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ABSTRACT Human action recognition (HAR), deeply rooted in computer vision, video surveillance,
automated observation, and human-computer interaction (HCI), enables precise identification of human
actions. Numerous research groups have dedicated their efforts to various applications and problem domains
in HAR systems. They trained classification models using diverse datasets, enhanced hardware capabilities
and employed different metrics to assess performance. Although several surveys and review articles have
been published periodically to highlight research advancements in HAR, there is currently no comprehensive
and up-to-date study that encompasses architecture, application areas, techniques/algorithms, and evaluation
methods as well as challenges and issues. To bridge this gap in the literature, this article presents a
comprehensive analysis of the current state of HAR systems by thoroughly examining a meticulously chosen
collection of 135 publications published within the past two decades. These findings have implications for
researchers engaged in different aspects of HAR systems.

INDEX TERMS Human action recognition, computer vision, machine learning, video surveillance, HAR
architecture.

I. INTRODUCTION
Human action recognition (Human Action Recognition
(HAR)), a crucial component of computer vision, lies at
the intersection of the latest sensor technologies, Machine
Learning (ML) and Deep Learning (DL). This intricate
process involves careful identification and classification of
human actions based on raw data collected from diverse
sources, such as body-worn sensors, smartphones, and
cameras. By analyzing the patterns of human movement,
these actions enable a deeper understanding of behavior
across various environments, offering valuable insights for
applications ranging from healthcare to law enforcement [1].
The realm of HAR encompasses a wide range of practical
applications, including the enhancement of surveillance
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systems for crime prevention and the improvement of user
interactions in smart home settings. In recent years, this
field has undergone significant advancements with HAR
systems evolving from basic motion sensors to sophisticated
networks capable of intricate pattern recognition and real-
time processing [2], [3], [4]. Figure 1 demonstrates the
utilization of deep learning (DL) techniques on sensory
data for time-series categorization, which plays a vital role
in understanding temporal changes and identifying human
actions using various sensor modalities [5], [6].

HAR has made significant progress, but still faces con-
siderable challenges. Throughout its development, the field
has achieved important milestones, encountered obstacles,
and adapted to emerging technologies. Initially, the main
challenge was to achieve high accuracy in various complex
real-world scenarios. This requires a deep understanding
of the intricacies of human movement and real-time data
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FIGURE 1. DL neural networks used for classifying the time series
stamp [3].

processing. Researchers have addressed this challenge by
creating inclusive datasets covering a wide range of human
activities and demographics. They also focused on reducing
the biases in algorithmic models and utilizing multimodal
data to enhance the robustness and accuracy of HAR
systems [5], [6].

Furthermore, integrating HAR with emerging technolo-
gies, such as augmented reality (AR) and virtual reality
(VR), has opened up new possibilities, providing more
immersive and interactive experiences. This integration
highlights the dynamic nature of the field because it adapts
to the potential offered by these technologies [7], [8]. In this
review, our objective was to offer a comprehensive overview
of the development of HAR. We discuss key milestones,
technological components that have supported its evolution,
and recent advancements. Additionally, we explore the
essential features necessary for accurate recognition, address
the ongoing challenges that shape the future of HAR research,
and critically evaluate current approaches.

« A thorough investigation of the most recent advance-
ments in HAR, encompassing methodologies based
on ML or DL, benchmark datasets, and the metrics
employed to assess their effectiveness.

o A detailed presentation of a standard HAR system’s
architecture, outlining the crucial technological compo-
nents and their interaction.

« A critical evaluation of current approaches in HAR using
standard metrics.

The remainder of this paper is structured as follows:
Section II provides an in-depth explanation of the method-
ology employed for the literature search and selection,
Section III summarizes the main findings, and Section IV
presents concluding remarks and potential avenues for future
research.

Il. MATERIALS AND METHODS
This section outlines the methodological framework used to
conduct a systematic review of the literature on HAR systems.
The primary objective of this systematic approach is to ensure
comprehensive coverage and robust evaluation of the relevant
research published within the scope of this study.

The selection process is depicted in Figure 2, which
adheres to PRISMA guidelines.
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A. SEARCH STRATEGY

To comprehensively gather studies related to HAR based on
sensor and vision technologies, a thorough search strategy
was implemented. This strategy involved systematically
exploring various electronic databases, such as Google
Scholar, Web of Science, Scopus, IEEE Xplore, and Sci-
enceDirect. By utilizing a combination of specific keywords
like “human action recognition,” ‘“daily life activities,”
“sensor data,” and ‘“‘vision data,” along with Boolean
operators (AND, OR, NOT), the search was carefully refined
to obtain relevant results. The search strings used for each
database can be found in Table 1.

B. INCLUSION AND EXCLUSION CRITERIA
The inclusion criteria were precisely defined to select studies
that significantly contributed to the understanding of HAR
systems. Criteria for exclusion were established to uphold the
quality of the review, ensuring a focus on original empirical
research.

Inclusion criteria included:

1) Studies published in English from 2000 to 2023.

2) Research focusing on HAR within the context of the
Activities of Daily Living (ADL).

3) Studies based on sensors or vision data.

4) Articles published in peer-reviewed journals or confer-
ence proceedings.

5) Studies with accessible full text.

Exclusion criteria applied:

1) Non-English publications.

2) Duplicate studies within the databases.

3) Review articles and meta-analyses, which were used
for background context.

4) Studies with inaccessible full text or published in low-
quality venues.

C. SELECTION PROCESS

A total of 164 articles were obtained from the initial database
searches, comprising 160 records from the database searches
and an additional 4 records sourced from other relevant
sources. After eliminating duplicates, 128 distinct records
were retained. These records were screened based on their
titles and abstracts to determine their relevance.

D. DATA EXTRACTION AND ANALYSIS

To maintain consistency and objectivity throughout the
review process, a standardized form was used for data
extraction. This form encompasses various details, such
as the authors, publication year, methodologies employed,
datasets used, evaluation metrics, and principal findings.
Subsequently, a mixed-methods approach was employed to
synthesize the extracted data, enabling the identification of
prevailing trends, state-of-the-art techniques, and persistent
challenges within the domain of HAR research.
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FIGURE 2. The PRISMA flowchart illustrates the meticulous selection process, starting from the
initial identification of records to the ultimate inclusion for qualitative synthesis.

TABLE 1. Search strings used in searching each database.

Database Search String

Google Scholar
"Vision Data")

("Human Action Recognition" OR "HAR") AND ("Daily Life Activities" OR "DLA") AND ("Sensor Data" OR

‘Web of Science
"Vision Data")

("Human-Computer Interaction" OR "HCI") AND ("Multimodal Data Fusion") AND ("Sensor Networks" OR

Scopus ("Activity Recognition” OR "AR") AND ("Wearable Sensors" OR "Wearable Devices") AND ("Daily Activi-
ties" OR "DLA") AND ("Deep Learning" OR "Machine Learning")

IEEE Xplore ("Action Recognition") AND ("Computer Vision") AND ("Daily Activities" OR "DLA") AND ("Healthcare"
OR "Rehabilitation™)

ScienceDirect ("Transfer Learning” OR "Domain Adaptation") AND ("Sensor Data" OR "Vision Data") AND ("HAR" OR

"Activity Recognition")

E. RATIONALE FOR INCLUSION AND EXCLUSION CRITERIA
The inclusion and exclusion criteria were established to focus
the review on methodologically robust studies that directly
pertained to the sensor- and vision-based HAR systems. This
deliberate selection aimed to ensure the academic rigor and
relevance of the review.

