IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 14 February 2024, accepted 27 February 2024, date of publication 4 March 2024, date of current version 8 March 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3373193

== RESEARCH ARTICLE

Efficient Computational Cost Saving in Video
Processing for QoE Estimation

ALVARO LLORENTE™?, JAVIER GUINEA PEREZ 12, JUAN ANTONIO RODRIGO "3,
DAVID JIMENEZ“4, (Member, IEEE), AND JOSE MANUEL MENENDEZ', (Senior Member, IEEE)

ISefiales, Sistemas y Radiocomunicaciones, Escuela Técnica Superior de Ingenieros de Telecomunicacion, Universidad Politécnica de Madrid, 28040 Madrid,
Spain

2Video-Mos, 28001 Madrid, Spain

3Sistemas Informaticos, Escuela Técnica Superior de Ingenieria de Sistemas Informaticos, Universidad Politécnica de Madrid, 28031 Madrid, Spain
“#Electrénica Fisica, Ingenierfa Eléctrica y Fisica Aplicada, Escuela Técnica Superior de Ingenieros de Telecomunicacién, Universidad Politécnica de Madrid,
28040 Madrid, Spain

Corresponding author: Alvaro Llorente (alg@ gatv.ssr.upm.es)

ABSTRACT No-Reference video quality assessment has become a trending and challenging hot topic in
estimating perceived quality in audiovisual content. In this paper, we present a proposal to considerably
reduce the computational cost of video processing without losing accuracy in QoE estimation. Tests have
been performed using the Video-MOS SaaS solution, a hybrid NR-VQA solution based on perceptible video
distortions and a machine learning approach. After exploring the spatial and temporal redundancy present
in a video sequence, the final approach combines video metric feature extraction in both high and low video
resolution, together with a specific frame selection based on a uniform temporal sampling and frame type
at the video coding level. An extensive validation with more than 144 hours of audiovisual content from six
of the most important HD channels of DTT in Spain demonstrates the validity of the approach, ensuring
real-time application on the test device, with computational cost savings of 94.96% and an obtained MOS
error of 0.1144, in more than 174000 3-second measurements.

INDEX TERMS Computational cost, feature extraction, I frames, machine learning, mean opinion score
(MOS), no-reference, video quality assessment, perceived quality, quality of experience (QoE), video
processing.

I. INTRODUCTION
Audiovisual content traffic has grown considerably over

the perceived quality by end-users has become one of the
most important goals for broadcasters and content providers.

the last few years. The massive use of social networks,
improvements in Internet speed and connectivity, and new
audiovisual consumption habits have led to a huge boom in
media applications and services: video surveillance, virtual
reality, augmented reality, Internet Protocol TV (IPTV),
Video-on-Demand (VoD) and gaming. Video has become an
increasingly important part of global Internet traffic. IP video
traffic has been estimated to be 75% of all IP traffic by
2017 and 82% by 2022 [1]. Video streaming services such
as YouTube, Netflix, Facebook Video, and TikTok account
for a large part of the IP video traffic [2].

A. THE IMPORTANCE OF QoE ESTIMATION
The success of audiovisual content or a media application
is directly related to the end-user satisfaction. Measuring
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There are many processing stages from the audiovisual
content acquisition to its consumption. All of them produce
distortions that can affect the final perceived quality. Contrast
or color issues due to the nature of the scene, blurring,
freezing, block effect, bitrate loss, packet loss or latency could
be some of the typical distortions produced in the audiovisual
chain.

Although spatial consistency (such as the realism of
object shapes, color, and textures) or temporal consistency
(such as the movement of objects) are the main factors in
perceived quality [3], subjectivity is not easy to measure.
The typical process used to assess the perceived quality is
known as QoE (Quality of Experience) estimation. Using the
ITU’s (International Telecommunication Union) definition,
QoE is ‘“the overall acceptability of an application or
service, as perceived subjectively by the end user” [4]. This
measure considers the type of content, signal degradations,
expectations, experiences, and user perceptions related to the
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Human Visual System (HVS) and Human Auditory System
(HAS), network conditions, and device capabilities. Many
issues are still open in QoE field due to the multiple human,
system, and content influencing factors [5].

B. IMAGE/VIDEO QUALITY ASSESSMENT

Image Quality Assessment (IQA) and Video Quality Assess-
ment (VQA) have been studied extensively over the last
decade to measure the QoE. VQA can be divided into
two categories: subjective quality assessment and objective
quality assessment.

Subjective quality assessment is the most reliable way to
assess the perceived quality since videos are aimed at end-
users. Subjective quality is measured by asking a human
subject to indicate the quality of an image or video, typically
using a numerical scale, such as MOS (Mean Opinion Score)
scale, with five possible values (1: Bad, 2: Poor, 3: Fair,
4: Good, 5: Excellent). Statistical significance of the MOS
value must be guaranteed. Several assessment methodologies
have already been standardized by the ITU in ITU-T
Recommendation P.910 [6] and ITU-R Recommendation
BT.500 [7]. These methodologies describe in detail how
subjective video quality experiments should be set up and
conducted. Due to the strictness of the methodologies,
subjective assessments are time-consuming, expensive, and
impractical for real-time applications.

Objective quality assessment predicts the perceived video
quality scores automatically with computational VQA mod-
els that simulate the HVS and human perception. Objective
VQA performance has already been widely investigated
by the Video Quality Experts Group (VQEG). These
assessments can be categorized into three categories based
on the availability of the original video: Full-Reference (FR),
Reduced-Reference (RR), and No-Reference (NR) or Blind
VQA (BVQA). Another criterion to categorize objective
VQA is the type of information extracted from the video
sequence: pixel-based, bitstream-based, parametric-based,
or hybrid, being a combination of all of them.

C. CHALLENGES IN QoE ESTIMATION
The development of an objective video metric that accurately
estimates the perceived video quality is still challenging
nowadays. Not only because of the task of finding an
algorithm whose quality prediction is in good agreement
with subjective scores from real human observers [8], but
also because of the emergence of new types of content and
applications that are clearly differentiated from traditional
audiovisual content, and require the design of specific video
metrics: User-Generated content (UGC) [9], High Dynamic
Range (HDR) audiovisual content [10], [11], omnidirectional
videos [12], [13], [14], [15], videogames [16], and artificial
and enhanced videos [17], [18], [19].

