presented in Table 1. The
aim of this work is to suggest a low-cost passive method
for identifying malicious UAVs in a variety of channel and
environment states.

A. RELATED WORKS
1) RF-BASED UAV DETECTION
Ambient RF signals emitted from the malicious UAV can
be sensed at the terrestrial RF network under mixed channel
propagation conditions. In [5], Sinha et al. investigated
the fundamental limits on the drone detection probabil-
ity under mixed line-of-sight (LoS) and non-line-of-sight
(NLoS) conditions using directional three-dimensional (3D)
antenna patterns. They evaluated the detection probability
numerically, which requires averaging over all possible
locations of interfering sources and base stations using the
Stable probability distribution. Soltani et al. in [10] proposed
RF fingerprinting with multi-classifier scheme using two-
step score-based aggregation method to enhance the overall
accuracy of UAV detection and classification. Massive IoT
network with multiple RF-based sensors was considered
in [11] assuming Rayleigh fading channel, and the detec-
tion performance was investigated using Neyman-Pearson

criterion. However, in [11], the work focused on multipath
fading under the NLoS conditions but not the LoS condition,
where it is crucial and most likely to occur in the presence
UAV detected by a ground sensing node. In [14], Nie et al.
presented detection and identification schemes based on
Wi-Fi signal and RF fingerprint under both indoor and
outdoor scenarios.

Furthermore, learning-based algorithms have been merged
with RF-based detection more often recently. For instance,
the problem of detection and classification of UAVs in the
presence of wireless interference signals was investigated by
Ezuma et al. in [15] specifically for Wi-Fi and Bluetooth
emitters using proper machine learning technique. In [16], the
authors proposed a software defined radio (SDR) platform
called DronEnd, which has the ability to scan the spectrum
of RF signals for detecting the presence of the drone. Its
location is identified via angle-of-arrival (AoA) estimation
algorithms and disrupting the communication between the
operator/controller and the drone through jamming signals.
In [17], the k-nearest neighbor (k-NN)machine learning clas-
sification method merged with RF Fingerprints were utilized
for micro-UAV detection and classification with an average
accuracy of 0.96. In [18], multiple deep learning algorithms
have been used for detection and classification of drones
based on RF compressed signals. Experimental results in [19]
showed that the proposed hierarchical learning approach
has outperformed other techniques with an accuracy rate of
0.99. Convolutional neural network (CNN) had been utilized
in [20] to develop a noise immune UAV signal classification
system which had been tested at different signal-to-noise
ratios (SNRs). Support vector machine (SVM), artificial
neural network (ANN), decision tree (DT), and random forest
(RandF) classifiers had been utilized in [21] for detection and
classification of drones in the presence of Wi-Fi interference
using UAV video signal (VS) fingerprints where indoor and
outdoor experiments were carried out with high accuracy
rates, especially by using RandF.

Hu et al. derived the optimal decision rule using the
log-likelihood ratio (LLR) in [22] where multiple antennas
were utilized with beam sweeping at the sensing node.
Moreover, in [23], a data integrity technique called MaDe
was utilized to identify malicious UAVs using a generalized
likelihood ratio test. The performance analysis demonstrated
that MaDe identified malicious UAVs with high accuracy and
limited time delay.

2) OTHER DETECTION TECHNIQUES
Due to their robustness and versatility, radar-based sensors
are nowadays important for UAV detection and classifica-
tion [4], [24], [25], [26]. In [7], a UAV classification model
has been proposed usingDeepConvolutional Neural Network
(DCNN) where the training data set contains a Range-
Doppler (RD) map of a frequency-modulated continuous-
wave (FMCW) radar of a moving UAV. Generative Adver-
sarial Network was further used for data augmentation,
where an accuracy rate of 0.909 was achieved in large
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TABLE 2. Related works on UAV detection.

data scenarios. Authors in [27] provide experimental and
analytical investigation of micro UAV detection in a rocky
terrain using a low grazing angle, surface-sited 24 GHz
dual polarized FMCW radar. The problem of defining the
type of the detected UAV was considered as an M -ary
hypothesis testing problem by Ezuma et al. in [28]. In target
classification, the authors used maximum a posteriori proba-
bility (MAP) decision rule, which is optimal for a given set
of RCS data. Such RCS-based UAV statistical recognition
system determines its class membership. Multiple-input
multiple-output (MIMO) radar can also be used to detect
intruding UAVswhere themultiple phased arrays with spaced
digital receivers and waveform generators are across radar
aperture [29].