IIl. SUMMARY OF KEY OBSERVATIONS

This section provides an overview of the key findings from
the present study, which include the structure of HAR systems
and their applications, datasets used, algorithms employed,
and the challenges faced during the research process.

A. THE HAR SYSTEM ARCHITECTURE

HAR systems have been developed to analyze raw sensory
data and derive meaningful insights regarding human behav-
ior. The initial step involves collecting data from various
sensors, including cameras, inertial measurement units, and
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microphones, which capture multi-modal data reflecting
human movement. To ensure data quality and standard-
ization, the collected data undergoes preprocessing, which
includes labeling the data with relevant action descriptors
and normalizing the input scales. These preprocessing steps
are essential for cleaning and preparing the data for feature
representation. Subsequently, sophisticated techniques are
employed to extract significant features from the prepro-
cessed data. In the classification stage, advanced DL or
artificial intelligence (AI) models interpret these features to
categorize complex actions. Convolutional Neural Networks
(Convolutional Neural Network (CNN)s) and Recurrent
Neural Networks (RNNs) are commonly utilized algorithms
for discerning and classifying actions.

This architectural framework serves as a fundamental
basis for comprehending the intricate challenges associated
with HAR. These challenges encompass the handling of
high-dimensional data, ensuring reliable feature extraction in
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Capturing raw data from source cameras
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FIGURE 3. The process of a HAR system is depicted in this flowchart.

It visually represents the various interconnected stages that are crucial
for identifying human actions. Every step, starting from data collection
and ending with classification, plays a vital role and relies on each other,
ultimately enhancing the accuracy and effectiveness of the entire system.

varying environmental conditions, and selecting appropriate
classification algorithms that offer both accuracy and prompt
response times. The subsequent sections of this study delve
into these challenges in greater detail, proposing potential
solutions and discussing diverse applications and the range
of techniques employed to refine HAR systems.

Figure 4 provides a taxonomy that encapsulates the exist-
ing literature on HAR, illustrating the extensive scope and
depth of the field. The following sections will further explore
various applications of HAR, showcasing the wide array of
techniques and algorithms that enhance the capabilities of
these systems.

B. APPLICATION AREAS

This section provides an overview of the various fields where
HAR finds its applications, with particular emphasis on
its important contributions to ADL, surveillance, Human-
Computer Interaction (HCI), and competitive sports.

1) HAR IN DAILY LIFE ACTIONS
To enhance human well-being, a nuanced understanding of
daily activities facilitated by advanced HAR technologies
such as PoseNet and GHUM is crucial. These models, which
utilize convolutional neural networks, have significantly
advanced human pose estimation in images and videos,
leading to breakthroughs in fields such as smart home
systems, elderly care, and physiotherapy [9], [10], [11], [12].
PoseNet’s efficiency in detecting and tracking angular
movements was highlighted by its impressive accuracy rate
of 97.6% for 2D pose detection. This capability has been
instrumental in telehealth systems for home-based rehabil-
itation, allowing for the precise monitoring and adjustment
of rehabilitation exercises [10]. GHUM, with its advanced
bone-based sensing technique, offers robust pose estimation
in nonintrusive monitoring scenarios, making it particularly
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useful in elderly care environments for fall detection and
activity monitoring [13]. These technologies ensure safety
and health monitoring in smart homes by providing real-time
alerts in case of abnormalities [14].

Despite these advancements, HAR systems face challenges
related to their sensitivity to varying lighting conditions and
camera angles. These environmental factors can significantly
affect the accuracy of pose estimation, with deviations of up
to 15% caused by variations in the lighting conditions [15].
To address these issues and enhance the robustness of HAR
systems, multiview models and image enhancement tech-
niques have been developed [16]. Additionally, recognizing
individual actions in complex scenarios involving multiple
people poses challenges. Recent studies explored advanced
detection models to address these complexities [11].

Gong et al. [17] presented a novel DL model that
effectively improved the recognition accuracy of activity
classes within datasets, particularly in complex activity
scenarios. By incorporating this model, recognition accuracy
was enhanced by approximately 10% [17], [18]. This
significant development addressed the persistent challenge of
the semantic gap in HAR.

Ongoing research endeavors are expected to prioritize
the enhancement of data quality, model adaptability, and
real-time processing in HAR technologies. These advance-
ments are of utmost importance for accurately interpreting
intricate daily human actions and seamlessly integrating HAR
into our everyday lives. Ultimately, these advancements have
the potential to revolutionize interactions with technology.

2) HARIN HCI

The integration of HAR into HCI has brought about
a significant transformation in how users interact with
technology. By integrating HAR capabilities, such as gesture
control and eye tracking, systems have been able to enhance
the user experience by making interactions more intuitive and
responsive. These technologies have become increasingly
prevalent in various applications, ranging from smart home
interfaces to healthcare monitoring, and have significantly
improved the seamless interaction between humans and
technology [19], [20].

One notable example of the impact of HAR technologies
is on smart home systems, where they have achieved an
impressive accuracy rate of up to 90% in gesture recognition.
This high level of accuracy enables users to control home
appliances more naturally and efficiently [21]. In the context
of healthcare monitoring, HAR systems play a crucial role in
facilitating patient interaction with medical devices. By doing
so, they contributed to the ease and accuracy of patient data
collection.

Overall, integrating HAR into HCI has revolutionized user
interactions with technology, making them more intuitive,
responsive, and seamless. These advancements have been
observed in various domains, including research showing
that gesture recognition accuracy can decrease by up to 20%
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FIGURE 4. Taxonomy of HAR. This taxonomy outlines the various facets of HAR research, encompassing methodologies, applications, and challenges,

providing a structured overview of the field.

in poorly lit environments [22]. Furthermore, the latency
in eye-tracking systems, which is crucial for interactive
applications, can vary, with some systems reporting latencies
of up to 50 ms, which may affect user experience in fast-paced
applications [23].

This study aims to overcome these limitations by devel-
oping robust HAR algorithms. These algorithms have been
specifically designed to adapt to different environmental con-
ditions and user behaviors, thereby enhancing the accuracy
and minimizing the latency. For instance, the use of machine
learning (ML) techniques in dynamic mathematics software
has resulted in a 15% enhancement in user interaction
efficiency by predicting user intent [24].

In the future, the field of HAR for HCI is expected to
witness further advancements with the integration of AR/VR
technologies. These advancements are geared towards creat-
ing more immersive and interactive experiences, potentially
reducing the perceived latency in user interactions and
enhancing the naturalness of user interface controls. The
integration of HAR with AR/VR holds the promise of
opening up new possibilities for HCI, fostering greater user
engagement, and facilitating the development of innovative
interaction paradigms.

3) HAR IN COMPETITIVE SPORTS

The integration of HAR into competitive sports has brought
about significant changes, particularly in the utilization of
biomechanical data to enhance athletic performance and
develop strategies for preventing injuries. Sports analytics
relies heavily on technologies such as accelerometers and
GPS tracking devices, which provide detailed insights into
athlete movements and training loads. These insights are
crucial for personalizing training programs and minimizing
the risk of injury [15], [25], [26].

