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ABSTRACT The emergence of microservice architecture has brought significant advancements in software
development, offering improved scalability and availability of applications. Cloud computing benefits
from microservice architecture by mitigating the risks of single failures and ensuring compliance with
service-level agreements. However, using microservice architecture presents two challenges: 1) managing
network traffic, which leads to latency and network congestion; and 2) inefficient resource allocation
for microservices. Current approaches have limitations in addressing these challenges. To overcome
these limitations, we propose a novel scheduling strategy that schedules microservice replicas using a
modified particle swarm optimization algorithm to place them on the most suitable physical machine.
Additionally, we balance the load across physical machines in the cluster using a simple round-robin
algorithm. Furthermore, our scheduling strategy integrates with Kubernetes to tackle resource allocation and
deployment challenges. The proposed strategy has been evaluated by simulating two scenarios using Alibaba
and Google datasets. The experimental results demonstrate the effectiveness of our strategy in reducing
traffic, balancing load, and utilizing CPU and memory efficiently.

INDEX TERMS Microservice, network traffic cost, PSO, resource utilization, Alibaba, VM, container,
scheduling strategy.

I. INTRODUCTION
Cloud computing has emerged as a cornerstone of the

demonstrated efficient resource management by allowing
resource sharing between jobs arriving in the cloud. It is

global economy. Cloud providers such as Google Cloud,
Amazon ECS, and IBM Cloud are expanding worldwide.
These platforms offer users access to on-demand services
anytime and from anywhere. These cloud providers are
responsible for ensuring the quality of services (QoS) for their
customers, which include factors like availability, throughput,
and reliability [1].

Virtualization technology has played a crucial role in
addressing the service demands of cloud computing. It has
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a tool for managing multi-tenant services to run on shared
physical machines (PMs) [2]. It increases resource utilization,
which reflects on the cost of the services [3]. Moreover,
it ensures service isolation, enhances security, and meets
user expectations. Hypervisors and containers are the two
most common types of virtualization [2]. Hypervisor-based
virtualization isolates each virtual machine (VM) with a
limited number of resources from the host and its operating
system. Container-based virtualization, on the other hand,
allows containers to share all of the host’s resources [2], [4].

VMs allow resources to be allocated, utilized, and
shared by applications deployed in the cloud. In terms of
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building services (applications) on the cloud, there are two
distinct methodologies: monoliths and microservices. The
monolithic approach is to build all application tasks at once.
However, the microservices approach involves constructing
the applications as small dependent tasks that can function
independently [5]. Recently, microservices have gained the
attention of most businesses because of their simplified
debugging, deployment, maintenance, scalability, and high-
performance output. Studies such as [1] and [6] explore
the role of microservices architecture in cloud computing,
focusing on scalability and performance bottlenecks. They
also highlight potential challenges, including organizational
transformation, service decomposition, distributed monitor-
ing, and bug localization.

The architecture of microservices plays a crucial role in
increasing the availability ratio of the services using the
replica method [7], [8]. Multiple replicas of each service are
deployed across the cloud resources [7]. Moreover, it also
improves service resilience in the cloud environment by
preventing the failure of a single service from causing the
entire system to fail [7]. However, building applications
as tiny services that are dependent on each other requires
frequent communication between them. This communication
between microservices can occur either through local I/O or
the network. Various communication approaches, including
HTTP protocol, APIs [1], RPC, and RESTful APIs, are
utilized to manage the high volume of network traffic
between microservices [1].

Another critical aspect of microservices is scalability. Scal-
ing and auto-scaling microservices are the two techniques that
are widely used in data centers to enhance the availability of
services. Research studies, such as [9], [10], and [11], attempt
to address the issues of service unavailability due to the
high volume of requests using different scaling techniques.
Similarly, studies like [12] and [13] utilize scaling techniques
to reduce end-to-end latency.

The communication between microservices and their
scalability increases network overhead. Therefore, effective
network traffic management becomes a critical aspect of
microservice architecture. In this paper, we propose a novel
scheduling strategy that reduces network traffic by using a
scalable approach to deploy replicas of microservices near
their neighboring services. Our scheduling strategy, based
on modified Swarm Particle Optimization (SPO), replicates
microservices near their dependencies. Our approach aims to
minimize network traffic, latency, and the risk of single points
of failure. In addition, it aims to enhance load balancing,
improve application performance, and increase availability.
The key contributions of this article are:

1) Proposing a novel scheduler that reduces the usage
of network traffic using scaling microservice replicas.
The proposed scheduler identifies optimal solutions for
selecting new hosts (PMs) for microservice replicas.
The selection process is driven not just by minimizing
network traffic costs but also by maximizing system
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resilience. The proposed scheduler aims to identify
PMs with the best fitness for replicating microservices.

2) To optimize load balancing, we propose a modified
round-robin (RR) algorithm to significantly enhance
cloud performance and reduce latency and resource
contentions.

3) Proposing a plug-in tool that seamlessly integrates
with Kubernetes. It enables the efficient initiation of
microservice replications and the intelligent routing of
network traffic towards the nearest microservices and
their dependent components. We use call graph repre-
sentation to analyze microservices architecture, which
enriches our research by characterizing microservices,
including microservices topology, different types of
microservices, various communication paradigms, and
the quality of deploying microservices.

The current research on scheduling microservices aims to
tackle issues such as execution time, cost, and resource allo-
cation. However, issues such as latency reduction and fault
tolerance that affect reliability are important, as described
in Section II. We identify this gap and propose a novel
approach that minimizes network latency and enhances fault
tolerance and load balancing. Our research aims to address
these reliability challenges and improve overall system
availability and performance by replicating microservices
close to their dependents with the help of the Kubernetes
plugin.

The rest of the paper is organized as follows: We introduce
the background of the technologies of microservices in
Section II. The discussion of the related work is presented
in Section III. We present our proposed scheduling strategy
in Section IV. The problem formulation and assumptions are
explained in Section V. The experimental setup and metrics
used for evaluating the proposed strategy are presented in
Section VI. The comparison between our proposed strategy
and the baseline strategies is conducted in Section VII. The
experimental results are discussed in Section VIII. Finally,
we conclude our study in Section IX.

Il. BACKGROUND

In this section, we briefly introduce the microservices
architecture, Kubernetes, and Docker Swarm. Our focus here
is to explain their container deployment and configuration.

A. MICROSERVICES ARCHITECTURE
In a monolithic architecture, updates or modifications to
one component can have a significant impact on other
components. It requires redeveloping and redeploying the
applications. In addition, as the application is deployed as a
single unit into a single container, this limits the flexibility
of scaling resources. Furthermore, any increase in the size
and complexity of the application increases the challenge of
meeting the requirements of resources [14].

On the other hand, a microservices architecture builds
and deploys applications as lightweight and loosely cou-
pled components. These components run in containers.
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FIGURE 1. Call graph depicting the relationships between different types
of microservices. This graph also highlights the various types of
microservices and the types of connections between them, providing a
visual representation of the system architecture.

We refer to ‘“microservices” as the components run-
ning separately in containers. Therefore, a microservices
architecture provides the ability to update and modify
each microservice independently without affecting others.
Furthermore, as each microservice deploys and provisions
different resources, it improves the modularity, scalability,
efficiency of resource utilization, and performance of the
application [14].

There are two main types of graphs for representing
microservices topology: call graphs (CG) and directed
acyclic graphs (DAG). As the main objective of using the
graph is solely to trace dependencies between microser-
vices, we employ the call graph to represent the interac-
tions between tasks represented by microservices. In [15],
a call graph was introduced to analyze microservice
interactions within Alibaba’s data centre. The call graph
illustrates the frequency of these interactions and their
performance implications, representing microservices and
their communication patterns. Additionally, it categorizes
the types of communication observed within the system,
as shown in Figure 1. The topology of microservices
is represented as a directed graph G, which consists of
vertices and edges G = {V, E}, where vertices represent
microservices and edges represent communications between
them.

Two functional types of services can be run by microser-
vices: stateless and stateful. Stateless microservices do not
affect data, while stateful microservices interact with data,
such as databases and Memcached, as shown in Figure 1.

