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ABSTRACT Accurate and timely lane detection is imperative for the seamless operation of autonomous
driving systems. In this study, leveraging the gradual variation of lane features within a defined range of width
and length, we introduce an enhanced Spatial-Temporal Recurrent Neural Network (SCNN) framework. This
framework serves as the cornerstone of an innovative hybrid spatial-temporal model for lane detection, which
is tailored to address the prevalent issues of substandard detection performance and insufficient real-time
processing in intricate scenarios, such as those involving lane erosion and inconsistent lighting conditions,
which often challenge conventional models. With the foundational understanding that lanes manifest as
continuous lines, we employ a temporal sequence of lane imagery as the input to our model, thereby ensuring
a rich provision of feature information. The model adopts an encoder-decoder structure and integrates a
Spatial-Temporal Recurrent Neural Network module for the extraction of interrelated information from the
image sequence. The model culminates in the output of the lane detection results for the terminal frame.
The proposed lane detection model exhibits a commendable synthesis of accuracy and real-time efficiency,
attaining an Accuracy of 97.87%, an F1-score of 0.943, and a FPS of 19.342 on the tvtLANE dataset and
an Accuracy of 98.21%, an F1-score of 0.957 on the Tusimple dataset. These metrics signify a superior
performance over a majority of the current lane detection methods.

INDEX TERMS Computer vision, deep learning, lane detection.

I. INTRODUCTION
Recent advancements in autonomous driving technologies
have attracted global interest due to their extensive applica-
tion potential and their capacity to conserve both human and
material resources. A critical component of this technology is
the analysis and processing of lane markings, as captured by
vehicular cameras and interpreted through algorithms. This
process is integral to the functioning of autonomous driv-
ing systems, as it enables vehicles to ascertain their current
position and intended trajectory, thereby augmenting both
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traffic safety and efficiency. Furthermore, this technology is
essential for intelligent traffic management and driver assis-
tance systems, providing indispensable, real-time support for
urban traffic planning and driving safety. Within the realm
of lane detection, deep learning algorithms have emerged as
a novel approach. When compared to traditional machine
learning techniques, deep learning demonstrates enhanced
feature extraction capabilities and improved resistance to
noise, which allows it to adapt to diverse and complex driving
conditions with superior performance. Consequently, it has
become a popular subject of research.

As scientific knowledge progresses, deep learning-based
lane detection methods for automated or assisted driving
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are increasingly becoming a focal point of research. In the
scientific literature, studies [1], [2], [3] have designed deep
learning models to facilitate pixel-level image segmentation.
This technique discerns whether each pixel in an image
corresponds to a lane or the background, thus providing
comprehensive lane detection information suitable for intri-
cate scenarios, albeit at the cost of increased computational
resources. Studies [4], [5], [6] have adopted a row-based
detection approach, whereby the image is segmented into
horizontal sections, and deep learning models identify the
presence of lane markings by pinpointing candidate points
within each section. Although this method is straightforward
and computationally efficient, its performance is suboptimal
for curved and diagonal lane markings, and it is less capa-
ble in the detection of complex scenes. Studies [7], [8], [9]
have utilized an anchor-based strategy, wherein deep learning
models leverage anchors to deduce regression-based rela-
tive coordinates, enhancing the detection accuracy for lane
curvature. This approach is versatile and can accommodate
different shapes and orientations of lane markings, but it
necessitates the adjustment of anchor box sizes based on the
dimensions and angles of the lane markings, which compli-
cates the model.

The aforementioned text delineates various deep learning-
based lane detection methodologies. Nonetheless, lane
detection in practical applications encounters numerous chal-
lenges. Factors such as inconsistent lighting, shadows, glare,
worn lane markings, road obstructions, and low image
contrast elevate the requirements for real-time and precise
detection of lane markings. Specifically, real-world road
conditions are highly variable, and many publicly available
datasets are limited to particular scenarios. For instance, the
Tusimple dataset [10] primarily features images from high-
ways under clear weather conditions, which are relatively
easy to detect. In contrast, actual driving often involves a
multitude of complex scenarios, including rural, urban, and
highway environments. To more accurately reflect real-world
conditions, some researchers have introduced datasets that
encompass various complex scenarios, such as the tvtLANE
dataset proposed by Zou et al. [11], which includes rural,
urban, and highway sections, thereby addressing the issue
of limited sample diversity. Additionally, to enhance model
robustness, some researchers have amalgamated different
datasets. For example, Khan et al. [12] trained deep learning
models using a combination of theUdacityMachine Learning
Nanodegree Project Dataset [13] and the Cracks and Potholes
in Road Images Dataset [14], aiming to effectively detect lane
markings under adverse weather and lighting conditions.