For example, in the track and field, HAR technologies
have been employed to optimize the running techniques.
The data showed that athletes could achieve up to a 5%
improvement in running efficiency by adjusting their form
based on HAR feedback [27]. Similarly, in team sports, HAR
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systems have played a vital role in reducing injury rates by
approximately 20% through tailored training programs and
the early detection of fatigue [28], [29].

Despite the achievements of HAR, several challenges need
to be addressed. One of these challenges is the variable
accuracy of HAR systems under various environmental
conditions. For instance, in outdoor sports, data collection
can be hindered by weather variations, resulting in a decrease
in data reliability of up to 10% under adverse weather
conditions [30], [31], [32]. Moreover, the complexity of
athlete movements and the presence of sports equipment can
affect accuracy.

In the future, advancements in HAR for sports will
primarily focus on improving the precision of collected data
and developing more sophisticated analytics. The integration
of HAR with ML, DL, and Al has great potential for
transforming athletic performance analysis into predictive
analytics. By utilizing HAR data for real-time feedback and
for predicting injury risks, more effective training strategies
and injury prevention measures can be implemented [33].
The evolving role of HAR in competitive sports is expected
to provide deeper insights into athletic performance and
become an integral aspect of sports training and performance
enhancement.

4) HAR IN SURVEILLANCE
The significance of HAR in surveillance, particularly in
security and elder care, has grown significantly. HAR
systems play a crucial role in improving the efficiency
and privacy of real-time action identification in surveillance
operations, thereby contributing to monitoring environments
and detecting unusual activities [34], [35]. In the context
of elderly care facilities, HAR systems have proven to
be effective in reducing false-alarm rates by up to 30%,
leading to a notable improvement in emergency response
effectiveness [36].

The future of HAR in surveillance is characterized by
the integration of Al tools, which are expected to enable
the development of more context-aware and intelligent
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systems. This integration aims to enhance the ability of
the system to accurately interpret complex scenarios, with
recent advancements demonstrating a 25% improvement
in detecting subtle activities [37]. Such advancements are
particularly crucial in domains such as elderly care, where
accurately distinguishing normal behaviors from poten-
tial emergencies can significantly impact the safety and
well-being of individuals.

The application of HAR technology in different settings
poses a significant challenge. In particular, outdoor security
scenarios often present difficulties for surveillance systems
owing to unpredictable weather conditions and varying
lighting. These factors can have a detrimental effect on the
accuracy of activity detection, reducing it by as much as 20%
[38], [39]. It is crucial to ensure the reliability and precision
of HAR systems under diverse conditions, particularly for
applications in security and healthcare. Ongoing research
endeavors are focused on enhancing the robustness of HAR
systems under such diverse conditions, such as low light
and occlusions, especially for applications in security and
healthcare. This involves the development of advanced
algorithms and the integration of ML/DL techniques to
improve adaptability to changing conditions and camera
perspectives. As HAR technologies continue to progress,
their integration with Al is expected to result in more
sophisticated surveillance systems. This integration enhances
the efficiency of both action detection and contextual
interpretation, aligning surveillance operations more closely
with real-world requirements [32], [40], [41].

C. DATASETS

The HAR field relies heavily on a wide range of datasets,
each providing unique insights and presenting fundamental
challenges that are crucial for advancing HAR technologies.
The datasets used in HAR include both RGB and depth
data, which are distinct modalities. While Red Green Blue
(RGB) images capture color information, depth images are
two-dimensional and utilize Time-of-Flight (TOF) technol-
ogy. The RGB format merges both color and depth data and
displays the distances of the objects in the RGB images from
the image plane. These datasets are pivotal for developing
and testing HAR algorithms and significantly contribute to
the progress of the field [42].

1) BENCHMARK DATASETS

Benchmark datasets play a vital role in (HAR) research
because they serve as a fundamental foundation for the
development and assessment of models. These datasets hold
immense importance, as they provide controlled settings for
testing and enhancing the HAR algorithms.

KTH dataset introduced by Schuldt et al. [43], which
comprises six types of human actions (walking, jogging,
running, boxing, hand waving, and hand clapping) performed
by 25 subjects in four different scenarios, consists of
2391 video sequences with a resolution of 160 x 120 pixels
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and a frame rate of 25 fps. This dataset has certain advantages
such as being publicly available for non-commercial use,
having a large number of samples, and covering various
action categories and scene variations. However, it also
has some disadvantages, such as low resolution, homoge-
neous background, and the absence of complex interactions
or occlusions. The KTH dataset can be utilized to test
and compare different methods for action recognition and
detection, such as grid key points, video generation, and
temporal attention units. Future development recommenda-
tions include enhancing the resolution and diversity of videos,
incorporating more challenging actions and interactions, and
integrating additional modalities, such as depth or skeleton,
as noted by Baccouche et al. [44].

UT-Kinect: This dataset is presented by Xia et al. [45],
and is commonly used for action recognition based on depth
sequences. This dataset was acquired using a single stationary
Kinect camera and featured 10 action types: walking, sitting
down, standing up, picking up, carrying, throwing, pushing,
pulling, waving hands, and clapping hands. Each action
type was performed by ten different subjects, resulting in a
total of 100 samples. The dataset included three channels of
information: RGB, depth, and skeleton joint location. A high
resolution of 640 x 480 pixels and fixed frame rate of 30 fps
are among the advantages of this dataset. However, it has a
limited number of samples and action categories and includes
no variations or occlusions. Cai et al. [46] have effectively
utilized its data, but its controlled conditions might not fully
capture real-world intricacies. Future developments of this
dataset could include increasing the number and diversity of
samples, adding more action categories and scene variations,
and incorporating additional sensors or viewpoints.

MSR 3D Action dataset comprises twenty distinct action
categories and ten subjects, and each subject performed each
action two or three times. A total of 567 depth map sequences
were recorded, with a resolution of 320 x 240 pixels.
The data were captured using a depth sensor similar to
the Kinect device. Some of the advantages of this dataset
are that it is publicly available for non-commercial use,
and covers a wide range of action categories including
daily, health-related, explored by Xia et al. [45] and Ben
Tamou et al. [47], the dataset has been utilized in various
scenarios, including testing and comparing different methods
for action recognition from depth maps such as Signed
Distance Function (SDF), Subspace Video Linear Regression
Model (SVLRM), and Dynamic Kernel Network (DKN).
For future development, it is recommended to increase the
resolution and diversity of the depth maps, incorporate
additional modalities such as RGB or skeletons, and include
more scene variations or occlusions.

Florence 3D Action: This dataset comprises nine everyday
activities: wave, drink from a bottle, answer the phone, clap,
tie lace, sit down, stand up, read/watch, and bow. The dataset
features ten subjects, each of whom performs the actions two
or three times. The dataset included 215 video clips with a
resolution of 480 x 640 pixels and frame rate of 25 fps,
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TABLE 2. Summary of benchmark datasets - part 1.