Another important challenge is the progress with the new
video formats. Video resolutions are continuously increasing
to provide more realistic and immersive experiences. Follow-
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ing the success of High Definition (HD) video services, the
Ultra High Definition (UHD) format [20] is now a reality
and is considered the future standard for video applications.
Popular video streaming platforms such as YouTube, Netflix,
or Amazon already support 4K UHD resolution videos.

The study of subjective and objective VQA is necessary
for these new video formats [21], [22]. There is a major
technological challenge in the design of objective video
metrics for 4K and 8K video resolution with high frame rates.
The spatial resolution of 4K UHD content [23] is four times
the Full HD resolution [24]. And there is sixteen times more
information between 8K UHD resolution [23] and Full HD
resolution.

D. VIDEO-MOS SaaS SOLUTION

The motivation for this work and this study arises from
these challenges in the objective video metrics field. Video-
MOS SaaS (Software as a Service) solution is a video
content quality monitoring commercialized by the European
company Video-MOS [25]. The solution is a hybrid NR-VQA
system based on perceptible distortions and a machine
learning-based approach. Thanks to its real-time operation
and its advanced Artificial Intelligence technology, this SaaS
solution can perform a complete QoE monitoring in terms
of MOS value estimation, specific distortion detection, and
impact generated on the end-user [26], [27].

Video-MOS SaaS solution is protected at Registro Ter-
ritorial de la Propiedad Intelectual de la Comunidad de
Madrid (Territorial Registry of Intellectual Property Right
of the Community of Madrid region), with the registration
of four software modules: M-002018/2023, M-002033/2023,
M-002037/2023 and M-002039/2023. It is also under patent
application.

E. OBJECTIVE AND CONTRIBUTIONS

The main objective of this work is to reduce the computa-
tional cost of a hybrid NR-VQA assessment tool, maintain-
ing correct monitoring performance and accuracy in QoE
estimation. For the VQA measurements, the Video-MOS
SaaS solution has been used. Savings in computational costs
have multiple benefits such as real-time processing of UHD
content or processing a greater number of contents on the
same device, thus allowing for significant financial savings,
reducing infrastructure costs (space and hardware), lower
energy consumption, flexibility, and improved scalability.
Although there are different strategies to reduce compu-
tational costs in video processing using specific hardware
(eg. Graphics Processing Units (GPUs)) or parallelization
techniques and distributed processing, the work will focus on
exploring the spatial and temporal redundancy that charac-
terizes video sequences. Different subjective and objective
studies have analyzed the impact of spatial and temporal
subsampling [28], [29], [30], [31], [32], [33], [34], [35], [36].
This study is open to the application of these same
computational cost reduction techniques to other IQA/VQA
measurement proposals.
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FIGURE 1. Overview of VQA methods.

Il. RELATED WORK

Researchers in IQA and VQA fields have been working to
understand how distortions introduce a degradation in the
audiovisual signal and how it impacts signal statistics and
perceived quality. There has been a steady evolution from
traditional models to learning-based and deep-learning tech-
niques. Fig. 1 provides an overview of the literature collected
in this section. With this advancement, the feature extraction
has improved to achieve better prediction performance when
compared with classical approaches. Deep VQA modeling
is a field that still needs a lot of research. There is a major
limitation because of the lack of reliable large and diverse
training databases and ineffective training methods [37].
Small databases are insufficient for training models with
relatively high network capacity and for detecting multiple
specific video distortions simultaneously. Additionally, these
models trend to be overfitted.

A. FULL-REFERENCE QUALITY ASSESSMENT
FR IQA/VQA models require the presence of a reference
signal to predict the quality of the distorted signal. The
simplest monitoring approach is to compare the original
with the received video and measure the differences. The
degradation or loss of quality is calculated based on the
measured deviation. However, the non-availability of the
reference limits the use of FR metrics in many applications.
Traditional FR IQA models measure frame-by-frame
deviation metrics such as MSE and PSNR [38], [39]. Both
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are efficient but often offer poor correlation with subjective
perception. Other FR IQA models achieve better correlations
with subjective scores and visual perception: PSNR based
on HVS [40], SSIM [41], MS-SSIM [42], VSNR [43],
MAD [44], VIF [45], FSIM [46] and FMSE [47]. However,
the demonstration over time that motion information plays
an important role in the visual perception influencing the
perceived quality (HVS is more sensitive to distortions on
moving objects because the movement automatically attracts
attention), led to the appearance of spatio-temporal VQA
models such as MOVIE [48], VIS3 [49], ST-MAD [50],
PVM [51], FLOSIM-FR [52] with optical flow information,
or FAST [53] with salient trajectories information.

More sophisticated FR approaches make use of machine
learning techniques such as VMAF [54], a solution developed
by Netflix that proposes the use of multiple VQA features
with learning-based regression, ST-GREED [55] with a
support vector regressor, or [56] with a random forest
regression algorithm used to map multiple features (texture,
saliency, spatial activity, and temporal activity) into a
subjective score.

Latest FR approaches use deep convolutional neural
networks (CNN) such as DeepVQUE [57], DeepVQA [58],
C3DVQA [59], [60], [61], DISTS [62], DeepQA [63], and
CONTRIQUE-FR [64]. All of them have demonstrated the
potential to compete with traditional metrics, but the lack of
subjective databases make them limited models for different
types of content and for specific distortions.

B. REDUCED-REFERENCE QUALITY ASSESSMENT

RR IQA/VQA models require only partial information about
the reference signal to predict the quality. These models
also exploit the spatio-temporal information, extracting
information in the spatial domain, temporal domain or
combining both domains: RRED, TRRED, ST-RRED [65]
and SPEED QA [66].

C. NO-REFERENCE QUALITY ASSESSMENT

NR or Blind IQA/VQA models have greater potential and
wider application than the FR and RR models by being able
to predict the quality without the need for reference signal
information. Existing BVQA models are often designed
based on two approaches: specific distortion or general
purpose.