Recently, the aid of computer vision in target detection and
tracking has developed rapidly due to its ability to provide
high performance systems [30], [31], [32]. In [9], a Dalian
University of Technology (DUT) Anti-UAV dataset was used
on several existing detection algorithms for performance
evaluation and comparison with a proposed detection and
tracking algorithm that showed high performance by experi-
ments. Opromolla et al. in [33] proposed a template matching
and morphological filtering-based detection and tracking
algorithms on cooperative applications. The algorithm’s
performance was assessed by a flight test campaign where
the accuracy of target position was in the order of one pixel
and the percentage of correct detection decisions was in the
range of 0.85-0.95.

On the other hand, acoustic-based algorithms has proven to
be promising and feasible for short range drones surveillance
[34], [35], [36]. In [12], SVM-based method has been used
for UAV sounds classification among birds, airplanes or
thunderstorms. An accuracy of 0.97 was achieved using Mel-
frequency cepstral coefficients (MFCC) features extraction
technique. In [37], a 24/7 detection and localization scheme
was proposed using time difference of arrival (TDoA)
estimation algorithm, which is based on the Bayesian filter.
Experimental results showed that the proposed model can
achieve high detection and localization accuracy. Finally,
a real-time detection was proposed by Liu et al. in [38] using
pruned-YOLOv4 model and compared to RetinaNet, fully
convolutional one-stage object detector (FCOS), YOLOv3,
and YOLOv4. Experiment results showed that their pro-
posed model achieved higher accuracy with less processing
time.

B. CONTRIBUTIONS
The main contributions of our work in this paper are
summarized as follows.
• Detection performance is investigated and closed-form
expressions are derived for a low-cost passive RF
detector taking into consideration realistic Rician fading
channel model.

• A low-complexity suboptimal detector for the UAV in
urban and suburban environments is proposed, and its
performance is compared with the optimal one.

For easier comparison, Table 2 presents the related works
and the state-of-the-art papers in our literature review (N/A
stands for not applicable).

The rest of the paper is organized as follows. In Section II,
our system model is presented. Section III introduces
the UAV detection problem, while detection performance
derivations and the performance of the proposed optimal
and suboptimal detectors are analyzed in Section IV. The
numerical results are presented and discussed in Section V.
Finally, the conclusions are summarized in Section VI.

II. SYSTEM MODEL
We consider a flying UAV and a sensing node, that can
be placed at a rooftop in an urban/suburban environment,
as shown in Fig. 1 and both the UAV and sensing node
are equipped with omni-directional antenna.1 The analysis
is based on the assumption that the sensing node antenna is
able to detect the UAV command, control and communication
signals. We consider a passive cost-effective RF sensor for
the 2.4 GHz and 5.8 GHz frequency bands where it can
be deployed outdoors. Such RF sensor is equipped with
omni-directional antenna for a wide frequency range, i.e.
20 MHz-18 GHz, and antenna gains are up to 5 dBi.

We assume that both the sensing node and the UAV
are placed in the 3D cartesian coordinate system where
the sensing node is located at (xd , yd , zd ) ∈ R3 with an
elevation of zd . On the other hand, the UAV can fly over
higher altitudes, i.e. zu > zd and the UAV is located at
(xu, yu, zu) ∈ R3.
In the presence of a target drone, the received signal y ∈ C

at the sensing node is

y =
√
Phis+ w, i ∈ {N ,L} (1)

1Omni-directional antenna assumption in azimuthal direction is necessary
as there is no prior knowledge of the intruding UAV location. This provides
a 360-degrees coverage to detect the aerial target RF signal.
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FIGURE 1. Received UAV signal at the sensing node.

where P is the UAV transmitted power, s is the unit-energy
transmitted signal with zero mean and statistical expectation
E[|s|2] = 1, hi is the air-to-ground (A2G) fading channel
gain where i ∈ {N ,L} denotes the NLoS or LoS channel
conditions, respectively, and w is the complex additive white
Gaussian noise (AWGN) with zero mean and variance σ 2

0 =

N0/2 for each of the in-phase and quadrature components.