To surmount the challenges inherent in lane detection,
researchers have conducted comprehensive studies and pro-
posed a suite of innovative solutions, although these methods
have inherent limitations. Perumal et al. [15] tackled the
issue of unstructured roads with their LaneScanNET, which
showed promise in conditions such as shadows, fog, and dust;
however, it was not specifically tailored for scenarios with

uneven lighting. Bhandari et al. [16] introduced the deep
learning model Deeplane, which facilitated lane detection in
the absence of lane markings, yet its detection accuracy and
efficacy in complex scenarios like shadows require further
enhancement. Oğuz et al. [17] employed a one-dimensional
deep learning technique to classify pixel intensity distribu-
tions for lane marking detection, overcoming low recognition
rates in the presence of shadows and road imperfections,
but it was not sufficiently adept at detecting curved paths.
Zhao et al. [18] combined fast connections, gradient maps,
and WGAN features to devise Ripple-GAN, which exhib-
ited strong performance in multi-lane and complex road
conditions, although its detection capabilities were compro-
mised on roads that were completely or partially obstructed,
such as those in dimly lit areas. In 2023, Dewangan and
Sahu [19] addressed adverse conditions such as nighttime,
rain, and fog by extracting texture features based on the
Local Vector Pattern (LVP) and employing an optimized
Deep Convolutional Neural Network (DCNN) for road and
lane classification, introducing an FS-MS technique to refine
the model outcomes. Nonetheless, this methodology did not
account for scenarios involving damaged lane markings.
Zhang and Zhong [20] integrated a spatial attention mech-
anism and proposed the deep learning model CRLaneNet,
based on Catmull-Rom curves, which proved effective in
crowded and low-light environments but was less successful
in handling curved and intersecting lanes. Despite techno-
logical progress in specific environments and conditions,
lane detection algorithms continue to require adaptation to a
broader range of extreme and diverse scenarios to satisfy the
practical demands of automated or assisted driving systems.

Contemporary methodologies in the field of lane detection
have predominantly focused on the analysis of individual
image frames, thereby not fully capitalizing on the prior
contextual information available across sequential frames.
This limited approach has been shown to reduce the accuracy
of lane detection within complex environments, particularly
when faced with challenges such as variable lighting condi-
tions, missing lane markings, and visual obstructions. Lane
markings, which are typically continuous solid or dashed
lines, possess a clear temporal correlation in terms of their
location. To address this, hybrid spatial-temporal lane detec-
tion methods have been introduced as an efficacious solution.
These methods utilize the combined feature information from
preceding frames together with the current frame within a
temporal sequence to deduce the positional attributes of lane
markings in the present frame. In scenarios marked by dam-
aged lane markings, occlusion by vehicles, and non-uniform
lighting, such models draw upon the extensive lane feature
information from previous frames to bolster the detection pro-
cess in the current frame, thereby yielding improved detection
results.

In fields such as video content analysis and sequence
prediction, Spatial-Temporal Recurrent Neural Networks
(ST-RNNs) have been established as a powerful tool capable
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of discerning complex dependencies inherent in time-series
data (as detailed in [21], [22], and [23]). Leveraging the
successful deployment of ST-RNNs in these areas, this study
investigates their potential application in lane detection, with
a specific focus on dynamic traffic scenarios and the analysis
of continuous video frames. In this vein, Zou et al. [11] intro-
duced an innovative network architecture that amalgamates
Convolutional Neural Networks (CNNs) with Recurrent Neu-
ral Networks (RNNs), resulting in a notable enhancement
in detection performance. However, the method lacks explo-
ration of higher precision in complex environments and
does not fully capitalize on prior lane line information.
Building upon this foundation, Dong et al. [24] utilized
the SCNN [25] to delve deeper into the geometric features
of lane markings and achieved an uplift in model perfor-
mance by substituting Conv-LSTM with ConvGRU within
the RNN framework. However, the method lacks a bal-
ance between real-time performance and accuracy. Liu and
Gao [26] proposed a lane detection algorithm predicated on
the fusion of multi-frame information that integrates CNNs
with Conv-LSTM and DenseNet, creating a network adept at
deep semantic extraction that shows promising results under
challenging conditions such as shadows, wireless environ-
ments, and nighttime settings, yet it does not fully exploit the
predictive utility of lanemarking priors.Moreover, Gupta and
Choudhary [27] proposed an unsupervised spatial-temporal
incremental clustering algorithm for dynamic lane detection.
This method effectively integrates time-series information
into the curve fitting process for lane lines, specifically
addressing the challenges posed by highly dynamic traffic
scenarios. Nevertheless, the approach falls short in providing
an in-depth discussion of complex environmental factors,
such as vehicle occlusion. Although these investigations have
highlighted the substantial potential for augmenting lane
detection through the synthesis of spatial and temporal data,
they concurrently point to the limited robustness of algo-
rithms when contending with complex scenes that include
damaged lane markings, uneven lighting, and vehicle occlu-
sions, signaling a need for more resilient solutions.