A variety of communication paradigms are used in
data centers, such as remote procedure calls (RPC) and
RESTful APIs. These communication paradigms enable
microservices to communicate frequently and efficiently.
Streaming communication between microservices typi-
cally involves three types of microservices: the entry
microservice (EM), the downstream microservice (DM),
and the upstream microservice (UM). EM communicates
with the user, while the DM and UM require back-end
communication [15].
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FIGURE 2. Cluster architecture created by Kubernetes. Nodes A and B
represent two separate worker nodes in the cluster, each one with a
limited number of pods.

B. KUBERNETES

Kubernetes is an open-source platform used for container
orchestration [16]. It manages the deployment of containers,
load balancing, scaling, and their communication, making it
an ideal platform for managing microservices. In Kubernetes,
a cluster is a group of nodes consisting of a master node
and worker nodes. The master node consists of various
components that manage worker nodes in the cluster,
including Kubelet, which plays a crucial role in managing
containers on each node.

Each node contains multiple pods, each pod hosting a
microservice container that utilizes the resources of the
physical machine (PM). Additionally, Kube-proxy is a
component located in each node that is responsible for
managing communication between containers and the master
node. The API server is another crucial component that
serves as a user interface for accessing the Kubernetes cluster.
Figure 2 illustrates the infrastructure of Kubernetes.

C. DOCKER SWARM

Docker Swarm is part of the Docker ecosystem that clusters
nodes, which is a cluster orchestration tool. It ensures
the reliability and maintainability of microservices during
their distribution to containers. It consists of two types
of nodes: manager nodes and worker nodes. The manager
node schedules the workload and balances the load between
workers. The worker nodes run the services in the containers
and pull images of applications that run the container using
the Docker daemon as shown in Figure 3. Docker Swarm does
not monitor resource utilization but instead works with other
tools in the Docker ecosystem to build, manage, and scale the
cluster workload [17].

IIl. RELATED STUDY

We now discuss current research proposed to enhance
resource utilization and reduce network traffic costs. Recent
studies, such as [18], [19], and [20], aim to improve metrics
like makespan, reliability, delay, and resource access using
the Johnson sequencing method, Shortest Gap-Priority-Based
Fair Scheduling (SG-PBFES), and priority-based fair schedul-
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FIGURE 3. A cluster with Docker orchestration and its communication
between manager nodes and worker nodes.

ing (PBES), respectively. These algorithms contribute to the
development of robust resource management frameworks
that enhance resource utilization. In our research, we aim to
further improve the availability of microservices and ensure
efficient resource utilization.

A multi-objective approach using particle swarm opti-
mization was proposed in [21]. The proposed approach
for scheduling employed a hybrid multi-objective particle
swarm optimization (HPSO) algorithm. The objective was to
optimize the scheduling of multiple tasks with dependencies
as scientific workflows to be distributed on cloud or grid
environments. The proposed algorithm integrated PSO with
multi-objective optimization techniques to address con-
flicting objectives such as minimizing makespan, resource
utilization, and workflow execution costs. By leveraging
PSO’s ability to explore the search space efficiently and
balancing multiple objectives, the proposed algorithm aims
to enhance cloud performance. Several other studies explore
multi-objective optimization for workflow scheduling in
cloud computing, such as [22], [23], [24], [25], [26], and [27].
They aim to address various challenges and objectives
summarized in Table 1.

Several proposed approaches, including a specialized
scheduling algorithm based on particle swarm optimization
(PSO-DS) [28], directional and non-local-convergent particle
swarm optimization (DNCPSO) [29], an adaptive elite-based
particle swarm optimization (NAEB-PSO) [30], and a multi-
objective particle swarm optimization (MSMOOA) [31],
utilize and improve modified particle swarm optimization
methods. They aim to enhance PSO’s performance in
workflow scheduling. Certain objectives, such as local
optimization and the optimal solution, were targeted by
those studies. However, these approaches focus on optimizing
execution time and cost, neglecting the reliability aspect of
workflow execution.

To the best of our knowledge, all current research studies
on multi-objective algorithms have been presented, and we
observed that none of them considers essential factors such
as resource utilization, latency, load balancing, and fault
tolerance. Studies like [21] and [31] aim to reduce the cost
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of running time, makespan, and mandatory costs, including
monetary expenses. However, the factors attempted to be
optimized are affected by latency, resource utilization, and
fault tolerance.

An analysis of large-scale microservices deployment in
the cloud was conducted in [15]. The study investigated
the topology of microservices in a production cluster at the
Alibaba data center, represented as a call graph. The study
first characterized the dependencies between microservices
and their performance to gain a deep understanding of
the scheduling process and resource utilization in the
cluster. Then, a learning algorithm was proposed to cluster
the graph into several classes, which provided a better
understanding of the microservices structure. This method
generated new benchmarks by optimizing the performance of
large-scale microservices. The study suggested that reducing
dependencies between microservices improves performance.

A runtime deployment solution called Nautilus was
proposed in [32] to optimize microservice deployment in
a cloud-edge continuum environment. It proposed to use
a mapper that deploys microservices at the same nodes to
reduce the overhead of network usage. Nautilus consists of
a resource manager and a load-aware scheduler to enhance
resource utilization and maintain quality of service (QoS).
Nautilus considers tasks to use external I/O; therefore,
it proposed an I/O-sensitive scheduler that migrates critical
microservices to idle nodes. The experimental results showed
that Nautilus reduced resource utilization (CPU) by 23.9%
and network usage by 53.4% compared to standard resource
management technologies.

The microservice-oriented topology-aware scheduling
framework (MOTAS) was proposed in [33]. It aimed to
reduce network traffic and improve resource utilization for
the microservice architecture. The framework employs two
main strategies to achieve its goals. First, it partitions the
microservices graph into two sub-partitions based on depen-
dencies using a hierarchical traversal approach. The schedul-
ing strategy aims to ensure that dependent microservices are
deployed before their independent microservices. Second,
it eliminates nodes that violate resource balance provisions to
reduce resource fragmentation. During deployment, MOTAS
considers three objectives: reducing resource fragmentation,
minimizing network traffic costs, and balancing workloads
across nodes. The experimental results demonstrated that
the framework successfully achieved the proposed goals.
However, the scale of the experiment did not align with real-
world cloud environments. Therefore, the authors suggested
further investigation in future research.

A strategy was proposed in [34] to optimize network
utilization using machine learning models. The machine
learning model collaborates between nodes in the edge
network and the cloud platform. The network architecture
is divided into three layers: access nodes located on the
edge network, the transfer network connecting the edge to
the cloud, and the cloud platform. Two prediction models
work together to predict upcoming network usage. The first
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model aims to optimize incoming network utilization for
each node. The second model uses prediction data from each
access node and the current network utilization to predict
upcoming network usage. The proposed algorithm predicts
and enhances resource utilization based on predictions and
network traffic. The experimental results showed that the
proposed strategy enhances the prediction of network traffic
by 9% compared to single-point traffic prediction. The
experimental results also showed an increase in resource
utilization.

The study in [35] suggested that Kubernetes has limitations
in measuring the requirements of scheduled microservices
because it does not consider runtime resource utilization.
The authors also suggested that the limitations of metrics
used during scheduling microservices to containers limit
Kubernetes from satisfying the requirements of microser-
vices. Additionally, Kubernetes only empowers the CPU
and memory metrics during scheduling. It does not consider
network communication requirements, which affect node-to-
node latency. Therefore, the study proposed a modification
in Kubernetes to consider the network requirements between
nodes, application topology, and runtime resource utilization.
The proposed modification works as an extension of the
default Kubernetes. The study reported that these metrics
enhance the quality of Kubernetes scheduling results.

The existing studies in the literature propose valuable
optimization solutions for enhancing resource allocation and
balancing the load. However, a few gaps are identified.
Firstly, network traffic and latency are the aspects that
affect cloud performance, yet they have not been considered
efficiently. Secondly, microservice replication contributes
to resiliency. Therefore, there is a need to consider fault
tolerance using replication. The existing studies primarily
focus on execution time and mandatory costs (monetary
expenses), which are indeed important factors. However,
resource utilization, network traffic costs, load balancing, and
latency directly impact makespan and other associated costs.
Table 1 provides an overview of current studies, highlighting
their methodology, key contributions, and evaluation criteria.