A. AIR-TO-GROUND (A2G) CHANNEL
A2G channel between the UAV and the sensing node is
subject to both LoS and NLoS conditions. The probability of
a link having a LoS component at a given UAV coordinates
is given by [39]

PLoS =
1

1+ a exp
{
−b

[
180
π
ψu − a

]} (2)

where a and b are environment dependant constants, ψu =
tan−1((zu − zd )/ru) is the UAV elevation AoA of the LoS link

at the sensing node and ru =
√
(xu − xd )2 + (yu − yd )2 is the

horizontal distance from the UAV to the sensing node. The
channel has NLoS components with a probability of 1−PLoS.
First, the multipath propagation under the NLoS condition

follows the Rayleigh fading model, and channel gain is
defined as [40]

hN =
√
βd−ρ X̃ (3)

where ρ is the corresponding path loss exponent of the
link, β is the reference path loss at distance 1m, d =√
r2u + (zu − zd )

2 is the Euclidean distance between the UAV

and the sensor, and X̃ represents the random scattering
component modeled by a zero-mean and unit-variance
circularly symmetric complex Gaussian (CSCG) random
variable.

Furthermore, under the LoS conditions, the small-scale
fading is modelled by Rician distribution, and channel gain
is given by

hL =
(√

kβd−ρ + j
√
kβd−ρ

)
+

√
βd−ρ X̃ (4)

where k is the Rician factor. The SNR for both cases in the
presence of a target is

γi =
P |hi|2

2σ 2
0

, i ∈ {N ,L}. (5)

Unlike communication scenarios, where the aim at the
receiver is to decode the signal, our interest here is to detect
the presence of the UAV from its energy emitted. Hence,
the decision criteria is based on the received signal strength
(RSS) for a given UAV coordinates and channel conditions.

III. UAV DETECTION PROBLEM FORMULATION
The received signal2 in (1) has both in-phase and quadrature
components, i.e. y = yI + jyQ, and the RSS at the sensing
node can be expressed as

R = y2I + y
2
Q. (6)

We consider binary hypothesis testing to detect the UAV
presence based on the RSS at the sensing node. Here, the
null hypothesis,H0, represents the state in which no drone is
detected, and y = w is a zeromean complexGaussian random
variable with variance E[yy∗] = E[y2I ] + E[y2Q] = 2σ 2

0 , i.e.
y ∼ NC(0, 2σ 2

0 ). Under this hypothesis, the RSS is sum of
the squares of two independent and identically distributed
(i.i.d.) Gaussian random variables that follows exponential
distribution, i.e. R|H0 ∼ exp{2σ 2

0 }. For the alternative
hypothesis,H1, representing the presence of the target drone,
the distribution of the received signal is based on the LoS and
NLoS conditions.

Considering the NLoS case, the received signal y ∼
NC(0, 2σ 2

1 ) with σ
2
1 = N0/2+Pβd−ρ . Hence, the RSS under

the alternative hypothesis follows exponential distribution,
i.e. R|H1N ∼ exp{2σ 2

1 }. As for the LoS case, the signal
received under the alternative hypothesis is y ∼ NC(

µ
√
2
, 2σ 2

1 )
and the RSS distribution is a non-central Chi-squared with
two degrees of freedom, i.e. R|H1L ∼ χ ′22 (µ), where µ =√
2kPβd−ρ is the non centrality parameter.
Furthermore, we represent the null and alternative hypothe-

ses in terms of the conditional probability density function
(PDF) of the RSS as

PR|H0 (r|H0) =
1

2σ 2
0

e
−

r
2σ20 (7)

PR|H1i (r|H1i) =


1

2σ 2
1

e
−
µ2+r
2σ21 I0

(
µ

σ 2
1

√
r

)
, for i = L

1

2σ 2
1

e
−

r
2σ21 , for i = N

(8)

where I0(.) denotes the zero-order modified Bessel function
of the first kind.