In light of the research outlined above, this manuscript
introduces a hybrid spatial-temporal model for lane detection
predicated on an enhanced SCNN architecture. This model is
specifically designed to tackle formidable challenges such as
damaged lane markings, vehicle occlusions, and inconsistent
lighting, achieving greater accuracy and real-time perfor-
mance, thereby advancing the state of the art.

The primary contributions of this study are twofold:
(1) Acknowledging the significance of shape, color, tex-

ture, and the temporal interplay of features across sequential
frames, we propose a novel hybrid spatial-temporal sequence-
to-sequence deep neural network, incorporating an encoder-
decoder framework. This approach is aimed at addressing the
difficulties inherent in precisely and expeditiously detecting
lane markings from single images under challenging condi-
tions such as lane marking degradation, vehicular occlusion,
and disparate lighting.

(2) We propose an enhanced SCNN configuration that
maintains accuracy while expediting the real-time feature
extraction for elongated, linear objects. A novel block-wise
flow strategy is devised for SCNN in each direction, supplant-
ing the traditional layer-by-layer approach. This strategy not
only abbreviates the SCNN processing time but also enables
efficient, lightweight information transfer across various
directions for spatially consistent lane markings. An replace-
ment strategy is adopted to prevent information loss that can
occur when superimposed values exceed unity during the
binarization process in SCNN’s flow of information, thereby
promoting the propagation of features. Lastly, we employ
depthwise separable convolutional kernels in lieu of con-
ventional convolutional kernels, significantly diminishing the
parameter count.

Furthermore, this technology is essential for intelligent
traffic management and driver assistance systems, providing
indispensable, real-time support for urban traffic planning
and driving safety. The specific challenges of lane ero-
sion and inconsistent lighting conditions present significant
hurdles for current lane detection models, necessitating
advancements that can adeptly handle such complexities.
Our proposed model aims to fill this gap by leveraging
spatial-temporal information to enhance detection accuracy
in challenging scenarios, thereby supporting the broader
application of autonomous driving technologies in intelli-
gent transportation systems. This not only contributes to the
academic discourse on lane detection but also offers prac-
tical insights into developing more resilient and adaptable
autonomous driving solutions that can navigate the intricacies
of real-world driving conditions.

The manuscript is structured as follows: Section II meticu-
lously delineates the methodology adopted for lane detection.
The discourse commences with an exposition of image
preprocessing techniques, subsequently advancing to the con-
ceptualization of a bespoke deep learning model crafted to
address the multifaceted challenges inherent in lane detec-
tion. This model comprises a tripartite architecture: the
foundational backbone network, an enhanced SCNN, and
the ST-RNN. Section III delves into the experimental frame-
work and its intricacies. It initiates with a delineation of
the datasets employed, namely TuSimple and tvtLANE, pro-
gressing to a detailed account of the experimental milieu, the
hyperparameters selected, and the benchmarks for evaluation.
What follows is a suite of four targeted experiments, encom-
passing an exploration of backbone network selection, the
information flow strategies adopted by enhanced SCNN, the
refinement of the SCNN’s sliding step size, and an analysis of
the feature map channel dimensions pre- and post-enhanced
SCNN integration. The efficacy of the proposedmodel in lane
detection is rigorously assessed through the employment of
confusion matrices, P-R curves, analyses of real-time per-
formance, and a various means of visualisation.Concluding
the paper, Section IV amalgamates and distills the princi-
pal scholarly contributions, concurrently acknowledging the
research’s constraints and positing avenues for future inquiry.
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FIGURE 1. Overall model.