Dataset Modality Frame Rate  Resolution

KTH (2D-3D) RGB, Depth 0.066-25 fps ~ 160x120

UT-Kinect (3D) RGB, Depth, Skeleton joint locations 30 fps 480x640 for RGB, 320x240 for Depth

MSR-Action-3D  Depth, Skeleton joint locations 15 fps 320x240

Florence-Action  Depth, Skeleton joint locations 25 fps 1280x720 for HD video

NTURGBD 3D  RGB, Depth, 3D Skeleton, Infrared 30 fps 1920x1080 (depth maps), 512x424 (infrared sequences)
HuDa-3DAct RGB, Depth, 3D Skeleton, Infrared 15 fps 640x480

UCF-101 RGB 25 fps 320x240

WISDM Accelerometer, Gyroscope 20 Hz Not specified.

UCI HAR Accelerometer, Gyroscope 50 Hz Not specified.

captured using a Kinect camera. The dataset is characterized
by its provision of RGB, depth, and skeleton information as
well as its high resolution and coverage of common actions
in daily life [48]. The dataset was used to test and compare
various methods of action recognition using depth cameras,
such as structured keypoint pooling, STM, and R2+1D-
BERT. Recommendations for future development include
increasing the number and diversity of samples, adding more
action categories and scene variations, and incorporating
more sensors and perspectives.

NTU RGB D: As utilized by Tu et al. [49], this large-scale
dataset is a comprehensive resource for RGB HAR, encom-
passing 56,880 samples from 60 action classes across
40 subjects. The action categories included 40 daily actions,
nine health-related actions, and 11 mutual actions, occurring
in 17 different scene conditions captured by three cameras
at various horizontal imaging viewpoints. By providing
multimodal information, including depth maps, 3D skele-
ton joint positions, RGB frames, and infrared sequences,
the dataset is publicly available for non-commercial use.
Although advantageous for its extensive samples, action cat-
egories, and scene conditions, it suffers from low resolution
(320 x 240 pixels), noise, missing values in depth and
skeleton data, and a lack of complex interactions or
occlusions. Usage scenarios involve testing and comparing
action recognition and detection methods using RGB data
such as PoseC3D, VideoMAE, and OTI. Future development
recommendations include improving the RGB data resolution
and quality, introducing complex interactions and occlusions,
and incorporating additional sensors and viewpoints.

RGB D Huda Act: Explored by Zhao et al. [50], it is a
comprehensive collection of RGB HAR data. It encompasses
56,880 samples from 60 action classes, collected from
40 subjects. These actions can be broadly categorized into
three groups: 40 daily actions (e.g., drinking, eating, read-
ing), nine health-related actions (e.g., sneezing, staggering,
falling), and 11 mutual actions (e.g., punching, kicking,
hugging). The actions were captured under 17 different
scene conditions corresponding to 17 video sequences
(S001-S017). The actions were recorded using three cameras
with varying horizontal imaging viewpoints (—45°, 0°, and
+45°). The dataset provided multimodal information for
action characterization, including depth maps, 3D skeleton
joint positions, RGB frames, and infrared sequences. The
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NTU RGB D dataset offers several advantages, such as
public availability for noncommercial use, a large number of
samples, action categories, scene conditions, and coverage
of various action types and viewpoints. However, it also
has some limitations, including low resolution (320 x
240 pixels), noise, missing values in the depth and skeleton
data, and a lack of complex interactions or occlusions. The
dataset can be utilized to test and compare different methods
for action recognition and detection using RGB data such as
PoseC3D, VideoMAE, and OTI. Recommendations for future
development include improving the resolution and quality
of RGB data, incorporating more complex interactions
and occlusions, and introducing additional sensors and
viewpoints.

UCF 101: Examined by Heetal. [51], it comprises
101 categories such as sports and human-object inter-
actions. Using 13,320 clips sourced from YouTube, the
dataset presents challenges with variations in the camera
motion, object appearance, and environmental conditions.
The advantages include diverse collections and robust model
performance. The limitations include limited resolution and
potential noise in the action labels. Suited for applications
such as surveillance, it may not be ideal to recognize simple
actions using other modalities. Recommendations for future
development include enhancing the RGB video resolution,
refining action labels, and incorporating additional modali-
ties, such as depth or skeleton, for improved recognition.

Each dataset has distinct characteristics that make it
suitable for different aspects of HAR research. However,
limitations such as realism, diversity, and complexity should
be considered when selecting a dataset for a specific research
goal.

2) USER-GENERATED DATASETS

In computer vision research, particularly in applications
such as surveillance systems, home monitoring [52], [53],
[54], [55], [56], [57], [58] and sensor-based applications
for senior monitoring [59], HAR is among key areas of
interest. The role of human motion-based characteristics
in detection and classification, involving pre-processing
techniques such as spatial-temporal filtering, background
subtraction, and optical flow [60], along with applications
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in video surveillance [61] and virtual reality [62], often
leverages both benchmark and user-generated datasets.

a: VIHASI

Ragheb et al. [63] developed the ViHASi dataset, a large
collection of synthetic human activities designed for test-
ing action identification algorithms. This dataset included
synchronized perspectives from multiple cameras, various
actors, and a wide range of action classes, thereby offering a
comprehensive testing ground for long video sequences with
numerous action samples.

b: SMARTPHONE-BASED DATASETS

Micucci et al. [64] examined smartphone accelerometer
datasets for detecting ADLs. They highlighted the importance
of feature selection in categorizing falls, using the UniMiB
SHAR dataset as a case study. However, datasets such as
MobiAct, RealWorld, and UMA Fall demonstrate a gender
imbalance, predominantly featuring male subjects, which
should be considered in future research.

c: VIDOR
Shang et al. [65] introduced the VidOR dataset containing
annotated films with object categories and predicates.
Their work included an automated pipeline for labeling
user-submitted videos and extensive annotation analysis,
offering rich resources for video object and relation recog-
nition.

Table 4 offers a more comprehensive perspective on the
performance of classifiers in terms of accuracy, considering
both benchmark and user-generated datasets.

3) SUMMARY ON COMPARING HAR DATASETS

In summary, notable advancements have been achieved in
creating HAR datasets, contributing significantly to the
progress of this field. A thorough examination of different
datasets demonstrated substantial improvements in address-
ing complex human actions and interactions. However,
challenges still need to be addressed, particularly in terms of
dataset diversity and representativeness, as these factors can
impact the universality and effectiveness of HAR systems.
It is crucial to obtain datasets that encompass a wide range
of human actions under various conditions. Future develop-
ments should focus on enhancing the comprehensiveness of
datasets by prioritizing inclusivity and variability to better
reflect real-world scenarios. This approach will further refine
HAR technologies, resulting in more precise and adaptable
systems, ultimately pushing the boundaries of what can be
achieved in human-action recognition.

D. TECHNIQUES/ALGORITHMS

Technological progress has had a profound influence in
different areas, particularly in the development of innovative
techniques in image detection, computer vision, and facial
recognition, which have played a vital role in advancing HAR
with applications in training, security, video surveillance, and
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TABLE 3. Summary of benchmark datasets - part 2.