2In the case of multiple antenna elements at the RF sensor, the
mathematical analysis can be extended to a measurement vector of in-phase
and quadrature components; however, it is beyond the scope of this work.
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IV. UAV DETECTION PERFORMANCE
A. PROBABILITY OF DETECTION ANALYSIS
In this section, the probability of detection, PD, and the
probability of false alarm, PF , are derived along with the
probability of detection in terms of false alarm probability.
Since the conditional PDF under H0 does not depend on the
channel state, the expression of the probability of false alarm
is given by

PF =
∫
∞

η

PR|H0 (r|H0) dr =
∫
∞

η

e
−

r
2σ20

2σ 2
0

dr = e
−

η

2σ20

(9)

where η is the decision threshold, which is derived in
subsection IV-B. The decision threshold, therefore, can be
expressed as a function of PF as

η = −2σ 2
0 lnPF (10)

where ln (·) denotes the natural logarithm. Furthermore, the
probability of detection under NLoS conditions, following
similar derivations in (9) and substituting σ 2

0 and σ 2
1 yields

PDN = exp
(
lnPF/

(
1+

2Pβ
N0dρ

))
. (11)

The expression of the probability of detection under LoS
scenarios, according to [41], is defined as

PDL =
∫
∞

√
η

σ1

re−
( µσ1

)2+r2

2 I0

(
µ

σ1
r
)
dr

= Q1

(
µ

σ1
,

√
η

σ1

)
(12)

where Q1 (., .) denotes the first order Marcum Q-function.
After substituting the threshold in (10), µ, and σ1 in (12),
we have

PDL = Q1

(√
4kPβ

2Pβ + N0dρ
,

√
− lnPF

0.5+ Pβ
N0dρ

)
. (13)

Note that for a fixed PF , the probability of detection in (11)
and (13) will degrade as noise variance, distance or path loss
exponent increases. However, for larger UAV transmission
power or Rician k factor, the detection performance will
improve. Considering both LoS and NLoS, and environmen-
tal conditions at the sensing node, the average probability of
detection for a fixed probability of false alarm, given UAV
coordinates,3 can be expressed as

PD = PLoS Q1

(√
4kPβ

2Pβ + N0dρ
,

√
− lnPF

0.5+ Pβ
N0dρ

)

+ (1− PLoS) exp
(
lnPF/

(
1+

2Pβ
N0dρ

))
. (14)

3Similar to the earlier works in [5] and [11], we assume an acquisition
of the UAV coordinates and channel exist for the probability of detection
derivations.

B. OPTIMUM DETECTOR
In this section, we utilize a statistical LLR test to optimize the
choice of the decision threshold at the sensing node. The LLR
expression under the NLoS channel condition is expressed as

ln (3|NR) ≜ ln
(PR|H1N (r|H1N )

PR|H0 (r|H0)

)
≷ ln ζ (15)

where ln (3|NR) represents the LLR under NLoS state and
ζ depends on the a priori probabilities and the error cost
under each hypothesis [42]. In our analysis, we assume equal
a priori probabilities; hence, ζ = 1 and ln ζ = 0. The
detection decision depends on the received and observed
values of r , representing the sufficient statistics to make the
optimal decision. By solving (15) for r under equal probable
hypotheses, we obtain

ln

(
σ 2
0

σ 2
1

)
− r

[
1

2σ 2
1

−
1

2σ 2
0

]
≷ 0

r ≷
2σ 2

1 σ
2
0

σ 2
0 − σ

2
1

ln

(
σ 2
0

σ 2
1

)
. (16)

Substituting σ 2
0 and σ 2

1 in (16) to evaluate the NLoS
optimum threshold ηN results in

ηN =

(
N 2
0 d

ρ

2Pβ
+ N0

)
ln
(
1+

2Pβ
N0dρ

)
. (17)

Following the same approach for calculating the optimum
threshold under LoS, we represent the LLR as

ln (3|LR) ≜ ln
(PR|H1L (r|H1L)

PR|H0 (r|H0)

)
≷ ln ζ, (18)

and after solving for the sufficient statistic r considering
equal probable hypotheses, this leads to

ln


σ 2
0 e
−
µ2+r
2σ21 I0

(
µ
√
r

σ 21

)
σ 2
1 e
−

r
2σ20

 ≷ 0

r −
2σ 2

1 σ
2
0

σ 2
0 − σ

2
1

ln

(
I0

(
µ
√
r

σ 2
1

))
≷

2σ 2
1 σ

2
0

σ 2
0 − σ

2
1(

ln

(
σ 2
0

σ 2
1

)
−
µ2

2σ 2
1

)
(19)

where ln (3|LR) is the derived LLR assuming LoS condi-
tions. The cumbersome expression in (19) can not be simpli-
fied in terms of the sufficient statistic r , which leads to high
complexity in the design of an optimum detector. We propose
in the following subsection a simplified low-complexity
detector to overcome this point with reasonable performance.