Specific distortion approaches focus on estimating per-
ceived quality in contents that have a particular type of distor-
tion such as artifacts [67], block effect distortion [68], [69],
blur and noise [70], [71], [72], ringing [73], [74] or
banding [75]. However, these models cannot be extended to
real-world videos, which contain many types of combined
spatial and temporal distortion.

General purpose approaches are based on (multi-)feature
extraction and learning-based techniques, training a set
of generic quality-aware features combined to conduct
the quality predictions. The possibility to extract relevant
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perceptual features combined with the use of powerful
regression models make general-purpose methods much
more versatile and generalizable than specific distortion
approaches. In general, learning-based approaches either use
regression or classification for the perceived quality estima-
tion: regression is commonly used for MOS value estimation
whereas classification is typically used for predicting error
visibility by means of binary decision.

Most popular BVQA algorithms employ perceptually
relevant low-level characteristics such as natural statistical
features of the images based on Natural Scene Statistics
(NSS) models [76]. NSS models are based on the idea that the
distortion in a natural image can change the natural statistical
features of the scene, making the image unnatural. Successful
NSS general-purpose models have been proposed exploring
the structural information in the DCT (Discrete Cosine
Transform) domain (BLIINDS [77], BLIINDS-II [78]),
spatial domain (NIQE [79], BRISQUE [80]), wavelet domain
(BIQI [81], DIIVINE [82]) and gradient-domain (GM-
LOG [83], [84], HIGRADE [85]). FRIQUEE [86] achieves
good performance predicting the perceptual quality of images
corrupted by a combination of multiple authentic distortions.
CORNIA [87] is efficient, effective, and computationally
fast. VIDEVAL [88] focuses on spatial distortions selecting
a combination of simple distortion-aware statistical video
features, NSS statistics, and well-defined visual impairment
features.

VBLIINDS [89] was one of the first models to explore the
use of spatiotemporal NSS in the time-differenced domain,
computing motion coherence and global motion features
with expensive motion estimation operations. VIIDEO [90]
and 3D-DCT NR-VQA [91] exploit a greater variety of
spatio-temporal statistical regularities to predict and quantify
the quality of distorted videos. STFC [92] model also
extracts spatiotemporal statistics and achieves good perfor-
mance with authentic distortions by being designed using
authentic distorted videos. ChipQA [93] model is based on
a quality-aware feature (space-time chips) in localized spa-
tiotemporal cuts in directions determined by the local motion
flow.

TLVQM [94] model captures artifacts such as camera
shakiness, overexposure, underexposure, and sensor noise
in UGC videos. This model uses spatio-temporal feature
extraction making use of a mechanism for selecting the
frames used for computing different types of features: low
complexity features from full video and high complexity
features from representative video frames. This mechanism
considerably reduces the computational cost of TLVQM
model.

Recently, several deep CNN-based BVQA models have
been proposed: PATCH VQ [95], MLSP VQA [96],
GSTVQA [97], RankDVQA [37] and DEEPSTQ [98].

CNN-TLVQM [99] improves the TLVQM model by
replacing the spatial high-complexity features with deep
features. VSFA [100] proposes the integration of the
content-dependency effect and the temporal-memory effect
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into deep neural networks (DNN), and MDTVSFA [101] is
an enhanced version of the VSFA.

DisCoVQA [102] method aims to model both temporal
distortions and content-related temporal quality attention
via transformer-based architecture. COINVQ [103] model
proposes a DNN-based framework to thoroughly analyze the
importance of content, technical quality, and compression
level in perceptual quality for UGC videos. Li et al. [104]
propose a transfer learning method for in-the-wild scenarios
to leverage knowledge from spatial appearance and temporal
motion.

V-MEON [105], STFEE [106], and SACONVA [107]
use a 3D CNN for spatio-temporal feature extraction and
evaluation. RAPIQUE [108] model exploits and combines
efficiently spatial and temporal scene statistics as well as
deep spatial features of natural videos, achieving good
performance.

The main limitation of all these models lays on the
restricted size of datasets available for training neural
networks. In any case, they would all be able to benefit from
the proposals put forward in this work as well.

In addition, NR-VQA models are often computationally
complex and impractical for many real-life applications when
evaluating videos of HD and beyond resolutions. Recent
work focuses on efficiently modeling the spatial and temporal
information of a video sequence, improving the performance
of VQA models, with the goal of reducing computational
cost and hardware requirements without compromising the
accuracy of video quality prediction.

In video comprehension tasks pursuing the trade-off
between effectiveness and efficiency, some researches tried to
reduce the number of input frames by sparse sampling, taking
into account that there is a lot of redundant information in
consecutive frames. In this work [109], the proposed method
exploits a novel sampling module capable of selecting a
predetermined number of frames from the whole video
sequence. With a substantially lower computational cost, the
algorithm removes temporal redundancy by selecting a set of
representative frames and achieves promising performance.
In [110], different frame sampling strategies were designed.
The findings of this study show that sparsely sampled video
frames can obtain a competitive performance against using
all video frames for quality estimation.

Apart from exploiting the temporal redundancy of the
video, other proposals also take advantage of the spatial
redundancy of the image, using regions of interest for
feature extraction or downsampled images. The NR-VQA
model proposed in [111] uses a systematic sampling of the
three spatiotemporal planes, and the one proposed in [112]
combines frame sampling strategy with a multi-resolution
patch sampling mechanism to maintain the high-resolution
quality information. The work done in [113] integrates
the fusion of temporal statistics of local and global image
features. Zoom-VQA [114] proposes an architecture to per-
ceive spatiotemporal features at different levels, efficiently
capturing both local and global information in regions of
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interest and in the whole frame. FAST-VQA [115] is based
on a video sampling scheme that preserves quality by
using fragments of the image rather than considering naive
sampling approaches such as resizing and cropping. Finally,
DOVER [116] proposes two independent quality evaluators
that use spatial downsampling and temporal sampling of
sparse frames to learn semantic and contextual information,
and sampled raw resolution patches to form fragments similar
to those introduced in FAST-VQA.