IV. PROPOSED SCHEDULING STRATEGY

We aim to replicate microservices close to their neighbours
while considering resource utilization. This approach reduces
communication between dependent microservices and mini-
mizes latency. Additionally, our strategy ensures that critical
services are not co-located on the same PMs. This step
reduces the risk of a single point of failure. The most suitable
PMs to host microservice replicas are carefully selected
by our strategy, taking into account resource utilization
thresholds.

Our proposed scheduling strategy involves replication,
which is specifically designed to meet the demands of
microservice architectures. It aims to improve the underlying
infrastructure and performance of the system. Our approach
enhances the load balancing of PMs used to run microservices
in a data center. It improves the deployment of replicas and
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FIGURE 4. The components of our proposed scheduling strategy and its
workflow. The components work sequentially to ensure the efficient and
effective placement of microservice replicas in the cloud platform,
making the overall system resilient and available at all times.

manages the quality of service (QoS) and tolerance for fail-
ures. Additionally, our approach benefits the cloud platform
by reducing network traffic and increasing the availability,
reliability, and resilience of the deployed systems.

A. SCHEDULING STRATEGY ARCHITECTURE

In this subsection, we provide an overview of the proposed
architecture of the scheduling strategy and demonstrate
the collaboration between its components. As illustrated in
Figure 4, our scheduling strategy consists of six components.
The following highlights the components:

B. RESOURCE AND COMMUNICATION DATA COLLECTOR
It is responsible for collecting data for both resource
utilization and microservice resource requirements. It also
collects data on microservice communications. The data is
then used by other components to decide the placement of
microservice replicas. We have used historical data traces
that describe the production cluster in data centers [15],
[36], and [37] to simulate the cluster status and consider
potential scheduling circumstances. However, the component
can collect utilization resource data by using the Alibaba and
Google Cloud Config services [37], [38].

C. PSO POPULATION GENERATOR

This component generates two populations. The first one
represents a swarm of particles, which is the requirement of
resources for each microservice. The second generation of
data represents the resource availability of the potential PMs.

D. MODIFIED PSO

We aim to propose a scheduler based on population-based
optimization, utilizing the Particle Swarm Optimization
(PSO) algorithm. PSO is based on simulating a swarm of
bees exploring the solution space and finding the optimal
solution [39], [40]. However, our strategy involves a modified
PSO. It guides each particle throughout the entire solution
space. Therefore, we modified PSO as follows:
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TABLE 1. A comprehensive overview of current research in microservices deployment optimization highlighting their objectives, focus, employed
methodology and key contributions.

g
8 0
= 3 Lﬁj >
= g 5 2 o
8 = - S g g
3 ) ) = 2
o b=l ) = - 9
8 g 3 g 8 s
Study Focus Methodology Key Contributions &~ — | = @] =
[15] Microservice topology | Characterizing and analysing | Clustering algorithm for under- | X X X X X X
analysis microservice dependencies and | standing microservice structure
performance
[22] Optimization of multi- | Evolutionary algorithms forex- | Addressing conflicting objec- | X X X X v v
objective scheduling | ploring the solution space and | tives such as execution time, to-
problems in grid finding Pareto optimal solu- | tal cost, reliability, and energy
tions consumption
[23] Generating Pareto optimal | Extending the Non-dominated | Trade-offs between objectives | X X X v v v
solutions Sorting Genetic Algorithm II | and finding the optimal solu-
(NSGA-II) tion for all objectives
[24] Heuristics scheduling al- | Approximating the optimal | Trade-off between execution | X X X v v v
gorithms for workflow solution of scheduling based | time and reliability objectives
on user-defined constraints for
each objective
[25] Task scheduling Bi-objective dynamic level | Prioritizing execution time | X X X v v v
scheduling algorithm and the | against reliability
bi-objective genetic algorithm
[26] Executing large programs | Pareto dominance to map more | Utilizing Pareto dominance to | X X X v v v
in the cloud efficiently and reduce the cost | schedule the application to the
for non-critical task cloud, considering time and
cost
[27] Muily objective schedul- | Fuzzy-based mechanisms us- | PSO generating optimal solu- | X X X v v v
ing using PSO algorithm ing PSO tions using Pareto to optimize
makespan, cost and reliability
[28] Strategic tasks scheduling | Addressing  the  discrete | Reducing the makespan and | X X X X v v
method scheduling problem using | within limited budget
integer representation
[29] Obtaining the optimum | Non-linear inertia weight with | Utilizing modified parameters | X X X X v v
scheduling result a meta-heuristic algorithm | of PSO in D dimensions for
within the directional search | faster convergence and to re-
process duce makespan and total re-
source cost
[30] Multi-objectives schedul- | Utilizing adaptive elite-based | Balanced load resulting in uti- | X v X X v v
ing algorithm particle swarm optimization | lizing the resources efficiently
(NAEB-PSO)
[31] Multi-objectives schedul- | partitioning the PMs into dif- | Utilizing a multi-swarm X v X X v v
ing algorithm ferent swarms and scheduling | mechanism and modifying the
them based on distinct ob- | method of updating particles’
jectives. Sharing information | velocity in the PSO
among swarms during schedul-
ing helps find non-dominated
solutions
[32] Microservices deployment | Nautilus runtime deployment | Reduction in CPU usage and | v v X X X X
in cloud-edge continuum scheduling network bandwidth compared
to traditional approaches
[33] Microservices topology- | Partitioning microservices | Resource fragmentation reduc- | v v X X X X
aware scheduling graph based on dependencies tion, minimized network traffic
costs, workload balancing
[34] Edge-cloud network uti- | Resource allocation using | Enhanced network traffic pre- | v X X X X X
lization optimization collaborative machine learning | diction and resource utilization
prediction
[35] Kubernetes limitations Modification of Kubernetes us- | Consideration of network com- | X X X X X X
ing network traffic metric munication and runtime re-
source utilization
1) For each PM, we group dependent microservices For instance, consider a PM denoted as PM,, hosting

2)

3)
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located in different PMs into one swarm.

Neighboring PMs for each PM are grouped, forming

targets for the particles.

Swarm each group of particles towards their respective

targets.

a set of microservices Mj, which depend on a set of
microservices M, distributed across different PMs. In this
scenario, M, forms a swarm of particles labelled as Swyyz.
Additionally, neighbouring PMs of PM_, sharing the same
pod in the data center and having the shortest network path to
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FIGURE 5. The particle swarm approach is used to find the best replica placement
for microservices in a data center. Each particle in the swarm represents the best
solution for the replica, and its position in the space corresponds to the resource
requirements of the replica using the round-robin algorithm (RR). The viable
solutions, representing available resources in PMs, are also depicted in the space.
The swarm moves towards viable solutions, guided by a combination of individual

and social factors.

PM_., are formed as the target for Swys>. This group of targets
is denoted as trpy, . The algorithm swarms Swyy, towards the
target trpyy, .

Instead of directing each particle towards the entire
solution space, our modified PSO directs a group of particles
towards a group of targets. Each target group contributes
to reducing dependencies between dependent microservices.
While the obvious optimum solution for each particle is
to replicate the same PM of its dependent microservice,
this approach degrades system reliability by increasing the
probability of a single failure. Therefore, the group of
targets should include all PMs close to PM., meaning those
sharing the same pod in the data center and having the
shortest network path to PM,.. PSO then find the optimal
solutions of targets to be utilized in the next component
of our strategy, which require modified RR as shown
in Figure 5.

E. MODIFIED ROUND ROBIN ALGORITHM

It is used to schedule replicas across the potential PMs,
taking into account their load balancing. Once the modified
PSO determines the optimal PMs, the Round Robin (RR)
algorithm then places the microservice replicas into those
PMs. RR is used to fulfil the requirement of load balancing
in our strategy. The combination of modified PSO and RR
algorithms ensures the efficient and effective placement of
microservice replicas.
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F. CONTAINER DEPLOYMENT MANAGER

It manages the deployment of replicas to selected PMs
identified by the modified PSO and RR algorithms. The
component receives the output from the modified PSO
and RR algorithms, such as the number of replicas and
the resource requirements for each replica, as well as the
available resources of the target PMs. It then configures the
deployment for each microservice in YAML or JSON format
and hands them over to Kubernetes to deploy containers
that run the microservices. Furthermore, the component
configures the communication between microservices by
setting up network policies and configuring service discovery
in Kubernetes.