II. METHODOLOGY

A. GENERAL NETWORK ARCHITECTURE

This investigation conceptualizes lane detection as a binary
semantic segmentation challenge. The semantic segmenta-
tionmodel proposed herein, delineated in Fig. 1, encapsulates
four integral components: image preprocessing, the encoder,
the Spatial-Temporal Recurrent Neural Network (ST-RNN),
and the decoder. The preprocessing of images commences
with the extraction of salient features from the input image,
informed by the distinctive attributes of lane markings,
and concurrently reduces the image dimensions to bolster
real-time processing capabilities while preserving essential
lane marking details. This step is further optimized by
employing advanced dimensionality reduction techniques,
ensuring a balance between computational efficiency and the
preservation of crucial information. The encoder’s role is to
transmute the input image into refined semantic informa-
tion. In this phase, our approach is particularly attentive to
the geometric configuration of lane markings by harnessing
prior contextual knowledge, which is then complemented
by the integration of ResNet34 to augment the extraction
of lane marking texture and chromatic data. The use of
ResNet34 is instrumental in enhancing the model’s ability
to extract intricate features, thereby significantly improving
the accuracy of semantic interpretation. The ST-RNN is engi-
neered to distill the temporal associative information from
a chronologically arranged series of lane marking images.
This component adeptly captures the dynamic changes in
lane markings over time, providing a temporal depth to the
analysis. The decoder’s primary function is to transcribe
the high-level semantic data pertaining to lane markings,
as ascertained by the encoder, into pixel-level semantic infor-
mation. It meticulously reconstructs the lane information,
ensuring a high degree of accuracy in the final detec-
tion results. The culmination of the model’s output is the
lane detection result for the terminal time frame in the
sequenced progression of lane markings. This comprehen-
sive approach underscores the model’s capability to not only
detect but also precisely delineate lane markings in real-time
scenarios.

Algorithm 1 Algorithm of the Proposed Method
Input: ConsecutiveImages [5] (each image shape: 128× 256×3)
Output: LogProbabilities
DataTensor← ConvertImagesToTensor(ConsecutiveImages)

// Initial feature extraction using a convolutional layer
FeatureList← []
for each Image in DataTensor do

Feature← ApplyConvolutionalLayer(Image)
Append Feature to FeatureList

// Preprocess features for SCNN
SCNN_Input← StackFeatures(FeatureList)
SCNN_Input← ApplyMaxPooling(SCNN_Input)
SCNN_Output← ApplySCNN(SCNN_Input)
Conv_Input← ApplyUnPooling(SCNN_Output)

// Prepare features for convLSTM
ConvLSTM_Features← []
for i from 0 to 4 do

ChannelFeature← SliceChannels(Conv_Input, i)
for each Layer in ResNet34Layers do

ChannelFeature← ApplyLayerAndMax
Pooling(ChannelFeature)

Append ChannelFeature to ConvLSTM_Features

// Apply convLSTM and upsample
ConvLSTM_Input← ConcatenateFeatures(ConvLSTM_Features)
ConvLSTM_Output← ApplyConvLSTM(ConvLSTM_Input)
UpsampledOutput←SequentiallyApplyConvAndUnPooling(ConvLSTM
_Output)

// Calculate final output probabilities
LogProbabilities← CalculateLogSoftmax(UpsampledOutput)
// Calculate final output probabilities

B. IMAGE PREPROCESSING
Given the operating conditions of vehicle velocities spanning
from 0 to 120 km/h and a camera frame rate of at least 25 FPS,
the locations of lane markings across the quintet of images
fed into the model over a consistent temporal interval remain
largely invariant. This suggests that while the feature infor-
mation extracted from each frame is akin, it is not identical,
thereby allowing for reciprocal enhancement of information
across frames. In accordance with the methodologies delin-
eated in [11] and [24], a sequence of five contiguous images
is selected for model input.
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FIGURE 2. Enhanced SCNN. Through the improvement of this module, the prediction and training speed of ours neural network model has been
significantly enhanced.

Accounting for the established knowledge that lane
markings—irrespective of being white or yellow—exhibit
pixel values in their RGB channels that are either maximal
or proximate to maximal, we apply convolution and max
pooling operations to these five images. This approach not
only facilitates preliminary feature extraction but also con-
tracts the image scale, consequently economizing on the
computational demands for the ensuing enhanced SCNN.

C. ENHANCED SCNN
The SCNN initiates by horizontally dissecting the input
image into layers, executing convolutions sequentially from
top to bottom and vice versa, succeeded by vertical segmen-
tation and convolutions from left to right and the reverse.
The SCNN transcends the conventional layer-by-layer convo-
lution, adopting a slice-by-slice methodology. However, the
substantial dimensions of acquired lane marking images and
the profusion of slicing can drastically decelerate the flow
of information, thus impinging upon the model’s real-time
efficacy.