The strategies applied in these recent models bring benefits
and higher efficiency to state-of-the-art NR-VQA methods.
This is a good starting point to focus our work on reducing
the complexity of our hybrid NR-VQA assessment tool.

ill. METHODOLOGY

Video is a sequence of consecutive frames usually very
similar to each other (temporal redundancy). Within a frame,
a pixel also maintains a similarity with neighboring pixels
(spatial redundancy). In the same way that video encoders
use techniques based on spatial and temporal redundancy
to compress and reduce the amount of information in a
video signal, the proposed approaches to save computational
costs in quality estimation will also focus on exploring these
two types of redundancies. Processing smaller images and/or
processing a reduced number of images in a video sequence
can considerably decrease the computational cost.

A. TESTING TOOL

The measure used for quality estimation in this study is
the estimated MOS calculated using the hybrid NR-VQA
estimator from Video-MOS. Two main advantages made
this metric suitable for our objective: Firstly the solution
uses statistical descriptors of the video feed of both spatial
and temporal information, allowing redundancies in both
domains to be exploited. The other benefit of using the
MOS estimation from this particular software solution is
that Video-MOS has an agreement of collaboration with
Universidad Politécnica de Madrid as a research chair [117]
allowing for full access to the tool and on-demand changes to
its functioning for research purposes.

The solution used for this study is the Video-MOS
development tool. This tool includes all the functionalities of
the commercial version and offers the same results in terms
of feature extraction, MOS value estimation, and specific
distortion detection. The main difference between both tools
is that the development tool is built in Python instead of
C++. This means that the development tool is much less
computationally efficient than the commercial version, but
its ease of making quick changes when proposing different
approaches makes it the ideal tool for the study intended
in this work. And, of course, any improvements made to
the development tool will make it possible to improve the
commercial version as well.

Feature extraction in the Video-MOS SaaS solution
consists of a set of features that spatially and temporally
characterize a set of frames of a video sequence. The
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TABLE 1. Features used for the MOS estimation. Combination of video
metadata, NR video metrics and specific video distortions.

Type Parameters
Resolution

Frame rate

Scan type

Video codec

Bitrate

Bit depth

Chroma subsampling
Color space

Spatial Information
Temporal Information
Blurring

Brightness

Contrast

Ringing

Blockloss

Blocking

Block effect
Artifacts

Frame loss

Content loss

Signal loss

Bright frames

Dark frames
Freezing

Contrast High/Low
Saturation High/Low
Overexposure
Underexposure

Video metadata

NR video metrics

Specific video distortions

TABLE 2. Main characteristics of the HD format in DTT in Spain.

Parameter Value

Resolution 1920x1080

Aspect ratio 16:9

Frame Rate 25 frames-per-second
Scan Type Interlace

Chroma subsampling YCrCb 4:2:0, 8 bits
Colour Space ITU-R BT.709

Video encoding H.264/MPEG-4 AVC

solution uses a non-linear regression model based on
artificial intelligence to process a set of parameters from the
hybrid analysis of the video signal, with video metadata,
NR video metrics and specific video distortion detection. The
learning-based techniques estimate the numerical value of the
perceived video quality within the range of the MOS scale
according to the ITU-R BT.500 [7]. Table 1 lists some of the
parameters used for the quality estimation.

The quality estimation is done in user-defined measure-
ment intervals. However, for testing purposes, an interval
of 3-second measurements has been established. The tool
estimates the MOS value every three seconds using the
features extracted from the set of frames belonging to that
time interval of the video sequence.

B. TEST SEQUENCES

The set of test sequences is composed of 1123 3-second
measurements in HD format used on DTT (Digital Ter-
restrial Television) in Spain. Table 2 summarizes the main
characteristics of this format. The test set also includes
more than 84000 individual images corresponding to the
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1123 measurements. A frame rate of 25 frames per second
means 75 frames in a 3-second video measurement.

Contents have been obtained directly from the DTT
broadcasting using professional equipment, tuning two
DTT multiplex (RGE1 and RGE2) [118] where the public
broadcaster RTVE (Radiotelevision Espafiola) [119] offers its
television channels in Spain. The sequences contain a wide
variety of content, including pieces of news, sports, musicals,
documentaries, movies, and series. RTVE and Universidad
Politécnica de Madrid signed an agreement in the form of
a University Chair in 2015 [120]. The contents used in this
test have the explicit permission of RTVE for R&D activities
within this project.
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The test set has a great diversity in the type of content
it includes: synthetic content with the presence of graphics,
old black and white content, documentaries, indoor and
outdoor news, sports, series, and movies. Fig. 2 shows some
screenshots of the test video sequences.

The diversity of the sequences is also manifested in the
wide range of SI (Spatial Information) and TI (Temporal
Information). Fig. 3 depicts the SI-TI diagram of all
sequences. SI and TI values are calculated according to the
expressions in ITU-T Recommendation P.910 [6], edition 4.0
(November 2021). In terms of MOS value of the 1123 3-
second measurements obtained directly by the Video-MOS
SaasS tool in normal processing mode, there is also a variation
in the perceived video quality. Fig. 4 shows the histogram of
the MOS values.

Most of the sequences have a MOS value higher than 3
(Fair on the MOS scale). The mean MOS value among all
the sequences is 3.67, the maximum value is 4.75 and the
minimum value is 2.02. There is a set of 131 measurements
(11.67%) with a MOS value of less than 3. This information
is consistent with content broadcasted in DTT.
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TABLE 3. Test device specifications.

Resource Specification

Device MSI

Processor 12th Gen Intel(R) Core (TM) i7-
12700H 2.70 GHz

Installed RAM 32.0 GB (31.7 GB usable)

System type 64-bit operating system, x64-based
processor

Windows specifications Windows 11 Pro

TABLE 4. Feature extraction time per video metric.

Video metric Time (s)
Spatial Information 0.046365
Temporal Information 0.025019
Blurring 0.020148
Brightness 0.008143
Contrast 0.044653
Ringing 0.010312
Blockloss 0.156348
Blocking 0.232049
(All video metrics) 0.543037

C. TESTING DEVICE
The equipment used for the tests has the characteristics shown
in Table 3.

With this device, using the tool described in subsec-
tion III-A with the set of more than 84000 individual images
described in subsection III-B, the time it takes for the tool
to perform the feature extraction is 0.543 s on average, per
frame. The total time of the feature extraction in a 3-second
measurement would be approximately 40.73 s, a value far
from real-time processing.