G. QUALITY OF SERVICE (Q0S) MANAGEMENT

This component is responsible for ensuring that all QoS
requirements are met during the deployment process.
It includes the minimization of the risk of intensive resource
utilization. It also manages the resource threshold for each
PM, monitors for single system failures, and reports any
violation of the service level agreement (SLA).

V. KEY ASSUMPTIONS OF THE PROPOSED SCHEDULING
STRATEGY

We believe that many of our assumptions would apply
to any data centers around the world. However, for this
research, we used traces made public by the Alibaba and
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Google data centers. It was assumed that the physical
machines (PMs) used in the data centers have heterogeneous
capacities. We also assume that each cluster in the data
center has a limited number of PMs, represented as a set
pm={pmy,pm;....pm,}. Additionally, we assume that each
PM has limited resources with a capacity of C. Each resource
type is represented as PM.={pmcpy.pMmem.pMio}, Where
cpu, mem, and io subscripts represent CPU, memory, and I/O
capacities in each PM, respectively.

We also assume that an application A is built using a
microservice architecture and consists of microservices. Each
microservice is represented by a loose task or function. The
application A consists of a limited number of microservices:
A = my,my,...,ms where the subscript represents the
identity of the microservices. We assume Kubernetes is used
to manage a cluster of applications, and it allocates each
microservice to a pod in the cluster. Therefore, a cluster K
consists of a limited number of pods p as: Ki={p1,p1,...,Pk}
where k represents the number of pods. Kubernetes is also
responsible for managing the routing between microservices
in the cluster. As our scheduling strategy is based on
microservice replicas, we assume that Kubernetes manages
the startup communication between replicas and reroutes traf-
fic between the same replicas in case one of them fails, as sug-
gested in [41]. As presented in Figure 2, every microservice
runs in a container that is allocated in a pod within a cluster.

Additionally, the network architecture is considered to be
a fat-tree topology. This topology is popular in data centers
as it provides a data center with high bandwidth and multiple
paths, increasing the efficiency of communication between
data center nodes [42], [43], [44]. Finally, the communication
bandwidth is considered to be heterogeneous in the data
center.

Before describing the components of the proposed
scheduling strategy, it is emphasized that our proposed
scheduling strategy does not involve scheduling new
microservices into the cluster. Instead, we aim to enhance
the network traffic of existing scheduled microservices in
the data center by using a replication scheduling strategy.
We also assume that each pod is located in a different zone
that requires inter-communication.

A. PROPOSED SCHEDULING STRATEGY FORMULATION
The proposed strategy aims to optimize network traffic
in the data centers by scheduling replicated microservices
close to their dependents. In addition, building upon the six
components outlined earlier, our strategy aims to enhance
system availability and resilience. It also balances the load
across potential PMs. We will explain how these components
collaborate to achieve the objectives. In addition, Table 2
illustrates the notations.

1) RESOURCE AND COMMUNICATION DATA COLLECTOR
MODEL

We model each physical machine in the cluster as a node N.
Each cluster consists of a limited number of nodes. Each node
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TABLE 2. List of notations.

Notation Meaning

N Node representing a physical machine in the cluster
NCepu Maximum CPU resource capacity of a node

NCem Maximum memory resource capacity of a node

NC;, Maximum I/O resource capacity of a node

R Number of containers occupying a node

U(r) Total resource utilization by all containers at time ¢
Uepu (1) CPU resource utilization at time ¢

Upem (1) Memory resource utilization at time ¢

Uio (1) /O resource utilization at time ¢

d Number of dependencies for a container

pbep Best position for the cognitive component in dimension D
pbe.p Best position for the swarm in dimension D

pb:.p Best position for the target component in dimension D
veleognitive Velocity component influenced by cognitive component
velsocial Velocity component influenced by social component
veliarger Velocity component influenced by target component
c1,C2,C3 Constants for cognitive, social, and target

rdomy 24,43 ~ Random numbers between 0 and 1

w Inertia weight controlling the influence of previous velocity
SP,) Swarm population for node N,

Xid Resource demand of CPU for dependent microservice d
Yid Resource demand of memory for dependent microservice d
Xyi Initial position vector for particles in the swarm

pbest Best position for an individual particle in the swarm

gbest Best position for the entire swarm

target viable solution for particles in the swarm

L, List of replicas to be scheduled

Lpm List of eligible PMs that can host replicas

NF cpu CPU resource availability of a potential PM

NF jpem Memory resource availability of a potential PM

U, Upper threshold constraint on PMs to maintain SLA

dep; j, Number of hops between source and destination nodes

S Set of viable solutions

f(x) Fitness function for evaluating positions of particles

Nprt Number of particles in the swarm

Number of dimensions in the search space

has maximum resource capacities denoted as NCpy, NCpem,
and NC;j, for CPU, memory, and I/O, respectively. Each node
is occupied by R containers that require an elastic amount of
resources. As the utilization of the resources by the containers
varies, we consider the maximum utilization of each resource
in a fixed time interval ¢. Therefore, the total utilization by all
containers in a fixed time interval U(¢) can be described by
the following equations:

Ucpu(t) =
epult) NCopr
2 R—] U; mem(t)
Unem(t) = = =—"——
mem( ) Ncmem
> R_l Ui,io(1)
Up(t) = ==—"— 1
io(t) NC,, (D

Furthermore, we take into account the dependencies
between the microservices using a call graph. Each node has
R containers with d dependencies. Each node has its own call
graph that represents the dependencies between its dependent
microservices as shown in Figure 6. Kubernetes can collect
microservice dependencies by utilizing microservice mani-
fest files [45]. However, a dataset of microservice call graphs
was reported to be used in experiments [15]. Therefore, this
component aims to collect data on dependencies between
nodes using Kubernetes.
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FIGURE 6. The call graph of PMs shows dependencies between hosted
microservices allocated to PMs. The hosted microservices depend on
other microservices located in other PMs, which are called dependent
microservices. Each PM in the cluster has its call graph that consists of
hosted and dependent microservices.

2) PSO POPULATION GENERATOR MODEL

We modified the particle swarm optimization (PSO) algo-
rithm to optimize the allocation of microservice replicas to
the most suitable PM. The initial population of the PSO
algorithm consists of a swarm of particles, with each particle
representing a vector of resource demands for a microservice.
Two resources are considered in this research: CPU and
memory.

For each node N in the data center, a swarm population is
created based on two types of microservices: hosted microser-
vices and dependent microservices. Hosted microservices are
those that are hosted by the node Nj,. In contrast, dependent
microservices communicate with hosted microservices but
are hosted on different nodes, as shown in Figure 6.
The swarm population for node N, is represented by the
resource demands of dependent microservices that need to be
replicated on Nj, or its neighbour node N, . In this research,
we attempt to replicate dependent microservices in the hosted
node Ny, or in the neighbour nodes, which are nodes that share
the same pod as the host node Nj,.

Each particle is positioned in a two-dimensional search
space, with x representing the resource demand of the CPU
and y representing the resource demand of memory. The
swarm population for node SPy,,) is represented as follows:

SPyy = (Xid, Yiyd) (2)

whered = 1,2, ..., R;,, x; 4 represents the resource demand
of CPU for dependent microservice d that needs to be
replicated on node Nj or N;:'eg, and y; 4 represents the
resource demand of memory for the same microservice d.

A potential solution for a problem is represented as
vector values of available resources of a potential PM.
Instead of searching for a solution in the solution space,
our strategy is to constrain the swarm to move toward
viable solutions. For example, assuming that node N; has
dependent microservices located in several PMs, the particles
in the swarm are a set of particles that represent the
demand for dependent microservices, and are denoted as
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Np={pr1,pra...pr,}. Each pr searches for viable solutions,
which are a set of S={s1,52...5,}. The viable solutions are the
available resources of potential PMs that can be N}, or a list
of its neighbours represented as §;=(NFcpu,NFyem), Where
NFp, and NF ., are calculated as follows:

Ui,cpu(t)
Ui,mem(t) (3)

where Uj ¢, (t) and U; e (¢) Tepresent the utilization of CPU
and memory, respectively, at a specific time point ¢. These
values indicate the amount of resources currently used at time
t.