C. PROPOSED LOW-COMPLEXITY DETECTOR
Due to the sensitivity of the threshold-based detection
technique, a slight change in such threshold can considerably
increase the error probability, i.e. the probabilities of false
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alarm and miss detection. Therefore, it is crucial for the
sensing node to decide on an appropriate threshold. We first
define9 to be the weighted average of the RSS,R, under both
hypotheses which is given by

9 = ϵ E[R|H1]+ (1− ϵ) E[R|H0]

= 2ϵσ 2
1 + ϵµ

2
+ 2σ 2

0 − 2ϵσ 2
0 (20)

where ϵ is the weighting factor that represent the contribution
of H1 on 9 such that 0 < ϵ < 1. Therefore, the expression
of the suboptimal threshold under the LoS channel state, ηL ,
can be expressed using (20) as

ηL = −

(
N 2
0 d

ρ

2Pβ
+ N0

)

×

(
ln

(
1

1+ 2Pβ
N0dρ

I0

(√
2kPβd−ρ9

N0
2 + Pβd

−ρ

))
−

k

1+ N0dρ
2Pβ

)
.

(21)

It can be seen that increasing 9 results in smoothing
the decision threshold with higher detection probabilities at
the cost of increasing the false alarm probability. Thus, the
selection of ϵ depends on the channel state at the sensing
node where higher values are usually chosen at low SNRs.
To tackle this problem, we introduce the average overall error
probability at the sensing node, φ, as

φ =
1− PDL + PF

2
, (22)

which is the average of the miss detection probability and
the probability of false alarm. Hence, we can formulate the
objective function to optimize the parameter ϵ as

ϵ̂ = argmin
0≤ϵ≤1

φ(9) (23)

where ϵ̂ is the optimized ϵ value. To solve the problem
in (23), we propose an iterative algorithm to obtain ϵ that
minimizes the average overall error probability, φ, as shown
in Algorithm 1. In this algorithm, we start by defining a
vector, ϵ, of different values of ϵ(i) ∈ [0, 1] with intervals
of 1

κ
, and an initial value of ϵ̂ = 0 at the first iteration with

an assumption of a maximum average error (average error
probability φ̂ = 0.5). From here, we use the equations (20),
(21), and (22) to evaluate the value of the average error at
the ϵ̂ = 0. Using the condition of the average error being
less than the previously defined value, we keep updating the
value of ϵ̂ by adding 1

κ
. We note that the algorithm will stop

its iteration when the value of the average error at ith iteration
is less than the error of (i + 1)th iteration, which is assured
due to the convexity of average error function. Moreover, it is
worth mentioning that the convergence speed and accuracy
of this algorithm depends on the selection of κ , where higher
values will improve the accuracy at the cost of the number of
iterations required to reach the optimal value of ϵ.
It is important to notice that the intruding UAV is expected

to be in the far field region with respect to the sensing node.

Hence, the impact of the minor changes in average SNR
and/or the UAV location will have no significant impact in
the selection of the optimum value of ϵ. However, for a near-
field scenarios, we expect the proposed algorithm will be
updating the optimum value of ϵ more rapidly, which can be
an extension of the current work.

Algorithm 1 Proposed Algorithm to Solve (23)

1: define a vector ϵ = [0, 1
κ
, 2
κ
, . . . , 1] with a proper κ value

2: define φ̂ = 0.5, ϵ̂ = 0 and i = 1 as initial values
3: evaluate 9 at ϵ(i) from (20)
4: evaluate ηL and φ from (21) and (22)
5: while φ < φ̂ do
6: φ̂← φ

7: ϵ̂← ϵ(i)
8: i← i+ 1
9: update 9 at ϵ(i)
10: update ηL and φ
11: end while
12: return ϵ̂

FIGURE 2. ROCs for LoS/NLoS scenarios and various noise variance 2σ2
0 .

The black solid lines represent the analytical results under LoS, while the
dashed lines for NLoS.

Further, under the assumption that the LoS/NLoS channel
state is well estimated at the sensing node, the average prob-
ability of detection in low-complexity suboptimal receiver
using the derived thresholds is

PD = PLoS × Q1

(√
2k

1+ N0dρ
2Pβ

,

√
ηL

N0/2+ Pβd−ρ

)

+ (1− PLoS)× e
−

ηN
N0+2Pβd

−ρ
. (24)

However, if no prior information at the sensing node
about the conditions whether LoS or NLoS, then an average
threshold, ηavg, can be used such that ηavg = 0.5ηL + 0.5ηN .
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FIGURE 3. Probability of UAV detection with PF = 0.01 and 0.001 under
LoS/NLoS conditions.