Table 4 summarizes the time taken for the eight video
metrics implemented for the feature extraction. Fig. 5 depicts
the boxplot graphical representation with the same type of
information. Blockloss and Blocking video metrics consume
more than 71.5% of the time of all video metrics due to their
computational cost.

D. TEST PLANNING

Measuring the computational cost of a computer process is
not a simple task since many factors can change the perfor-
mance of the device: running background processes, battery
level, power savings options, memory level, temperature,
etc. In the different tests and graphs, the computational cost
information will not refer to the time but to the number
of pixels processed in an image or the number of images
processed in a 3-second measurement. Processing an image
involves the feature extraction of that image.

In image resolution, a computational cost of 100%
corresponds to processing the image at the original resolution
of 1920 x 1080. In the number of images per measurement,
a computational cost of 100% corresponds to processing
the 75 images of the 3-second measurement. To process a
960 x 540 image would imply a computational cost of 25%
(saving of 75%). To process 15 images per measurement
would imply a computational cost of 20% (saving of 80%).
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FIGURE 6. Graphical representation of the feature extraction time vs.
video resolution.

The main objective of this work is to find the best
approach that saves sufficient computational cost to allow the
Video-MOS development tool to run in real-time on the test
device, providing a MOS value estimation with the lowest
possible error. For real-time execution on the test device, the
computational cost must be below 7.37% and an acceptable
MOS error value would be below 0.15, that is, below 3%
due to a requirement set by content providers that use the
Video-MOS quality probe. In addition, the findings will help
to choose the approach that offers the best quality estimation
accuracy to efficiently reduce the computational cost of the
commercial solution if possible.

Section IV presents the results of applying different
approaches exploring both spatial and temporal redundancy.
For each approach, we provide the advantages, disadvan-
tages, information about the computational cost, and the
MOS error value obtained. Both values are obtained by
comparing the processing in normal mode (complete image
and all the images of the measurement) to each approach,
using the 1123 test measures. The MOS error value is given
in terms of mean absolute error (MAE).

Due to the time consumed in performing all the tests,
section V presents an extensive and complete validation of the
best approach using approximately 144 hours of audiovisual
content from the six main HD DTT channels in Spain. Finally,
section VI contains the main conclusions of this study.

IV. RESULTS

In this section we present the results obtained by applying
different strategies based on the spatial redundancy and
temporal redundancy of a video sequence. In the context of
our study, results are presented following the methodology
described in section III.

A. SPATIAL REDUNDANCY

The first set of approaches explores spatial redundancy by
decreasing the image size. The study of analyzing how the
feature extraction changes and how it affects the quality
estimation is necessary using smaller image sizes. The
proposed video resolutions maintain the 16:9 aspect ratio
of the original size: 1280 x 720, 960 x 540, 480 x 270,
640 x 360 and 320 x 180.
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TABLE 5. Time vs. Quality for the different interpolation methods of
OpenCV resize function.

Interpolation Type | Time (s) SSIM value
LINEAR 0.001519 0.921904
CUBIC 0.001617 0.925627
AREA 0.001882 0.900269
NEAREST 0.001372 0.900269
LANCZOS 0.002762 0.927619

Here we present two ideas: the first is to use a smaller
area of the original image, and the second is to change
the video resolution. For the second one, the OpenCV
library provides the resize function and different methods to
interpolate the pixel values: Linear, Cubic, Area, Nearest,
and Lanczos [121]. The Cubic interpolation method has
been the type chosen to make all the resolution changes.
This choice is based on the results obtained after testing the
different methods with all individual test images, seeking
a compromise between the resizing time and the quality
offered by each type of interpolation. The quality is measured
by the SSIM FR IQA [41]. This metric has been widely
used because of its simplicity and good results obtained in
comparative studies between different metrics [122], [123].
SSIM is based on measuring the similarities of luminance,
contrast, and structure between the reference and the distorted
image. The metric is correlated with the visual perception
of the HVS, and it is easily interpretable since the result of
the comparison is normalized from O to 1. A SSIM value
of 1 indicates a complete similarity between images, and
lower values imply more distortion or difference between
the images. Table 5 shows the results obtained for each
type of interpolation by doing a double resizing process to
480 %270 and to 1920 x 1080. SSIM calculation is performed
at 1920 x 1080 resolution, comparing the original image with
the one obtained after the two resizing processes.

The time taken to change the resolution to 480 x 270 for the
Cubic method, on average between all the images, is 1.617 ms
per image. The value is negligible when compared to the
0.543 s it takes for feature extraction per frame.

A significant reduction of the computational cost is
achieved by performing the feature extraction on smaller
images. Fig. 6 shows the feature extraction time according to
the image resolution. The trend of the graph depicts an almost
linear relationship between time and video resolution.

1) SPECIFIC AREA OF THE ORIGINAL IMAGE

The choice of which part of the image to use for quality
estimation is not a simple decision. One option would be to
use saliency detection to select the area of interest that would
attract the attention of the end-users. However, saliency
detection involves an additional and expensive computational
cost due to the use of models for object detection, bright
and contrasting area identification, motion estimation, and
optical flow. For this reason, this approach uses only the
central area of the image at different sizes for all proposed
video resolutions. In many cases, the center of the image
will contain the area of interest. Fig. 7 illustrates the graph
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FIGURE 7. Graphical representation of the computational cost vs. MOS
error in the central area of the original image approach.
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FIGURE 8. Graphical representation of the computational cost vs. MOS
error in change of resolution approach.

between the computational cost and the MOS error value
obtained for this approach selecting the central area of the
original image.

The findings show a clear conclusion: the larger the central
area, the lower the MOS error value. Selecting a specific
area implies not processing part of the image and therefore
not using that information in the quality estimation. If the
characteristics of the unprocessed portion of the image are
different from the characteristics of the central area, the
feature vector will change and affect the MOS estimation.
In terms of MOS error value, the approach does not offer good
results since the error is 0.3538 at 1280 x 720 resolution.

2) CHANGE OF RESOLUTION

A change of resolution implies a subsampling of the image
pixels. Although the information on the original image is
maintained in terms of pixel values, subsampling involves
a loss of high frequencies, blurring, a lower level of detail,
and a change in image structure and edge information. The
findings in terms of MOS error value are even worse than
the previous approach. Fig. 8 shows the graph between the
computational cost and the MOS error value for this approach
making a resolution change with the Cubic method. The error
is 0.5316 at 1280 x 720 resolution.