Application Scenarios

Samples/Classes

Dataset

Basic action recognition, motion analysis

2 versions with 6 actions, 25 subjects in 4 scenarios

10 subjects, 10 actions, 3D joint locations
10 subjects, 20 actions, 3D joint locations
10 subjects, 9 actions, 3D joint locations

NTU RGBD-3D 60 actions, 40 subjects, captured by 3 cameras

KTH (2D-3D)

Kinect-based interaction, gesture recognition

UT-Kinect (3D)

Gaming, virtual reality, advanced gesture recognition

Daily activity monitoring, elder care

MSR-Action-3D

Florence-Action

Comprehensive activity analysis, multi-person interaction

Sign language recognition, detailed hand gesture analysis
Broad range of actions, video surveillance, sports analysis

Wearable device applications, health monitoring
Mobile health applications, fitness tracking

12 ASL gestures, 10 subjects, segmented hand frames

13,320 samples, 101 action classes

HuDa-3DAct
UCF-101

18 activities, 51 subjects, smartphone and smartwatch data

WISDM

Six activities, 30 subjects, smartphone data, 561-feature vector

UCI HAR
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TABLE 4. A broader view of classifiers’ performance on some benchmark and user-generated datasets.

Author Dataset Tool/Framework Classifier Accuracy Scope of Use
[66] WISDM WEKA and Adaboost Decision Stump, Ran-  97.83% Activity recognition from
dom Tree, RF, Hoeffd- smartphone sensors
ing Tree, REP Tree
[67] UCI HAR Score level and feature  K-NN, SVM 97.12% Human activity recogni-
level fusion tion using smartphone ac-
celerometer and gyroscope
data
[68] UCF-101 ARTNet ARTNet 94.3% Action  recognition in
UCF-101 video dataset
[69] NTU RGB D MATLAB, STNN CNN 96.3% Action recognition from
3D skeletal data in NTU
RGBD dataset
[70] WISM Smartphone Ac-  WEKA, RF, Bagging RF 87.19% Smartphone activity
tivity recognition for

personalized applications

Key Technologies Timeline

Before 2015

After 2015

2019 2019 2020

N

Joint Spatial Graphs Structured Tree

' '
' ' '
v v v

FIGURE 5. The evolution of HAR strategies (from 2008 to 2020).

automated observation. Figure 5 illustrates the progression
of the HAR strategies over time, emphasizing important
milestones in the field.

1) SUPERVISED LEARNING

Supervised learning methods have played a crucial role in
advancing HAR, as evidenced by numerous studies that show
their effectiveness.

Random Forest (RF): Xuetal. [71] demonstrated the
efficacy of Random Forest (RF) in handling accelerometer
data by achieving superior accuracy and adaptability to
environmental limitations when compared to conventional
approaches.

DL with Wearable Sensors: employed ML algorithms in
conjunction with wearable sensors found in smartwatches.
Their study highlights the practical implications of these tech-
nologies in the realm of health and safety monitoring [72].

3-D CNN for Video Surveillance: Almaadeed et al. [73]
presented a groundbreaking Three-Dimensional Convolu-
tional Neural Network (3D CNN) structure that effectively
enhances the analysis of action sequences and strengthens the
capabilities of video surveillance.
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Structured-Tree Neural Networks: In their study,
Khan et al. [69] introduced an innovative structured-tree
neural network that was trained on the NTU RGB D dataset.
This approach provides a distinct perspective for analyzing
human motion in the context of 3D action recognition.

Enhancement of Pre-trained CNNs: Ozcan and Bas-
turk [74] investigated the performance enhancement of the
NASNet-Large architecture in pre-trained CNNs. They con-
ducted experiments to demonstrate the improved accuracy
achieved by fine-tuning training parameters.

Two-Stream Neural Network for AloT-based Surveil-
lance: Ullah et al. [75] proposed a novel two-stream neural
network architecture that facilitates the real-time detection
of events in AloT-based surveillance systems. Their work
emphasized the significance of this approach in resource-
constrained environments, showcasing its potential for effi-
cient event identification.

2) HUMAN-ROBOT INTERACTION (HRI)

The integration of HAR into the HRI is crucial for developing
intelligent robotic systems. Mojarad et al. [76] proposed a
hybrid approach that combines ontology and ML techniques,
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thereby enhancing the robot’s understanding and interaction
capabilities within human environments. Another study by
Martinez et al. [7] specifically focused on the role of HAR
in robotic imitation learning, which is crucial for robots to
acquire the ability to learn and mimic human activities for
social interaction and assistance. Additionally, Rea et al. [77]
identified key moments in human actions, which significantly
contributed to more intuitive and responsive robot behavior in
real-time, thereby advancing the field of HRI.

3) SILHOUETTE SEQUENCES

The integration of 3D skeletal posture estimation with
2D forms for real-time low-dimensional feature extraction
and fusion is highlighted in silhouette sequences of HAR.
Chaaraoui et al. [78] successfully combined skeletal and
silhouette features, resulting in a significant improvement
in recognition rates for capturing dynamic human actions.
Elharrouss et al. [79] introduced an innovative approach
that analyzed silhouettes by incorporating time as a
third spatial dimension, thereby showcasing advancements
in dynamic human action capture. Expanding the field,
Murtaza et al. [80] and Maity et al. [81] focused on multi-
view HAR and silhouette normalization to enhance accuracy
and computational efficiency. Ramya and Rajeswari [82]
explored the use of distance transforms and entropy for
silhouette analysis and demonstrated the versatility of
silhouette-based methods across various settings.

4) COMPUTATIONAL MODELING

Computational modeling in HAR centers on the interplay
between the hardware capability and algorithm efficiency.
Meng et al. [83] deployed Field-Programmable Gate Array
(FPGA) technology to enable real-time on-device process-
ing in HAR, which is crucial for immediate application
requirements, such as surveillance. Liu et al. [84] developed
bioinspired models that emulate the neural processing of
the visual cortex, streamlining computational demands.
Several recent studies [85], [86] presented FPGA-compatible
architectures that prioritize computational frugality while
maintaining accuracy, thereby broadening the scope of HAR
in portable and embedded devices. Javed et al. [87] focused
on the practical integration of HAR into everyday life
through smartphones, thereby propelling the field towards
user-centered applications.

5) GRAPH-BASED APPROACHES

Utilization HAR has proven highly valuable in various
domains. Aoun et al. [88] demonstrated the effectiveness of
graphs for managing spatiotemporal data and skeleton-based
structures in the context of HAR. Similarly, Li and Leung [89]
employed graph kernels to analyze action similarity, and
achieved remarkable results in the analysis of 3D skeletal data
from depth-captured benchmark datasets. Mondal et al. [90]
took a step further by developing an end-to-end fast Graph
Neural Network (GNN) that transforms time-series data
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into structural graph representations, thereby introducing a
novel dimension to HAR. Ahmad et al. [91] explored vari-
ous Graph Convolutional Network (GCN)-based methods,
including reinforcement learning and encoder-decoder GCN
models, shedding light on the continuous advancements in
this field. Zhou et al. [92] applied graph-based techniques to
long-term activity patterns, effectively integrating local tem-
poral and global semantic relations to gain a comprehensive
understanding of human actions.

6) DEEP LEARNING ARCHITECTURES

Various DL architectures have been used in HAR to
distinguish intricate human actions. This discourse delves
into multiple prominent approaches, assessing their adoption
and suitability, while emphasizing their advantages and
limitations.