Each viable solution should minimize the network traffic
cost. The objective function for selecting a viable solution is
represented by the following: equation:

n
> depin
i=1

Subject to :
s; €S where i=1,...,n “4)

NFcpy = Nccpu -
NFpem = Ncmem -

min f(s) =

where dep; j, represents the number of hops between the
source and destination nodes for the communication between
the dependent microservice d; and its host microservice Np,
which can be calculated using Dijkstra’s algorithm.

Each viable solution s; is a potential PM that has enough
resources to host the dependent microservice as follows:

NFcpu(Si) = Xid and,
NFpem(si) > Yi,d
del,...,Rid 5)

3) MODIFIED PARTICLE SWARM OPTIMIZATION (PSO)
MODEL

Particle Swarm Optimization (PSO) is a population-based
optimization algorithm [46] inspired by the behaviour of
animals, such as flocks of birds. The algorithm is shaped by
three main elements that govern its behaviour. Those three
elements are described below:

1) Swarm initialization: This element is responsible for
initializing the particles of the swarm. Three types
of positions are considered in our research: particle
position, denoted as pbest, swarm position denoted as
gbest and viable solution, denoted as target. Our sched-
uler initializes the positions as XY ={xy1,xy2,....xy;},
pbest={pb1,pby,...pby}, target={tg1,tgs,...tg; } which
have the initial, best, and target positions, respectively,
for all particles in the swarm. This component assigns
an initial value of XY, pbest and target for each particle
based on the demand for resources and the viable
solution as pbest and target, whereas it initializes XY
and gbest randomly.

We modified PSO to swarm each group of particles.
In our case, microservice replicas swarm to the best
solutions, which are denoted as target. On the other
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hand, pbest is determined based on how close or far
it is from the optimum solution target for each particle
in the same group. The best position for all particles is
gbest, which encourages collaboration and movement
between particles from the same group toward a viable
solution.

2) Fitness function: It evaluates each position of all
particles based on the objective function. In our
scheduling strategy, the aim is to minimize the distance
between the best position of the particle pbest and its
viable solution farget. In our strategy, a fitness function
is defined as:

D
Z(pbest,-j — target;;)* (6)

j=1

f) = Nom

where N,,; is the number of particles, D is the number
of dimensions in the search space, j is the jth dimension
of the position of the ith particle.

3) Updating the particle position: The movement of
the swarm is updated to the optimal solution using
cognitive, social, and target values of velocities. Each
of those values updates the position either for the
individual particle or for the swarm. The velocity vel
components are calculated as [46]:

Velcogm'tive = ¢y - rdom; - (pbc,D — XYp)
velsocial = ¢ - rdony - (pbg,D — XYp)
Vellarget = c3 - rdomsy - (pbt,D —XYp) (1)

where ¢y, ¢ and c3 are the cognitive, social, and
target constants, respectively. rdom1, rdom;, rdoms are
random numbers between 0 and 1. pb. p, pb, p and
pb; p are the best positions, the current position, and the
best position for the swarm, respectively, in dimension
D.

The velocity of each particle is updated using these
three values, where the weights c1, ¢», and ¢3 control
the velocity direction and speed. An equation that
combines the three values and updates each particle’s
position is proposed as [46]:

VelD,t-H =w- VelD,t + Velcognitive ~+ velsocial
+ Veztarget (®)

where w is denoted as a constant inertia weight that
controls how much the previous velocity influences
current velocity.

4) MODIFIED ROUND ROBIN ALGORITHM MODEL

The round-robin (RR) algorithm is a well-known algorithm
used to share CPU time among processes [47]. We aim
to utilize RR to distribute replicas among potential PMs.
In our strategy, the modified RR algorithm is responsible
for scheduling replicas equally among the eligible PMs. The
aim is to schedule the replicas close to their dependent
microservices. Therefore, list L, for the replicas and another
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list, denoted as Ly, for the eligible PMs are created.
Then, the RR algorithm schedules the replicas into the PMs
equally while meeting the resource demands for the replicas.
Additionally, we apply an upper threshold Uy, constraint on
PMs to maintain the service level agreement (SLA).

The scheduling of the replicas into the PMs by the RR
algorithm is as follows: For each replica r; in L,, the
scheduling strategy searches for the first PM pm; in L, that
can satisfy the resource requirements of r;. Once a suitable
PM pm; is identified and allocated to host r;, the scheduling
strategy proceeds to search for placing the next replica.
It starts with the subsequent PM in the list L. This process
repeats for all replicas in L, until no replica is left in the list
or insufficient resources are available to host the remaining
replicas.

5) CONTAINER DEPLOYMENT MANAGER

Our scheduling strategy uses Kubernetes as a container
deployment manager. This part of our strategy involves
defining a configuration file in “YAML” format that specifies
the image name, version, resource requirements, and number
of replicas. It also includes other details related to the
deployment of the microservices into containers. Kubernetes
manages the deployment and scaling of the microservices.
Additionally, it provides microservice discovery and health-
checking mechanisms. Our approach involves configuring
replica scaling, which aims to be more efficient in manage-
ment. It also provides reliability and resiliency in the event of
failure.

6) QUALITY OF SERVICE (QOS) MANAGEMENT

This component of our scheduling strategy is responsible for
monitoring resource utilization in each PM. It also reports the
resource utilization to the RR algorithm component whenever
a new replica is deployed. Moreover, it updates the resource
utilization data to ensure that the RR algorithm component
is aware of the current state of the system. Additionally, this
component reports any SLA violations that may arise at any
given point in time.

7) ALGORITHM COMPLEXITY ANALYSIS

As shown in the proposed algorithm, the proposed algorithm
combines PSO and RR algorithms to schedule the dependent
replicas to the closest PMs to their dependencies. Therefore,
in this section, the complexity of the algorithm is calculated
as follows:

1) The algorithm iterates through all PMs N to find the
eligible PM to host the replica. The complexity of the
proposed algorithm at this stage is O(N).

2) Additionally, the PSO algorithm swarms particles
microservice replicas to their destinations; therefore,
PSO also iterates through all replicas M, which makes
the cost O(M).
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3) Allocation of replicas to PMs using Round Robin
involves operations for each replica and PM, making
the overall complexity of the algorithm O(N x M).

Algorithm 1 Proposed Scheduling Strategy

1: Resource and Communication Data Collection:
2: for pm € PMs do
3 Ucpu < getCPUUtilization(pm)
4 Upem < getMemoryUrtilization(pm)
5 depe < calculateDependency(pm)
6: end for
7
8
9

: PSO Population Generator:
. Particles < population(microservice(PM;))
. BestPosition < neighbour(PM,)

10: Particle Swarm Optimization (PSO):

11: for p € Particles do

12: if pposiion 7 BestPosition then

13: Pbestposition <— velocity(pbp, pbg,Dy pbt,D)
14: end if

15: end for

16: Round Robin Algorithm (RR):
17: for pm € pm do

18: L, < generatReplicas(pm)

19: Ly, < getNeighbour(pm)

20: end for

21: for r € L, do

22: for ! € Ly, do

23: if loycpy > Tregepy then and
24: i Lgyprm = Treguen then
25: Allocate(pm, r)

26: end if

27: end if

28: YAMEL < CreateYAML(r)
29: call(Kubernetes(pm,YAMEL))
30: end for

31: end for

VI. EXPERIMENTAL SETUP AND METRICS

This section introduces the experimental setup details,
followed by discussing the metrics used for measuring the
performance of our scheduling strategy. The code of the
experiment is provided in Download Code [48].

A. EXPERIMENTAL SETUP

The experiments were conducted on an HP computer
equipped with an AMD Ryzen 7 5800U CPU and 16.0 GB
of RAM. The experiments were simulated using Python
programming language. We simulated Alibaba’s data center
network infrastructure using Fat-Tree topology to connect
over 1000 PMs. The network topology has k switches with
three levels of switches (access, pod, and core). It consists
of a limited number of pods denoted by P. The data for
the 100 PMs that were selected for the experiment are located
in 17 different pods as shown in Figure 7 and each pod is
equipped with a switch with 18 ports.
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FIGURE 7. The architecture of a Fat-tree network topology consists of
three layers of switches: core, aggregation, and access. Close neighbours
are PMs located in the same pod that share the same switch, while far
neighbours are those that use different switches in the same pod. The
figure also shows the communication between PMs from different pods.