The analysis of the data shows considerable differences in
feature extraction information at different image sizes. Video
metrics that make use of edge information, high frequencies,
and 3 x 3 fixed-size filters, such as Sobel or Laplacian
operators, offer different features when the video resolution
changes. However, this fact does not occur in video metrics
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FIGURE 9. Graphical representation of the computational cost vs. MOS
error in uniform temporal sampling approach.

that use only pixel-value information, since the subsampling
process takes into account the value of all pixels of the
original image.

In our hybrid NR-VQA solution, there are three pixel-value
video metrics: Brightness, Contrast, and Temporal Infor-
mation. If the change of resolution is applied only to the
input images of these three metrics, keeping the original
video resolution for the rest of the metrics, the MOS error
value obtained is 0.0377 for 320 x 180 low resolution. For
960 x 540 and 480 x 270, the MOS errors are 0.0318 and
0.0395 respectively.

The time it takes now for feature extraction per frame using
original and low image resolution goes from 0.543 to 0.466 s.
The reduction of 77 ms per frame and a MOS error value
below 0.04 make it a valid approach.

B. TEMPORAL REDUNDANCY

The easiest way to exploit the temporal redundancy is to
apply a uniform temporal sampling and process only specific
frames. The proposed temporal sampling modes are: MOD2,
MODS5, MOD10, MOD15, MOD20, MOD25, MOD38, and
QO. In MODX, X represents the distance between two
consecutive processed images. Therefore, MOD15 indicates
that one image is processed every fifteen frames. Thus, in a
3-second measurement, only five images would be processed
with a computational cost for this mode of 6.68% of the
original cost. QO indicates that only the first frame of the
measurement is processed.

To maintain the correct performance of the solution,
unprocessed frames keep the same features as the last
processed one. This decision assumes that an unprocessed
frame is identical to the last processed. Another decision
taken is to always process the first frame of the measurement
to guarantee that at least one frame is processed in the 3-
second interval, regardless of the original frame rate.

With the idea of being able to use a longer uniform
temporal sampling, we propose two additional mechanisms
to force the processing of specific frames, by using the SSIM
FR metric and the frame type at the video encoding level.

1) UNIFORM TEMPORAL SAMPLING
In uniform temporal sampling, a fixed number of images
will always be processed depending on the selected mode.
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FIGURE 10. Graphical representation of the SSIM threshold value vs.
computational cost per each mode in uniform temporal sampling and
SSIM mechanism approach.

MODI15 always involves processing five images (assuming
the same frame rate at 25 fps) regardless of the characteristics
of the measurement and the variability between frames. For
some measurements, these five images may be enough, for
others, it may be either too many or too few depending
on the complexity of the measurement. However, the main
advantage of using a mode with a fixed number of images is
that, by selecting a mode that works in real-time, the solution
will always work in real-time since the computational cost
will never be exceeded.

Figure 9 represents the graph between the computational
cost and the MOS error value for the uniform temporal sam-
pling approach. The curve depicts a decreasing logarithmic
trend, where the MOS error decreases as the number of
processed images increases.

For this case, MOD15 would be the mode chosen in this
uniform temporal sampling approach since it is the mode
with the lowest MOS error value that would allow achieving
real-time. This mode would always process five images
per measurement. It implies a computational cost of 6.68%
(saving of 93.32%) with a MOS error of 0.1484.

2) UNIFORM TEMPORAL SAMPLING AND SSIM MECHANISM
This approach introduces the use of the SSIM mechanism
in the uniform temporal sampling solution. This metric
compares each image within the measurement with the
previous processed one, activating the feature extraction in
the frame if the difference is considerable. The idea with this
mechanism is to use longer temporal sampling that sets fewer
fixed frames and uses the SSIM metric to detect significant
changes between frames. The first frame of the measurement
is always processed, and the Temporal Information video
metric must be computed within the next frame to a processed
frame by the SSIM condition, since TI has to be computed
between two adjacent frames: if Temporal Information is not
computed, the change between frames would be maintained
in the consecutive frames.
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FIGURE 11. Graphical representation of the SSIM threshold value vs. MOS
error per each mode in uniform temporal sampling and SSIM mechanism
approach.
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FIGURE 12. Graphical representation of the computational cost vs. MOS
error in uniform temporal sampling and SSIM mechanism approach.

This approach has two drawbacks: the additional cost
of computing the SSIM on all images of the measurement
and the selection of a fixed SSIM threshold that determines
the level of similarity needed to discard computation of the
frames.

The test performed with all individual test images shows
a high SSIM cost that increases with the image size. For the
different resolutions, the SSIM temporal cost on average per
image is 290 ms at 1920 x 1080, 135 ms at 1280 x 720,
73 ms at 960 x 540, 32 ms at 640 x 360, 14 ms at 480 x
270 and 4.6 ms at 320 x 180. For the lowest video resolution,
SSIM cost is 4.6 ms, being 345 ms for the whole 3-second
measurement.

The SSIM threshold for change detection will determine
the number of images to be processed and thus affect the
computational cost of the approach. A low threshold will
allow the processing of a smaller number of images but
will only detect significant changes between images. On the
other hand, a high SSIM value would imply an excessive
computational cost in the approach. Fig. 10 and Fig. 11 show
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the results obtained from applying nine different SSIM values
from 0.1 to 0.9 for the eight uniform temporal sampling
modes, in terms of computational cost and MOS error values.
The SSIM threshold selected for the approach is 0.3 by seek-
ing a compromise between the computational cost and the
MOS error. In general terms, an SSIM value of 0.3 achieves
real-time performance and a MOS error below 0.15.

Figure 12 represents the graph between the computational
cost and the MOS error in the uniform temporal sampling
approach with the SSIM threshold at 0.3. The figure also
includes the uniform temporal sampling curve to establish
a reference. The approach with the SSIM mechanism offers
better results when the computational cost is greater than
7.15%.