V. NUMERICAL RESULTS
For our numerical analysis, we set the parameters as in Table 3
where the values of a and b are chosen according to [39],
which is based on the International Telecommunication
Union (ITU) model. This model considers the density
ratio of built-up land area to the total land area, mean
number of buildings per unit area, and the buildings’ height
distribution. It is critical, indeed, in such performance
analysis investigations to select proper and realistic system
parameters, where the system behavior is sensitive to such
parameters. For this reason, we have meticulously selected
them to be within the realistic and acceptable range. For
example, the choice of the UAV emitted power, P = 27dBm,
is in line with the values reported in literature ranging from
24-27dBm, [11], [43]. Moreover, the path loss exponent, ρ,
has a noticeable effect on the overall system performance.
We assume ρ = 3.5 which is a practical value and
represents the urban and suburban environments where a
range of 2-5 have been discussed in [44] for various wireless
environments. The UAV and sensing node locations have
been chosen randomly to fairly test the performance of the
system.

In Fig. 2, we present the receiver operating characteristic
(ROC), where detection performance is depicted as a function
of PF at the sensing node. This is obtained using (11) and (13)
under both NLoS and LoS scenarios, respectively, with 2σ 2

0 ∈

{−95,−90,−85} in dBm. The numerical simulations are
carried out by generating random samples of the conditional
probability density functions of the received signal strength
under both LoS and NLoS, and then we use a moving
threshold to evaluate the probability of detection and the
probability of false alarm at every instant to calculate the
ROCs. Moreover, 5 × 104 Monte Carlo simulation trials
have been performed to validate the derived mathematical
expressions. The ROC curves through numerical simulation,
shown in Fig. 2, match well the derived expressions. ROC
curves show that even for a lower variance of noise under

FIGURE 4. Probability of UAV detection as a function of its altitude in
urban and suburban environments.

FIGURE 5. Average overall error probability and optimized parameter ϵ̂ in
proposed detector.

NLoS cases, the LoS channel condition will result in
better performance due to the existence of the direct path
component. Nevertheless, this could change based on the
choice of the Rician factor k that may alter the performance
under the LoS scenarios.

In Fig. 3, the performance of the UAV detection is
illustrated under various SNR values for both LoS and NLoS
environments. It is noticed that even under the same SNR
and fixed PF , there is higher probability of detection when
a direct LoS link exists. This is due to the existence of
the non-zero mean and the skewed shape of the non-central
Chi-squared distribution. In such case, the area under the
alternative hypothesis conditional PDF will be larger than the
NLoS case where it is exponentially distributed for both H0
andH1N .

On the other hand, Fig. 4 demonstrates the effect of the
UAV height on PD using (14) for both urban and suburban
environments compared to the conditionally known LoS
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FIGURE 6. Performance evaluation of the proposed suboptimal low-complexity detector.

or NLoS cases. Due to averaging, it is shown that the
conditionally known LoS and NLoS are in fact the upper
and lower bounds for the probability of detection, where both
environmental expressions will almost match the NLoS state
at very low altitudes and will perfectly match the LoS at
high altitudes. Note that although the distance between the
UAV and the sensing node increases with the UAV height,
the probability of detection will continue to increase until
reaching its maximum PD of about 0.75 at around zu = 120m
(suburban) and about 0.5 at around zu = 190m (urban). This
is due to the fact that UAVs at relatively higher altitudes,
to some extent, will have larger PLoS. Such improved LoS
conditions will enhance the detection probability, PD, even
though the degradation due to free-space path loss increases
with increased range between the UAV and sensing node.
On the other hand, once PLoS ≈ 1, then PD decreases as the
UAV is flying away from the sensing node. There is around
0.15 increase in PD when PF rises from 0.001 to 0.01 at LoS
conditions, where PD ≈ 0.8 at low UAV altitudes. In NLoS
cases, however, a quite weaker performance and lower gains
are achieved when rising PF .
Fig. 5 illustrates the average overall error probability for

different choices of ϵ with 2σ 2
0 ∈ {−95,−90,−85} in

dBm, i.e. different SNRs. It is noted that the convexity of
the average overall error function φ, i.e. it is convex with
a global minimum value. Hence, our proposed algorithm
will keep updating the value of ϵ̂ in an iterative manner,
until it reaches an index where the error of the previous
iteration was lower. At this stage, the algorithm will break the
loop to avoid unnecessary calculations. Besides, the optimum
value for ϵ will decrease with lower noise and higher SNRs,
leading to stricter decision criteria and lower false alarm
probabilities.