B. DATASET

There are two popular real-world datasets for testing schedul-
ing strategies: Google [37], [49] and Alibaba [15], [36].
Alibaba data trace describes a production cluster and is made
publicly available by the Alibaba data center. The dataset
includes essential details such as node IDs, timestamps, and
comprehensive resource utilization information. We found
that the dataset is ideal for our study because it describes
the infrastructure as a microservices-based data center.
It also provides in-depth insights into job allocation, machine
utilization, and dependencies.

The data-trace describes the activities on a production
cluster for a month. The dataset comprises the resource
utilization data of over 90,000 containers running on more
than 1,300 PMs. The dataset includes node ID, timestamp and
resource utilization details for each container. Additionally,
it includes microservice IDs, types, and communication
patterns. We extracted data from over 12,125 microservices
running for one hour on nearly 100 PMs.

The second dataset is a Google trace collected by the
company’s system called Borg. The data is described in [37].
It consists of a monthly trace detailing all activities, including
job scheduling, resource utilization, and job durations.
Due to the dataset’s size and our machine’s limitations,
records of approximately 9,000 jobs were then replicated
to simulate a workload of 24,000 jobs scheduled across
100 physical machines (PMs). The jobs that arrived at
the data center at different times make it suitable for
simulating scenarios with new job arrivals at various times.
Additionally, the data describes resource utilization every
5 minutes.

In contrast to the Alibaba dataset, the Google dataset
does not include a description of the dependencies between
microservices. Therefore, to simulate the real-world sce-
nario of scheduling microservices, dependencies between
microservices were generated. These dependencies are rep-
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resented in four separate matrices, each corresponding to a
different time interval. The first matrix describes the depen-
dencies between microservices at the first interval, the second
matrix at the second interval, and so forth. It is important
to note that microservices may arrive at later intervals but
still have dependencies with microservices that arrive at
earlier intervals. For example, a microservice arriving in the
third interval may have dependencies with microservices that
arrived in the first or second interval. This dynamic nature
of dependencies reflects the evolving nature of microservice
architectures and ensures a realistic simulation of scheduling
scenarios.

C. EXPERIMENT SCENARIOS

Two scenarios are designed for the experiment. The first
scenario aims to evaluate the performance of the proposed
algorithm in its convergence to the optimum solution.
We assume that users submit applications to be scheduled
with a fixed number of replicas. This scenario is common in
cloud computing, where users operate with limited resources.
We also assume that external traffic fluctuates and is
managed by the Kubernetes load balancer. The objective
of this scenario is to assess the algorithm’s performance
in scheduling applications that run for long-term durations
(months) in the cloud.

In the second scenario, users can request scheduling for
their microservices at any time. The algorithm operates
in defined time intervals for gathering data on PMs and
microservices, then generates particles to find the optimal
scheduling solution. To simulate this scenario, we utilize
a Google Trace dataset, which records microservices every
5 minutes. We record the performance of the algorithm
at four different time intervals. Additionally, we measure
the percentage of newly arriving microservices in each
interval to assess the escalation of the number of arrivals of
microservices and evaluate the algorithm’s performance in
response to this escalation.

D. PSO SETUP

Two types of populations are generated by our proposed
strategy. The first type consists of the demands on resources
made by microservices. Our strategy divided the first
population based on the hosts (PMs). Therefore, around
100 populations for the first type were created by our
strategy. Each population consists of a different number
of particles. The particles hold all information about the
original microservice, such as the microservice name,
and host PM.

The second type of population is generated as the available
resources of the hosted PM and its neighbouring PMs. This
population is known as the best destination or viable solution.
The aim is to move each particle of each group of the
first population to the viable destinations and then use the
RR algorithm to schedule a new replica of the original
microservice Figure 5.
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TABLE 3. Experimental Parameters.

Experimental Description

Parameters

Datasets Alibaba’s data trace and Google trace.

Workload Size The experiment simulated over 12,125 microservices

running on nearly 100 physical machines (PMs) from
Alibaba’s dataset trace. In addition, 24,000 jobs from
the Google dataset were used.

Microservices arrived at the data centre at different in-
tervals, recorded every 3 seconds and 5 minutes in the
Alibaba trace and Google trace datasets, respectively.
PMs Approximately 100 physical machines (PMs) were
involved in hosting microservices.

Arrival Frequency

Microservice Over 12,125 microservices from Alibaba’s dataset and
resource 24,000 from the Google dataset were simulated, with
requirements various capacities between 0 and 1 representing the

resource requirements.

Constant inertia weight (w = 0.5), cognitive constant
(cl =0.2), social constant (c2 = 0.2), target constant
(3 =0.1), velocity values (r1, 12, r3 randomly gener-
ated between 0.1 and 0.9), iterations of 500.
Generating replicas for selected neighbouring PMs,
and then allocating resources based on CPU and mem-
ory requirements.

A fat-tree architecture with three layers of switches:
core, aggregation and access.

128 cores, 512 GB and 10 GB as capacities of CPU,
memory, and network bandwidth, respectively.
Network Architec- | Network Architecture simulated consisted of 17 pods,
ture 9 switches each, and 9 ports for each switch with a
capacity of 512 PMs.

Network traffic cost, latency, and load balancing.

PSO Parameters

RR Parameters

Network Topology

Resource Capacity

Metric Evaluation

The parameters for the PSO algorithm are set as follows:

1) The constant inertia weight w = 0.5 determines the
influence of the previous velocity of the particle on its
current position.

2) The cognitive constant is set as ¢; = 0.2, which
represents the weight of the best position of an
individual particle in its movement towards the viable
solution.

3) The social constant is set to ¢ = 0.2, which represents
the weight of the best position of the swarm that
influences the movement of the particle towards the
viable solution.

4) The target constant is set to c3 = 0.1, which is used
to update the position of the viable solution of each
particle.

5) The values for velocity ri, ry, and r3 are randomly
generated between 0.1 and 0.9. Those values are used
to update the velocity of each particle.

6) The maximum number of iterations for each swarm to
move to a viable solution was set to 500.

Choosing these parameters allows for balancing the explo-
ration process in PSO. In addition, it enhances conver-
gence and encourages the efficiency of the movement of
the particles, which results in improving the speed and
effectiveness of optimizing the search. The parameter values
are chosen as they have proven their effectiveness in
literature [50], [51] [52].

E. EXPERIMENTAL METRICS
Three metrics are used in our experiments to evaluate the
efficiency of our proposed scheduling strategy: network
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traffic cost, latency, and load balance. These metrics are
explained below in detail.

1) NETWORK TRAFFIC COST

Latency represents the cost of network traffic due
to microservice-based application dependencies. In this
research, we are not considering any traffic that comes from
outside the data center including HTTP requests made by
users. Instead, we count the number of edges between the
PMs that host dependent microservices and consider the
shortest path between those PMs. There are two types of
network traffic: 1) traffic between PMs located in the same
pod; 2) The bottleneck in terms of bandwidth is located
between the aggregation layer and the core layer, which is
considered the most expensive part of the network traffic. The
historical data trace is represented as a call graph. Therefore,
the network cost is to aggregate the edges between dependent
microservices m; and m; that are located in different PMs.

m My
Network Traffic Cost = Z Z(Emk,mj) ©))
[

where Ey, m; is the count of communication edges between
m; and m; located in different PMs.

2) LATENCY

It is a result of the delay in packet travel between switches
during communication between microservices. Routing algo-
rithms used for packet delivery also affect latency. In addition,
the distance between microservices contributes significantly
to latency. We measure latency in our experiment considering
the bandwidth bottleneck and the number of packets sent in a
certain amount of time ¢, as shown in the following equation:

,1nk ’inj Emk sy * Z
Bandwidth

where m;, m; are the two dependent microservices, E is the
number of edges between those microservices, and Z is the
size of the packet sent by the microservices.