The selected mode for this approach improving to uniform
temporal sampling solution is MOD25_SSIMO03 with a
computational cost of 7.33% (computational saving of
92.67%) and MOS error of 0.1392. However, although on
average the mode would allow real-time operation, the large
variation in the number of images processed per measurement
means that the mode is not valid in all situations, depending
on the complexity and variability of the sequence. The
number of images processed per measurement in this mode is
5.487 images on average, with a standard deviation of 6.1359.

MOD25_SSIMO03 would not work in real-time in 17.36%
of the test measurements because it would exceed the
computational cost. To ensure real-time in all measurements,
we propose MOD25_SSIMO3_LIM, a limited version of
MOD25_SSIMO03 which stops processing frames when the
maximum computational cost for real-time is reached, for
each 3-second measure. MOD25_SSIMO3_LIM implies a
computational cost of 4.94% (computational saving of
95.06%) with a MOS error value of 0.1577.

For the 17.36% of that set of measurements, where
the computational cost between MOD25_SSIMO03_LIM and
MOD15 is the same, the MOS errors obtained are 0.2194 and
0.1759 respectively.

In spite of the efforts, the several disadvantages of using
the SSIM mechanism and the additional cost of metric cal-
culation it carries, combined with the better results obtained
with MOD15 for a significant percentage of measurements,
make MOD25_SSIMO03_LIM not a feasible approach.

3) UNIFORM TEMPORAL SAMPLING AND FRAME TYPE
MECHANISM
This approach changes the SSIM mechanism for the frame
type at the video encoding level. H.264/AVC video encoders
(used in Spain in DTT HD broadcasted signal) use three types
of frames for the video coding: I (Intra), P (Predictive), and
B (Bi-directional). I frames are coded using only intra-frame
prediction and are used as references for P and B frames
prediction. P and B frames are coded using inter-frame
prediction. However, P frames use only past frames as
reference. B frames use both past and future frames.
H.264/AVC video encoders can use a static size or an
adaptive structure for the GOP (Group of Pictures) to encode
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FIGURE 14. Graphical representation of the computational cost vs. MOS
error in uniform temporal sampling and frame type mechanism approach.

the video. Adaptive GOP structure reacts better to scene
changes and large variations in consecutive frames when
generating predictions. In cases where a scene change is
detected, in adaptive GOPs structures, video encoders can
introduce an I frame [124], [125]. The assignment of the
frame type and the GOP size plays a very important role in the
encoding performance in terms of compression and quality.

Since I frames are often introduced in scene changes,
these frames can be associated with low temporal redundancy
instants. Similarly, P or B frames are intrinsically related
to low temporal information. Therefore, arguably, in a
generic situation, similar information can be obtained just
by looking into the GOP structure rather than computing the
SSIM algorithm. The idea of this approach is to focus the
computation effort only on I frames, assuming they will have
a lower SSIM value than P or B frames.

The reading of the metadata for obtaining the frame
type is instantaneous and does not involve any additional
computational cost. However, the main problem with the
approach would be the appearance of small GOPs in video
encoding. Too many I frames in a 3-second measurement
could exceed the maximum computational cost and the
approach would not work in real-time.

The frame type analysis in the 1123 test measurements
reveals that there is an average of 2.56 I frames, 15.96 P
frames, and 56.36 B frames per measurement. The average
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FIGURE 15. 2D Histogram of MOS values for test sequences: ground truth
vs. proposed final approach. Trend line fitted with Linear Regression. Bin
density is encoded using color.

of 2.56 I frames makes it possible to always try to process
all T frames over the 3-second interval. Fig. 13 represents
the GOP size distribution of the test set. For a total
of 2865 GOPs, 66.67% have the IBBBP structure, M=4 and
N=32. M indicates the distance between I and P frames or the
distance between two consecutive P frames. N indicates the
GOP size or the distance between two I frames.

The approach with frame type mechanism always pro-
cesses the first frame of the measurement. Similar to the
SSIM approach, the Temporal Information video metric is
also computed in the frame following an I frame, since
this frame type may indicate a change of scene. Fig. 14
shows the graph between the computational cost and the
MOS error value in the uniform temporal sampling approach
including the feature extraction also in the I frames. The graph
includes the uniform temporal sampling curve to establish the
reference.

The use of I frames in feature extraction improves the
results offered by the uniform temporal sampling approach
regardless of the computational cost. For the same number
of processed images, the use of I frames offers a lower MOS
error value. It is also possible to choose the longest temporal
sampling of the proposed ones. QO_I provides excellent
results with a computational cost of 4.70% and a MOS error
value of 0.1431.

QO0_I would not work in real-time for only the 0.53% of
the test measurements, a percentage much lower than the
obtained with the SSIM approach. To guarantee real-time also
in that set of measurements, we propose the mode QO0_I_LIM,
alimited version of QO_I. Q0_I_LIM implies a computational
cost of 4.68% with a MOS error of 0.1436.

Although for 100% of the measurements, the Q0_I_LIM
performance is much better than MOD15, it is true that for
that small set of 0.53% of the measurements, the results
offered by MODI15 are better than QO_I_LIM (MOS error
of 0.2283 vs. 0.3617 respectively).

C. SPATIAL AND TEMPORAL REDUNDANCY
Finally, we summarize the lessons learned from exploring
the spatial and temporal redundancies, and we combine
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TABLE 6. Computational cost and MOS error for each approach. 100% of
test measurements.

Approach Computational | Computational | MOS MAE
cost AVG (%) cost STD (%)

MODI15_SR 6.67 0.11 0.0864

QO_I_LIM_SR | 4.68 0.74 0.0924

TABLE 7. Computational cost and MOS error for each approach. 0.53% of
test measurements.

Approach Computational | Computational | MOS MAE
cost AVG (%) cost STD (%)

MODI15_SR 6.67 0 0.17

QO_I_LIM_SR | 6.67 0 0.1783

the approaches that provided the best results in the tests
performed.

Exploring the spatial redundancy of a video sequence,
we propose to process the pixel-value video metrics at 320 x
180 low resolution, keeping the original resolution for the
rest of the metrics. The processing time for Brightness,
Contrast, and Temporal Information video metrics at low
resolution is 1.21 ms per frame, that is 90.82 ms for a 3-
second measurement. On the other hand, there is a saving
of 77 ms per frame when processing these three metrics at
low resolution. Data show that it is worth processing the three
metrics in all frames at low resolution.