One such approach is SlowFast, a dual-stream network
capable of simultaneously capturing spatial and temporal
features. This makes it well-suited for analyzing complex and
diverse human motions [93]. SlowFast was further enhanced
by incorporating a You Only Live Once (YOLO) model and
temporal attention mechanism, enabling spatial localization
and temporal alignment [94]. However, it is important to
note that SlowFast has some limitations. These include
high computational costs, sensitivity to hyperparameters, and
challenges in effectively handling occlusions and background
clutter.

I3D ResNet50 is a network that combines 3D convolution
with ResNet50 feature extraction. It is designed to be
adaptable to varying activity durations and has demonstrated
superior performance on a kinetics dataset [95]. To make
it suitable for real-time HAR on mobile devices, it was
optimized by reducing its complexity using a lightweight
RGB model and employing a knowledge distillation tech-
nique [96]. However, this approach has some limitations
including high memory consumption, low efficiency, and
poor generalization to unseen domains.

In contrast, two-stream CNN is a network that introduces
separate spatial and temporal streams. This architecture
has proven to be effective for recognizing diverse human
actions and has achieved competitive results on the UCF-
101 and HMDB-51 datasets [97]. To enhance its performance
in skeleton-based HAR, it has been fused with capsule
networks [98]. Despite its strengths, the two-stream CNN has
some limitations. This relies heavily on optical flow compu-
tations, which are computationally expensive. In addition, its
fusion efficiency is relatively low and lacks spatiotemporal
coherence.

The 3D CNN with LSTM is a powerful network that
combines the capabilities of 3D CNN with Long Short-Term
Memory (LSTM) for spatiotemporal feature learning. This
network recognizes prolonged sequential patterns and has
shown impressive performance on benchmark datasets such
as KTH and Weizmann [44]. It is commonly used for
abnormal behavior recognition by employing a multi-scale
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feature fusion module and a multitask learning scheme to
enhance its capabilities [99]. Howeyver, it is important to note
that this approach has certain limitations. First, it exhibits
high complexity, which makes it computationally expensive
and time-consuming. Second, its robustness is relatively low,
making it sensitive to variations and noise in input data.
Finally, it faces challenges in handling noisy and irregular
actions that can affect performance in real-world scenarios.

On the other hand, transformer-based networks leverage
attention mechanisms to capture long-range dependencies in
temporal sequences. This network has shown great promise
in modeling complex human actions and has achieved
remarkable results in various natural language processing
tasks [100]. Recently, efforts have been made to develop
lightweight transformer models specifically designed for
HAR on mobile devices [101]. These models aim to reduce
the computational cost and model size while maintaining a
satisfactory performance. However, it is worth mentioning
that transformer-based networks also have limitations. First,
they often require significant computational resources, which
can be challenging for resource-constrained devices. Second,
a large model can impose storage and memory constraints.
Finally, similar to many DL models, transformer-based
networks are vulnerable to adversarial attacks, which can
compromise their performance and reliability in real-world
applications.

Capsule Networks (CapsNets) are a type of neural network
that focuses on capturing hierarchical representations of
features. They excel in handling spatial hierarchies and have
demonstrated impressive performance on popular datasets
such as MNIST and CIFAR-10 [102]. CapsNets are utilized
in skeleton-based HAR with Graph Convolutional Networks
(GCN) [103]. However, it is important to acknowledge
the limitations of CapsNets, including their high sensitivity
to hyperparameters, limited scalability, and challenges in
modeling temporal features.

These architectural approaches collectively contribute to
the evolving landscape of HAR by offering unique strengths
and by addressing specific challenges in understanding and
recognizing diverse human actions. The selection of an
appropriate architecture depends on the intricacies of the
targeted recognition task, the characteristics of the dataset
being used, and computational considerations.

A comprehensive history of research on action and
behavior recognition is presented in Table 5. Although many
studies have provided an overview of different methods
for detecting human actions, they often overlook a detailed
analysis of the advantages and disadvantages associated with
each approach.

E. OPEN CHALLENGES AND LIMITATIONS

HAR systems encounter various obstacles, particularly in the
realm of image analysis on a global scale, where each pixel
plays a role in the final descriptor. Conventional approaches
require manual detection and background subtraction, which
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makes them susceptible to variations in lighting, background
noise, and visibility. In the realm of surveillance, video anal-
ysis is employed by law enforcement and security agencies
to ensure public safety, monitor events, and resolve crime.
A substantial amount of data acquired from surveillance
systems necessitates algorithms that strike a balance between
swift training and detection, high reliability, and the ability
to learn from limited datasets [108]. The following sections
discuss the common challenges faced by HAR systems.

1) DATA COLLECTION AND PRE-PROCESSING

Accurate prediction models rely heavily on effective data col-
lection and pre-processing. In their study, Jiang et al. [109]
emphasized the significance of accurately recording affected
signals by considering the diversity of human activities across
different locations and the influence of ambient sensors.
The process of data labeling varies, as some scenarios
involve manual labeling, whereas others adopt alternative
approaches.

Brezmes et al. [110] used smartphones to identify
and classify six distinct movements. Anguita et al. [111]
employed Support Vector Machines (Support Vector Machine
(SVM)) to model human behavior using data from a
waist-worn smartphone inertial sensor. Kose et al. [112]
tracked real-time activity using a smartphone accelerom-
eter. Fuentes etal. [113] and Laraetal. [114] employed
smartphone accelerometers for real-time motion detection.
Lara et al. [114] further enhanced their processing techniques
by incorporating ML methods. Lee et al. [115] addressed the
issue of noise in accelerometer data by focusing on the vector
magnitude of the signal.

Data collection and preprocessing pose various challenges
such as the management of erroneous forms, outliers, and
anomalies. Machine learning (ML) algorithms may occa-
sionally disregard outliers, whereas the presence of duplicate
frames can lead to confusion within models. It is imperative
to address these concerns, as they have the potential to
significantly influence decision-making processes and the
overall performance of the model.

2) DATASET MODELING AND CONFIGURATION
Modeling actions from video sequences poses significant
challenges. In their study, Zhangetal. [116] introduced
motion context, a representation that combines image
and motion information. This representation is robust to
variations in action size and effectively captures the 3D
characteristics of actions, leading to improved results for
specific datasets. However, obstacles remain to be overcome,
such as space-blind motion words (MWSs) and limitations of
graphical models when dealing with limited video datasets.
Advancements in multimedia and computer vision have
recently focused on the detailed analysis and understanding
of videos, including objects and their relationships. However,
current evaluations often rely on small datasets or indirect
metrics. To address this issue, Shang et al. [65] proposed a
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TABLE 5. Summary of literature on HAR techniques.

Author Contributions
[83] SVM classifiers and using an FGPA-based video processing architecture.
SVM classifiers cannot be used for large datasets, especially linear SVMs.

[104] K-D Trees which is a special technique of K-partitioning (novelty and first 3D approach).
Silhouette sequence formation is time-consuming.

[89] Joint-Spatial Graphs (a graph with spatial features for human joints).

A good approach to recognizing human actions due to quick response time but limited actions for the dataset used.

[105] Works on training the model using the Directed Graphs approach.

Great Accuracy Over A Large dataset but requires large storage space.
[74] Trained CNNs for performance improved over Stanford 40 dataset.
A single dataset with only 40 video clips seems to be a limited approach.
[69] Recognizing actions by skeleton forming using joint movements of a human.
GPU excessive workload system performance.