According to Alibaba’s dataset documentation, the average
latency between data centres in different zones is extremely
low. Specifically, the average latency between Alibaba’s
data centers in Silicon Valley, USA, and Hangzhou, China,
is reported to be only 175ms [53]. In our experiment,
we intend to use these metrics, and therefore the latency
equation becomes:

Latency(t) = (10)

N

Latency(t) = ZDSOWC& N * laty
1
1 if there are dependencies between source,d

Dsouc,N = [ (I

0 otherwise

where N represents the number of nodes in the cluster,
‘Dsource,n’ denotes the metric of dependency between the
source node and all cluster nodes, and ’laty’ represents
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the latency value in Alibaba’s data center, which is
taken as 175ms.

To mitigate network traffic costs, our proposed strategy
aims to minimize the usage of the network. Therefore, our
scheduling strategy deploys replicas of microservices closer
to their dependents to reduce the distance between them.

3) LOAD BALANCING

It is a significant factor in microservices performance. We are
using the RR algorithm to balance the load of PMs. We aim
to improve the utilization of resources in all PMs in the data
center. Therefore, the total resource utilization is calculated
for each PM using Eqn. 1.

However, to measure the load balance, we use the
standard deviation (SD) along with the mean to estimate the
effectiveness of the load balance. The following equations
illustrate SD and the mean, respectively [54]:

Niotal
1
SD = > (PM, — mean)” (12)
Niotal —1
p_
1 Niotal
mean = PM (13)
Ntolal I;Z::‘ r

where Ny 1s the total number of nodes in the cluster.

VIl. COMPARISON WITH BASELINE STRATEGIES
Recently, cloud platforms have offered a vast amount of
resources that enable the consolidation of a large number
of microservices into a smaller number of PMs. This
opportunity has encouraged researchers to propose strategies
focused on replication services to scale the service and ensure
its availability. However, these approaches increase resource
utilization without considering other factors such as load
balancing or network traffic.

In our proposed strategy, we employed two distinct
standard PSO strategies. The first is PSO with the best-
fit algorithm, which focuses on consolidating replicas to
enhance resource utilization. The second is PSO with an
adaptive threshold, aiming to maintain QoS by preventing
resource over-utilization and SLA violations. It also aims
to balance the load by using an adaptive upper threshold of
resource utilization. Both strategies aim to reduce network
traffic and enhance resource utilization.

A. PSO WITH THE BEST-FIT ALGORITHM

This strategy focuses on distributing replicas of services
within the same PM. It uses the PSO algorithm to gener-
ate particles representing replicas of microservices. Then,
it moves them to the best solutions, which are the PMs
hosting dependent microservices. The best-fit algorithm is
then used to schedule the replicas by sorting the potential
PMs based on two factors: reducing network traffic utilization
and increasing resource utilization. The sorting is based on
the distance between the microservices and their replicas,
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with the PMs hosting the microservices at the top of the list.
A static upper threshold for resource utilization is utilized to
minimize SLA violations.

B. PSO WITH AN ADAPTIVE THRESHOLD

This strategy adjusts the replication threshold dynamically
based on current resource utilization. It employs a PSO algo-
rithm to direct particles representing microservice replicas
to the best PMs. It uses an adaptive upper threshold of
resource utilization as a constraint. This technique efficiently
uses resources and reduces the cost of network traffic.
However, the utilization of resources by replicas is highly
unpredictable and can experience sudden spikes at any time.
This unpredictability increases the risk of violating the SLA.
Furthermore, the aggressive consolidation of replicas into a
small number of PMs amplifies the risk of a single PM failure
resulting in system failure.

However, we realize that both of these PSO strategies
have limitations, and we propose a modified PSO which was
explained earlier. We compared the results of all three PSO
strategies to demonstrate that modified PSO works best in our
proposed scheduling strategy.

VIIl. RESULTS AND DISCUSSION

In this section, different aspects of experimental results and
their comparison with baseline algorithms are discussed in
detail. The experiment ran for approximately three hours,
covering the simulation of the cloud computing system from
the start to the completion of the first scenario. Similarly, the
second scenario also took nearly the same amount of time.

A. REDUCING NETWORK TRAFFIC COST

For the first scenario, our scheduling strategy achieved a
36% reduction in network traffic compared to Alibaba’s
scheduling strategies by deploying 11,004 replicas near
the dependent microservices. 12,125 microservices were
distributed across 100 physical machines in the Alibaba
data center. All of the microservices had a replica near
the dependent microservice (on a neighbouring PM). The
neighbouring PM shares the same pod and uses the same
switch, or is located in the same pod but uses a different
switch Figure 7. Our strategy successfully reduces the cost of
using the network significantly, enhancing the performance
of the overall system.

For the second scenario, our strategy processes microser-
vices in a real-time scenario. In total, our strategy schedules
approximately 24,000 microservices to the data center in
four-time intervals as follows: 8.5%, 62%, 8.6% and 0.5%.
In addition, we consider that 20.4% of stateful microservices
are already scheduled for the cloud. The algorithm reduces
network traffic between all microservices by 39.7%, 31.6%,
22.9% and 31.1%. Our strategy replicates 19,209 microser-
vices to their dependents, resulting in an average network
traffic reduction of 31.32% over the four-time intervals. The
new arrival of microservices in the cloud at different times
contributes to a lower percentage of network traffic. Our
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strategy replicates the majority of microservices in the same
pod as their dependents, with over 61% of the replicas, while
just over 12% of the replicas share the same PMs. However,
some replicas could not be placed close to their dependents
due to reliability (fault tolerance) and resource utilization
constraints as shown in Figure 8. As our strategy’s objectives
are to reduce single points of failure and balance resource
utilization in each PM, we believe that our strategy achieves
a significant reduction in network traffic.

B. LATENCY COST

Alibaba scheduled 11,377 microservices that depended on
other microservices in different pods, which they considered
to represent the different zones. In addition, Alibaba’s
approach distributed just 659 microservices in the same pod
as their dependent microservices (in the same zone), and
it scheduled just 5 microservices in the same PM as their
dependent microservices, Figure 8.

In the first scenario of our experiment, our strategy
replicates 1,695 microservices close to their dependent
microservices and 8,606 microservices in neighbouring PMs
(same pod). Our strategy achieved an 84% reduction in
latency compared to the Alibaba scheduling approach. As a
result, our strategy reduces the latency significantly while
maintaining the availability of microservices and reducing the
risk of single failure by replicating microservices in different
PMs of their dependents but in the same pod (zone).

In the second scenario, over 19,206 microservices were
scheduled. 18,221 of those microservices were replicated to
the same PMs of their neighbours that are located in the same
pods. As a result, our strategy reduces the latency to 94.9%.
Alibaba’s scheduling strategy produces around 84% of the
total latency, whereas our strategy produces 14% and 2% of
the total latency in the first and second scenarios, respectively
as shown in Figure 8.

C. ENHANCING PERFORMANCE RESILIENCY

Our proposed scheduling strategy enhances the performance
resiliency of the system through the maintenance of three
main strategies. Firstly, we ensure the availability of the
system by reducing the risk of a single point of failure.
Secondly, we manage resource utilization by using a pre-
defined threshold; therefore, the utilization of resources
does not exceed it, preventing the violation of service level
agreements (SLAs). Finally, we balance the load for all PMs.

We compare our proposed scheduling strategy against the
two approaches explained in Section VI-E by comparing the
results of resource utilization: CPU and memory.

In the first scenario, our scheduling strategy achieves a
mean CPU utilization of 43.45 with a standard deviation of
12.04. This indicates that our scheduling strategy effectively
balances the load of replicas among the PMs. In comparison,
the Best Fit Algorithm and the adaptive threshold approach
have higher standard deviations of 26.4 and 26.2, respec-
tively, suggesting a more variable and potentially less reliable
CPU resource allocation. By maintaining a lower standard
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THE PROPORTIONAL DEPENDENCIES BETWEEN MICROSERVICE

= AliBaba's strategy
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= Our strategy using Alibaba's d ataset-First Scenario

= Our strategy using Googe's Dataset-Second Scenario
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FIGURE 8. The number of dependencies between microservices in Alibaba’s scheduling system, our proposed scheduling strategy using Alibaba’s and
Google’s datasets, and the dependencies between microservices after applying our proposed scheduling strategy. The pie chart represents the
proportional latency, while the bar plot represents the network traffic between microservices.
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FIGURE 9. The three subplots showcase the resource utilization of three different approaches: the best-fit algorithm, the adaptive

threshold approach, and our proposed scheduling strategy.

deviation, our algorithm minimizes the likelihood of resource
overloads or bottlenecks, enhancing the overall efficiency and
stability of the system [54].