Exploring the temporal redundancy of a video sequence,
we see the need to maintain MOD15 and QO_I_LIM modes
to guarantee real-time performance in all measurements.
Although general findings show better performance of
QO_I_LIM, for complex sequences MODIS5 offers better
results.

Exploring both spatial and temporal redundancy of a
video sequence, we propose the modes MOD15_SR and
QO_I_LIM_SR which are a combination of the techniques
described above (SR in the name of the modes indicates
Spatial Redundancy). Table 6 and Table 7 illustrate the results
obtained for the complete set of the test sequences and for
the set of complex sequences representing 0.53% of all,
respectively. For the set of 0.53% of the measurements, both
approaches offer the same results in terms of computational
cost and MOS error. However, for the 100% of the mea-
surements, for similar MOS errors below 0.1, Q0_I_LIM_SR
implies much less computational cost than MOD15_SR.

QO_I_LIM_SR is our final proposal, an approach that
guarantees real-time in all measurements and achieves with
the test sequences a computational cost of 4.68% and a
MOS error value of 0.0924. Therefore, the computational
cost saving is 95.32% with a MOS error below 0.1. Fig. 15
shows the ground truth of our proposal with the results of the
solution in normal operation.

V. DISCUSSION AND VALIDATION

This section contains an exhaustive validation for the final
selected proposal: Q0_I_LIM_SR. To guarantee the correct
operation of this real-time approach in any possible scenario,
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we have used six public Spanish DTT contents of 24 hours
of duration from six of the most important HD channels
in Spain: Lal HD, La2 HD, Antena3 HD, Cuatro HD,
Telecinco HD and LaSexta HD. The 144 hours of audiovisual
content and the diversity, both in terms of type of content
(news, sports, musicals, documentaries, movies, series, etc.)
and broadcasters, ensure an extensive validation of the final
approach.

Figure 16 and Fig. 17 summarize the data analysis in terms
of the number of I frames per measurement and the GOP
size distribution for each content. The findings are similar to
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those obtained with the test sequences, which guarantees the
validity of the use of I frames in the final approach for real-
time operation. The most repeated GOP sizes are 32 images
on channels Lal HD, La2 HD, Antena3 HD and LaSexta HD;
and 24 images on channels Cuatro HD and Telecinco HD.
Furthermore, analysis of the data shows a clear predominance
of these GOP sizes depending on the channel. In terms of
percentage with respect to the total number of GOPs per
content, the GOP size of 32 images is repeated in 79% of
the GOPs of Lal HD, 77% of La2 HD, 72% of Antena3 HD
and 74% of LaSexta HD. In the same way, the GOP size of
24 images is repeated in 76% of the GOPs of Cuatro HD
and in 79% of Telecinco HD. These GOP sizes of 32 and
24 images guarantee an average of 2.34 and 3.13 I frames,
respectively, in a 3-second measurement of a DTT content.

In terms of computational cost and MOS error value,
grouping the contents of the six HD channels, for a
total of 174085 measurements, QO_I_LIM_SR involves a
computational cost of 5.04% (saving of 94.96%), with a
standard deviation of the computational cost of 0.86%, and a
MOS mean absolute error value of 0.1144. Fig. 18 represents
the ground truth of the approach with all the validation
measurements.

The promising results obtained in this validation with
more than 144 hours of varied DTT content demonstrate the
validity of the proposed solution with significant savings in
computational cost and accuracy in quality estimation, for
the NR-VQA model tested in our study, using both image
downsampling technique for some video metrics and uniform
temporal sampling technique with I frames. Due to the typical
GOP size characteristics of HD DTT channels in Spain,
our strategies are appropriate regardless the type of content,
channel and broadcaster.

VI. CONCLUSION

With the big social impact of DTT TV in some countries,
such as Spain, and the trend of increasing video IP traffic due
to the multitude of audiovisual content, streaming services,
social networks, and new consumption habits, the automatic
estimation of perceived quality has become an interesting
field of research. VQA has been studied for many years
and a wide variety of different techniques exist in the
literature. Discarded the subjective assessment for not being
valid for real-time applications because of their complex
methodologies and experiments with real observers, the NR
objective metrics would be the most promising alternative
for perceived quality estimation in real-time video streaming
applications in the absence of the reference in most of the
cases.

A complete revision of different models has been done
in this paper, from traditional techniques to the most recent
learning-based and deep-learning approaches. There are
many challenges in NR-VQA with the emergence of new
types of audiovisual content and the need to optimize the
computational cost of the models due to the promising new
audiovisual formats which involve much more information.
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Motivated by all this, we have presented in this paper a
proposal for computational cost reduction in video processing
for QoE estimation, making use of the Video-MOS quality
probe. The proposal can also be applied to other IQA/VQA
measurement proposals. After exploring spatial and temporal
redundancy with the objective of processing smaller images
and/or a smaller number of images per measurement, the
proposed final approach combines the video metrics feature
extraction at both high and low video resolution along with
a specific selection of frames based on a uniform temporal
sampling and I frames. The test results for the final approach
using 1123 measurements of HD content of DTT in Spain
indicate a computational cost of 4.68% (computational cost
saving of 95.32%) and MOS error value of 0.0924. The
solution guarantees real-time operation on the test machine
regardless of the complexity of the measurement.

The exhaustive validation of the proposed approach with
more than 144 hours of video from six of the most important
HD channels of DTT in Spain ensures the validity of the
solution with the use of I frames, thanks to the typical GOP
sizes used in H.264/AVC video encoding for HD content
on DTT. For the more than 174000 3-second measurements
used for the validation, the proposed approach involves a
computational cost of 5.04% (cost saving of 94.96%) and a
MOS mean absolute error value of 0.1144.

We believe that very promising findings have been
obtained in this study, with significant savings in computa-
tional cost while maintaining high accuracy in MOS value
estimation. Future research will address the use of new
audiovisual formats, such as 4K and 8K video resolution
and HFR (High Frame Rate) technology involving a higher
number of images per second, that allows real-time operation
in the commercial Video-MOS SaaS solution.
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