[85] RGB Camera
CNN NVIDIA JETSON XAVIER embedded board. & Recognizing the Front View of the person through pose estimation algorithm.

[106] Accelerating RFC-HyPGCN on Xilinx XCKU-115 FGPA & GCN action recognition.

Increased Throughput And Efficiency but dataset limited.

[107] Optimizing the hardware architecture to shorten the latency and improve the overall performance based on Xilinx Ultrascale+ ZCU102 FGPA-

based neural networks.
The UCF101 dataset adds 13,320 video clips to UCF50.
Optimizing the hardware architecture to shorten the latency and improve overall performance.

[93] SlowFast is a dual-stream network that captures spatial and temporal features concurrently, suitable for complex and varied human motions.
Augmented with a YOLO model and temporal attention mechanism for spatial and temporal localization. These limitations include high
computational cost, sensitivity to hyperparameters, and difficulty in handling occlusions and background clutter.

[95] 13D ResNet50 is a network that merges 3D CNN with ResNet50 feature extraction, is adaptable to various activity durations, and has superior
performance on the Kinetics dataset. This is reduced by lightweight 3D CNN and knowledge distillation techniques for real-time HAR on mobile
devices. These limitations include high memory consumption, low efficiency, and poor generalization to unseen domains.

[97] Two-stream CNN is a network that introduces separate spatial and temporal streams, effective for diverse human actions, and competitive results
on the UCF-101 and HMDB-51 datasets. Fused by capsule networks for skeleton-based HAR. Limitations include high dependency on optical
flow computation, low fusion efficiency, and a lack of spatiotemporal coherence.

[44] A network that combines RGB with LSTM for spatiotemporal feature learning, excels in recognizing prolonged sequential patterns, and performs
well on the KTH and Weizmann datasets. Used for abnormal behavior recognition using a multiscale feature fusion module and multitask learning
scheme. These limitations include high complexity, low robustness, and difficulty in handling noisy and irregular actions.

[100] Transformer-based network uses attention mechanisms to capture long-range dependencies in temporal sequences, promising complex human
actions, and remarkable results on various natural language processing tasks. Reduced by a lightweight transformer model for HAR on mobile
devices. These limitations include high computational cost, large model size, and vulnerability to adversarial attacks.

[102] CapsNets is a network that focuses on hierarchical representations of features, is proficient in handling spatial hierarchies, and has impressive

results on the MNIST and CIFAR-10 datasets. used for skeleton-based HAR with a GCN. These limitations include high sensitivity to
hyperparameters, low scalability, and difficulty in modeling temporal features.

cost-effective annotation pipeline. This pipeline addresses
challenges related to keyframe creation, task decomposition,
and other factors such as free camera motion, illumination,
object deformation, and keyframe generation. By enabling
large-scale annotation, this approach overcomes the limita-
tions of previous evaluations.

3) THE ROLE OF OPEN-ACCESS AND COMMERCIAL
TOOLS IN HAR
The utilization of HAR systems in both their development
and deployment is significantly enhanced by the availability
of open access and commercial tools. Open-access tools, such
as OpenPose and DeepPose, offer cost-effective and easily
accessible solutions, enabling researchers and developers to
quickly prototype and experiment [117]. These tools are
often equipped with pre-trained models and user-friendly
interfaces, expanding the accessibility of HAR technology.
On the other hand, commercial tools such as Microsoft
Kinect and Intel RealSense provide advanced capabilities
and robustness for professional and large-scale applica-
tions [118]. These tools typically offer comprehensive
support and integration options, making them well-suited
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for complex surveillance systems or commercial activity
monitoring solutions.

The decision to opt for either open access or commercial
tools is contingent upon various factors, including the
financial resources available, scale of implementation, and
specific requirements of the HAR system [119]. Open-
access tools play a crucial role in facilitating research and
fostering innovation. However, they may lack the ability
to be tailored to specific needs and may not offer the
same level of support as their commercial counterparts.
However, commercial tools provide advanced functionalities
but are prohibitively expensive and less adaptable for research
purposes. This dichotomy poses a challenge when selecting
tools for HAR scenarios because it necessitates striking a
balance between advanced features, customization options,
and cost-effectiveness.

4) ANALYZING A DATASET BASED ON INPUT

FROM IMAGES OR VIDEO FRAMES

Video analysis in HAR involves processing a sequence of
static images and video frames. The extraction and classifica-
tion of frames from videos pose several challenges, including
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variations between different classes, similarities within the
same class, poor image quality, interactions between individ-
uals in a group, long-distance shots, complex backgrounds,
and interactions involving multiple subjects [120], [121].

Most HAR datasets consist of video clips that capture the
actions of ADLs. Analyzing every frame in these videos
can be computationally and memory intensive. To address
this issue, Serpush and Rezaei [122] proposed a method that
categorizes selected frames from a video, thereby improv-
ing processing speed and enabling real-time applications.
Typically, a subset of 30 frames is considered sufficient for
an accurate categorization [123]. Activities and confidence
levels were determined by averaging the categorization
results of the selected frames. However, this approach may
encounter difficulties when dealing with videos involving
multiple concurrent activities, which can complicate the
recognition and categorization of actions.

5) METRICS FOR PERFORMANCE EVALUATION

More than 650 million people have disabilities worldwide.
They should be provided with a monitoring system that is
both reliable and precise with a high recall that helps reduce
action recognition mistakes [124]. ML techniques such as
Random Forest (RF), KNN, ANN, and SVM have been used
for HAR [125], [126], [127]. However, an HAR system is
only acceptable if it performs better in terms of the evaluation
metrics. In this regard, some well-known and widely used
evaluation metrics include accuracy, precision, recall, and
f-score [128]. Accuracy (Equation 1) is the most common
metric used to determine how well a model works by finding
the correct number of predictions from the total predictions.
Precision (Equation 2) is the percentage of the total number of
accurate forecasts possessed by an item. Recall (Equation 3)
is the percentage of real positive cases detected accurately in a
given dataset. F-score/F1-score (Equation 4) evaluates binary
classification systems by combining the model’s precision
and recalling samples as ‘positive’ or ‘negative.’

TP + TN

Accuray = 60
TP+ TN + FP + FN
.. TP
Precision = —— )
TP + FP
.. TP
Precision = ——— 3)
TP + FN
.. Precision x Recall
Precision = 2 x 4)

Precision + Recall

where TP: True Positive, and it is expected that the
observation will be positive and positive. FP: False positive:
the observation is expected to be positive, but it turned out
to be negative. TN: True Negatives, the prediction was that
the observation would be negative, and thus it was. FN:
False Negatives; instead of being negative, the observation is
positive. Table 6 presents a summary of the literature on the
types of datasets and the evaluation metrics used.

A sensor-based Body Area Network (BAN)-based DL)
model, InnoHAR, was developed in [129] by integrating an
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TABLE 6. Summary of literature on evaluation metrics.

Authors Dataset Evaluation Metrics

[130] Own data Accuracy

[132] Own data Accuracy, f-measure

[129] UCI HAR Accuracy, f-measure

[131] Own data Accuracy, precision, recall
[115] Real-World Human  Precision, recall, F1 Score

Action Recognition
[132] Own data Accuracy, f-measure, Pre-

cision, recall

inception neural network with a recurrent neural network.
With this method, metrics such as those in the table can be
evaluated using time-series features in the form of sensor
waveforms from more than one channel.