Fig. 6 illustrates the detection performance for the
proposed suboptimal low-complexity detector at κ = 25 and
under different environmental scenarios while increasing the

TABLE 3. System and environment parameters for monte-carlo
simulations.

noise variance, 2σ 2
0 , and the UAV transmitted power, P,

in Figs. 6a and 6b, respectively.
In Fig. 6a, we evaluate PF numerically under the optimum

threshold of LoS using (19) and compare it to our proposed
suboptimal threshold in (21). The results show that the
proposed suboptimal threshold has comparable performance
to the optimal curves. Furthermore, since ϵ̂ is optimized for
the considered noise variance, it is notable that the slope
of the suboptimal threshold, ϵ̂, is updated, every 2-4 dBm
to maintain lower error probability and get closer to the
optimal one. Besides, as we increase κ , the slope of the
suboptimal curves will be smoother and will eventually get
closer the optimal threshold as the algorithm will run more
iterations and will reach to an accurate selection of ϵ̂. In urban
areas, the probability of LoS existence is small compared to
suburban environment, i.e. PLoS is 0.15 and 0.86 for urban
and suburban environments, respectively, which affects the
LoS component contribution. Furthermore, if the LoS/NLoS
status is unknown, PF will be the same irrespective of
the environment condition because we use ηavg where both
LoS/NLoS have the same RSS distribution underH0.
In Fig. 6b, the average probability of detection is shown

with varying UAV transmit power. It can be seen that
the probability of detection under our proposed threshold
has a higher detection probability at some instants than
the optimum one. However, the overall accuracy of the
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TABLE 4. Confusion matrices for LoS thresholds.

optimum threshold is better, which is compensated by the
probability of false alarm. It is also worth mentioning
that the performance under unknown LoS condition will
vary across the different environments as the mathematical
expression for PD depends on LoS and NLoS conditions.
It can be seen that due to averaging, the smoothed threshold
under suburban environment will have higher PD, while the
restricted threshold in urban environments will have a much
lower PD.

Finally, Table 4 presents the confusion matrices of the
optimal criteria under LoS channel and the proposed one
at κ = 25, which are computed using 5 × 104 Monte
Carlo simulation trials. Although the proposed threshold
has slightly lower probability of miss detection, PH0|H1 ,
than the optimal threshold, the probability of false alarm,
PH1|H0 , is higher in the suboptimal case. However, the overall
accuracy rate is 0.905 for the suboptimal threshold, which
is close to the optimal case having an accuracy of 0.908.
It is important to note that the performance of the proposed
threshold is highly dependant on the choice of the value of κ ,
where the accuracy will get closer to the optimal threshold as
κ increases. However, this comes at the cost of computational
complexity.

VI. CONCLUSION
In this paper, we investigated an RSS-based passive detection
approach under a realistic Rician fading channel model and
considered the air-to-ground channel conditions. Further-
more, we demonstrated the use of the optimum threshold
criteria at the sensing node under NLoS state and proposed
a low-complexity sub-optimum threshold under LoS channel
conditions based on the LLR. Our performance analysis and
closed-form derived analytical expressions have been verified
using extensive Monte Carlo simulations. The analytical and
simulation results showed that an overall accuracy rate of
above 0.9 is achieved under LoS cases and a high probability
of detection for a fixed false alarm probability can be attained
as well. However, the detection accuracy at sensing node
under NLoS conditions is lower but can be improved with
the deployment of multiple sensing nodes. Moreover, the
detection performance at the sensing node, and our obtained
results can be coupled with proper deep learning techniques
in future work to tackle more challenging scenarios. For
instance, deep learning can be used to find the optimal
placement of multiple low-cost sensing nodes given the 3D
visualization of outdoor scene, or to simultaneously combine
multiple detection mechanisms to detect a swarm of UAVs.
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