In addition to the memory utilization in the first scenario,
our proposed scheduling strategy achieves a mean memory
utilization of 43.45 with a standard deviation of 16.5.
This demonstrates that our strategy efficiently manages
memory resources, ensuring optimal utilization without
excessive waste or shortages of memory resources in PMs.
In contrast, the Best Fit Algorithm and the adaptive threshold
approach exhibit higher standard deviations of 34.82 and
35.24, respectively, indicating more significant variability
in memory allocation. The lower standard deviation of
our scheduling strategy contributes to more consistent and
balanced memory utilization.Figure9 demonstrates how our
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strategy reduces the variation in both resource utilization.
The figure illustrates that most PMs utilize CPU and memory
around the mean. In contrast, the other algorithm shows that
some PMs were not utilized while others were fully utilized.
Our strategy minimizes the gap between the maximum
and minimum resource utilization, with the minimum CPU
utilization at just 20% and the highest utilization at less than
80%. This indicates that none of the PMs violated our QoS
constraints.

Before delving into resource utilization in the second

scenario, it’s important to note the following:

1) Resource utilization in the second scenario is cumu-
lative, meaning each PM hosts new microservices at
any given time. Our objective is to measure the average
utilization across all time intervals.
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FIGURE 10. visualizes the utilization of CPU utilization and memory for 100 PMs that host microservices deployed using our proposed algorithm
strategy. Each time interval (T1, T2, T3, T4) shows the variation in CPU and memory usage across the PMs.

2) In the Google Borg system, memory utilization is
computed using bytes and normalized by dividing it by
the maximum machine size in the cluster. Therefore,
the largest memory size is represented as 1.

3) CPU utilization is measured in “Google compute
units” (GCUs), calculated based on how much the
workload of the unit needs to be processed. CPU
utilization is measured in GCU seconds per second,
where 1 GCU equals the total CPU needed for a
workload’s computation.

In our algorithm, we calculate the GCU units utilized during
the experiment for each PM. Each PM has a capacity
of 128 GCU and 512 GB of memory.

Figure 10 illustrates the resource utilization across each
PM for both CPU and memory. It is evident from the
figure that our algorithm significantly enhances resource
utilization. Specifically, the mean CPU utilization increased
from 0.78 GCU to 2.13 GCU, marking a 63% increase.
Additionally, the mean memory utilization increased from
0.26 to 0.42, reflecting a 39% increase.

D. COMPARISON WITH EXISTING STUDIES

Figure 11 shows the CPU utilization distribution across
PMs for each time interval. In the first time interval, CPU
utilization varied between 1 and 1.3. For the second, third, and
fourth-time intervals, CPU utilization ranges were 1.25 and
2.8, 1.25 and 2.85, and 1.25 and 2.8, respectively. We found
that most CPU utilization across most PM ranges from
1.25 to 2.8 units per CPU per workload. Furthermore, the
memory utilization for most of the PMs was between 0.25 and
0.41, meaning that our strategy balances the load in most
of the PMs.
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FIGURE 11. visualizes the scheduling of microservices using our
proposed strategy, where microservices are replicated next to their
neighbours. Each sub-graph represents time intervals, and the y-axis
represents the mean of CPU and memory utilization across 100 PMs in
each interval. A lower standard deviation indicates more balanced
utilization across PMs.

Overall, our proposed scheduling strategy maintains con-
sistent utilization of resources (CPU and memory) with
the lowest SD for both resources. This indicates that our
strategy manages the consistent allocation of CPU resources,
which results in managing any sudden spikes or drops
in resource usage. By avoiding significant fluctuations in
resource usage, our strategy reduces the risk of resource-
related performance issues and potential SLA violations.
It ensures that the system has adequate resource availability
to handle the workload. It helps to predict resource utilization
and improve resource management and system performance.
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TABLE 4. Comparison of our proposed scheduling strategy with existing strategies in literature.

Resource Utilization

Study CPU Memory Load Balancing Latency Fault Tolerance | Use Graph Representation

[15] X X X X X Call Graph
[26] X X X X X DAG
[27] X X X X X DAG
[28] X X X X X DAG
[29] X X X X X DAG
[30] X X X X X DAG
[31] X X X X X DAG
[32] 24.4% X 20% 99% tail latency X X
[33] ~0.1% ~0.1% X X X Graph Mapping Algorithm
[34] 8.64% X X 15.16% X X
[35] X X X X X X

Our Replication Strategy

- Using Alibaba’s dataset 46 % 45 v 84% v Directed Acyclic Graphs

- Using Google’s dataset 63% 39% v 94.9 % v

Moreover, our strategy outperforms the Best Fit Algorithm
and the adaptive threshold approach in resource management
by maintaining lower standard deviations for both CPU and
memory. Our strategy ensures stable and efficient resource
allocation, reducing the risk of bottlenecks and resource
shortages. These benefits translate into improved system
performance, enhanced reliability, and better utilization of
resources.

It can be observed from Table 1 and Table 4 that our
proposed scheduling strategy outperforms existing studies in
different aspects that directly influence cloud performance.
Most existing studies do not propose a multi-objective
approach to improving cloud performance; thus, most of
the results in the table 4 are left blank as they have not
been reported in the research. For example, studies [15],
[33], [34], and [35] do not consider load balance in their
approaches. Additionally, none of them consider improving
fault tolerance in their approaches. Therefore, the compared
studies are limited in terms of addressing all aspects, such
as resource management, load balancing, fault tolerance, and
latency.

By replicating microservices close to their dependents,
our proposed strategy optimizes the utilization of cloud
resources. Moreover, our strategy also achieves load bal-
ancing and fault tolerance. Our strategy enhances resource
utilization by 43.54% and balances the load by 46%. With
the replication of all microservices, at least one for each, our
algorithm outperforms existing strategies by enhancing fault
tolerance. Additionally, our algorithm significantly reduces
network traffic, leading to an 84% reduction in latency.
This latency reduction results in improved response times,
ultimately enhancing the overall performance of the cloud.
In conclusion, these outcomes demonstrate the effectiveness
and superiority of our strategy.

IX. CONCLUSION

Microservices architecture has emerged as a widely adopted
approach for building applications, replacing the traditional
monolithic architecture. It has changed how applications are
developed by making them more accessible, scalable, and
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flexible. However, the dynamic nature of cloud computing
poses challenges in effectively allocating, deploying, and
managing microservices applications. Existing approaches
have shown limitations in efficiently utilizing resources and
meeting QoS requirements. To address these challenges,
we propose a novel scheduling strategy that combines
modified PSO and RR algorithm, integrated with Kubernetes
as a container deployment manager.

Our novel proposed scheduling strategy empowers the PSO
to initialize a swarm of particles, representing replicas of
microservices. In addition, it initializes position populations
representing the available resources of PMs, that particles
swarm to optimize resource demands and viable solutions.
Our algorithm proposes a fitness function that minimizes
the distance between the particles and their best positions.
When particles reach the best positions, the RR algorithm
is used to distribute the particles into the PMs equally.
The integration of modified PSO allows for exploration and
exploitation of the search space to reduce network traffic
between microservices, whereas the RR algorithm enhances
load balancing. Our proposed strategy improves resource
allocation, system performance, scalability, and availability.

During the scheduling of replicas of microservices, our
novel scheduling strategy integrates with Kubernetes to
manage the deployment, communication, and redirection of
communication between replicas. Kubernetes provides robust
health-checking mechanisms for containers and microser-
vices. In addition, by monitoring the system through QoS
management, our algorithm improves QoS.

In conclusion, our proposed scheduling strategy presents
a novel and comprehensive approach for addressing the
resource allocation and deployment of microservices in
challenging and dynamic environments. It improves the
overall performance of the microservice system and mini-
mizes network traffic costs, resulting in reduced latency and
improved system efficiency. For potential future research,
optimizing the convergence of the combined PSO and RR
algorithms to reach the optimum solution more efficiently and
with reduced computational costs is suggested. In addition,
machine learning algorithms like Q-learning need to be
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investigated to schedule microservices to cloud resources
utilizing microservice resource requirements.
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