Bao and Intille [130] developed and evaluated classifiers
based on accelerated data, such that the thigh and wrist were
the only two pitched of the five small biaxial accelerometers
available. This method was also used to measure factors such
as the correlation mean and frequency-domain entropy. They
found that their decision-tree-based classifier performed best
in detecting ordinary activities, with an overall accuracy rate
of 84 percent.

Lee et al. [115] attempted to improve accuracy and
precision scores by employing an approach that lets the
users’ smartphones provide the data for a 1D CNN-based
triaxial accelerometer model. They converted the X, Y, and
Z acceleration data into vector magnitude data before using
them in training a 1D CNN. Overall, 1D CNN-based ternary
action recognition exceeded the baseline Random Forest
approach by 89.10% for ternary action recognition.

Bayat et al. [131] proposed an HAR system using a digital
low-pass mesh that isolates gravity acceleration from body
acceleration and achieved 91.15% accuracy using the average
of probabilities as the fusion technique.

Attal et al. [132] used chest, right thigh, and ankle sensors
in combination with a preprocessing and data classification
approach for supervised classification. They used SVM,
KNN, RF, and mixture models [133]. They evaluated their
results based on the f-measure, recall, and precision. They
found that three MTx inertial IMUs were located in the chest,
right thigh, and left ankle compared with 12 static, dynamic,
and transition action classification methods. Unsupervised
classification techniques can quickly build models from
unlabeled data and are inexpensive to run on computers.
However, supervised techniques are more accurate when
working with raw data, or extracted or selected features.
A real-world test demonstrated that RF performed better
than SVM. The SLGMM is difficult to use when viewed.
Additionally, the Hidden Markov Model, Gaussian Mixture
Model, and K-means can handle temporal and sequential
data.

Lawal and Bano [134] generated image sequences using
two trained CNN sensors and combined them to forecast
classes based on human activities carried out on a public
dataset with an f-score of 0.87%.
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TABLE 7. A summary of HAR taxonomy.

S.No. Techniques Application

Explanation

1. Computational modeling Dynamic

Real-time FPGA-based devices can recognize human actions by
duplicating or adding processing cores to modify the system’s
processing power. Intelligent settings, human-machine commu-
nications, and security systems utilize this technology.

2. Silhouette Sequence Point Clouds ~ Dynamic

This approach analyzes the time sequence of the camera silhou-
ettes. They have built action-based spaces. The activities and
shape information were recognized using 3-D point clouds. The
preliminary results demonstrate that the approach can consis-
tently detect actions, even when the data are dynamic and from
numerous sources and periods.

3. Graph-based approach Static

Classification of human behavior based on graphs. This model
maintains a complex spatial arrangement of the joints in the
body by considering how they move and change over time.

4. Human motion understanding for
human-robot interaction

Dynamic

New FPGA action recognition hardware based on two-stream
neural networks. This design delivers the same accuracy as ex-
isting 3CD baseline models on the Xilinx Ultrascale+ZCU102,
with an order of magnitude fewer operations.

5. Graph-based approach Static

This study categorizes numerous GCN models to address the
graph representation learning challenge in computer vision-
related applications.

6. Computational modeling Dynamic

This technique looks for "dynamic instants" in an action’s time-
line to determine when a partner’s movements begin, end, or
change.

7. Neural Networks Dynamic

Identify typical 3D actions in NTU RGB D by building a
movement-based interactive system using tree topologies. They
found that bones and joints represent the tree’s base, whereas
child nodes that link provide incoming and outgoing edges.

8. Pre-trained CNNs Dynamic

Combines class-based and instance-based success rates to as-
sess traditional and ABC-optimized transfer models (test data
success rate). All class- and instance-based NASNet-Large pa-
rameterize the ABC-optimized CNN.

IV. CONCLUSION AND FUTURE WORK

The impact of HAR on daily life, real-time situations, and
collaborative efforts has been discussed extensively in the
literature. This paper offers a comprehensive review of the
current state of HAR systems. The findings from the various
sources cited in this paper highlight several key points.
In addition, a summary of the taxonomy of HAR techniques
and methods is presented in Table 7.

Researchers have focused on various aspects of HAR,
including user behavior, static and dynamic living activities,
and lifestyles. However, limited attention has been paid
to real-time HAR for medical security. The complexity
of real-time actions, hardware and technical limitations,
and data scarcity pose challenges for the development of
HAR systems. Meeting the demands of real-time public or
occupied spaces and adapting to changing scenery requires
significant computing power. Furthermore, the availability of
high-quality real-time data is limited, and existing literature
falls short of addressing real-time activities. For instance,
Kinect devices, with their limited field of view, can only
detect falls and unusual behavior in smart homes.

Privacy concerns arise in vision-based HAR systems that
rely on cameras. Some individuals may be reluctant to have
their data, including images and videos, stored permanently,
raising privacy concerns.
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Sensor-based HAR has advantages and disadvantages
similar to those of other technologies. Some sensors are worn
by individuals, whereas others are embedded in buildings
and vehicles. Wearing body-implanted sensors may cause
discomfort; however, they provide versatile and detailed
motion data. In contrast, wearable sensors offer the advantage
of capturing real-time data despite potential HAR data loss.

The widespread use of smartphones has made HAR
sensors readily available for the general population. This
accessibility opens opportunities for novel combinations of
devices and sensors in HAR research.

In the literature, several HAR implementations utilize both
ML and DL methods. Researchers have suggested the use of
hybrid HAR approaches. The following are several potential
areas that can be explored in future research.

« Researchers involved in HAR should focus on address-
ing two key aspects: (1) acquiring sufficient data for
HAR systems and (2) evaluating their performance
effectively.

o Previous evaluations have primarily concentrated on
specific aspects of HAR, such as an integrated HAR
with artificial intelligence frameworks [135] or the
categorization of video frames [122] to enhance real-
time processing. To provide valuable and accurate
insights into human behavior and interactions with the
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environment, it is recommended to establish connections
between HAR and Computer Vision.

While the KTH and Weizmann datasets have been
extensively studied and utilized due to their simplicity
and limited number of videos, the MSR dataset, which
captures behavior from multiple cameras, has been
identified as a valuable benchmark dataset. However,
further research is necessary to develop more suitable
datasets that encompass a wider range of activities and
perspectives, thereby enabling the training of state-of-
the-art DL models because they span a broader range of
activities and perspectives.

This review article aims to establish a foundation for
further investigation into significant issues and potential
advancements in the field.

LIST OF ABBREVIATIONS
3D CNN Three-Dimensional Convolutional Neural
Network
ADL Activities of Daily Living
BAN Body Area Network
CNN Convolutional Neural Network
DKN Dynamic Kernel Network
DL Deep Learning
FPGA Field-Programmable Gate Array
GCN Graph Convolutional Network
HAR Human Action Recognition
HCI Human-Computer Interaction
ML Machine Learning
RF Random Forest
RGB Red Green Blue
SDF Signed Distance Function
SVLRM  Subspace Video Linear Regression Model
SVM Support Vector Machine
TOF Time-of-Flight
YOLO You Only Live Once
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