Algorithm 2 Algorithm of the Enhanced SCNN(in UP_to
DOWN Direction
Input: SCNN_Input (shape: [64× 5, 64, 128])
Output: SCNN_Output
for i from 0 to (SCNN_Input.height - 8) step 4 do
FeatureMap_f1← ExtractRows(input_scnn, i, i + 8)
ConvFeatureMap_f2←ApplyConvolution(FeatureMap_f1, stride=2)
SCNN_Input← ReplaceRows(SCNN_Input, i + 4,

ConvFeatureMap_f2)
end for
SCNN_Output←SCNN_Input

In consideration of the fact that lane markings possess a
defined area and exhibit color uniformity along both hori-
zontal and vertical planes, we introduce an optimized SCNN.
This advancement retains the precision of lane detection
while ameliorating real-time performance. The optimized
SCNN transitions from a layer-by-layer information flow to
a block-by-block paradigm, i.e., progressing in designated
sliding strides. We define the sliding stride for each direc-
tion as s = (s1, s2), where s1 and s2 represent the sliding

strides for vertical and horizontal directions, respectively. The
processed image is then channeled into the Top Hidden Layer
as depicted in Fig. 2, ensuing in an information flow that
follows the up-to-down, down-to-up, left-to-right, and right-
to-left trajectories, correlating with SCNN_D, SCNN_U,
SCNN_R, and SCNN_L in Fig. 2, respectively. It is inferred
that the SCNN operates with s = 1, whereas the optimized
SCNN functions with s >1. The pseudocode for the enhanced
SCNN is provided above.

(1) delineates the formula for the up-to-down direction in
the optimized SCNN, with analogous formulations for other
directions omitted for brevity.

x ′i+4:i+7 = ReLU (SCNN_D(xi:i+7,K ))

i = 1, 5, 9, . . . ,H − 7 (1)

In (1), the variable x sans superscript denotes the feature
map prior to the onset of information flow, while x ′ signifies
the feature map that has been updated in the course of infor-
mation flow. The symbol ‘:’ designates the range of values,
with the adjacent numerals specifying the respective lower
and upper boundaries. The indices i represent the slide of
horizontal slice s1 = 4, respectively. ReLU stands as the
activation function, and SCNN_D indicates the convolutional
operation involving the kernel K and the input xi:i+7, with a
convolutional stride set at (2,1).

The traditional SCNN employs a concatenation strategy
during information flow, convolving upper layer data with a
convolutional kernel and amalgamating the outcome with the
subsequent layer. Our refined SCNN adopts a replacement
strategy, concurrently selecting both upper and lower layers
for a convolution with a stride of (2,1), directly substituting
the result into the lower layer. This not only propels real-time
performance but also, by expanding the convolutional scope
of feature information, aids in capturing a more extensive
array of contextual data, thus bolstering feature representa-
tion. Moreover, the elimination of repetitive concatenation
operations mitigates the potential for information loss that
can arise when the cumulative values exceed unity during the
binarization process, fostering a more effective feature flow.
Additionally, in light of the gradual variation of lane marking
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FIGURE 3. ResNet34.

FIGURE 4. (a) Solid residual structure (b) Dashed residual structure.

features within a specified width and length range and the
inherent fault tolerance in spatial feature extraction, we sub-
stitute the standard convolution with depthwise separable
convolution, which, while safeguarding accuracy, enhances
the real-time processing capability.

D. BACKBONE NETWORK
The backbone network is predicated on the ResNet34 archi-
tecture. ResNet34 is a streamlined residual network adept
at extracting spatial color and texture features, comprising a
mere 34 layers. To facilitate connectivity with the impending
ST-RNN layer dedicated to temporal feature extraction, the
fully connected layer is omitted, preserving only the initial
33 convolutional layers. ResNet34 is organized into 4 Lay-
ers, each consisting of a series of identical BasicBlocks.
Fig. 3 exhibits the structural schematic of ResNet34, wherein
BasicBlocks of uniform color coalesce into a Layer, linked
by residual edges between successive BasicBlocks.

In Fig. 3, divergence in the channel count of images enter-
ing and exiting a residual edge is denoted by a dotted line,
while congruence is indicated by a solid line. Fig. 4 presents

the structural schematic for each variant of residual edge upon
its inaugural appearance in Fig. 3.

In Fig. 4(a), the channels of images interfacing with the
residual edge are equivalent; the principal segment com-
prises a duo of 3× 3 convolutions in sequence, subsequently
superimposed with the residual edge to procure the output.
Conversely, in Fig. 4(b), where the channel counts differ, the
principal segment consists of a pair of 3 × 3 convolutions
in series, with the residual edge undergoing an ancillary
1 × 1 convolution prior to amalgamation with the principal
segment to align the channel count of the resultant image.

ResNet34 serves to distill lane marking information per-
taining to texture and color. The combined utilization of
SCNN and ResNet34 constitutes the encoding segment of
the model, ensuring the exhaustive extraction of both global
features, such as the geometric contour and hue of lane
markings, and local features, including textural details. The
ST-RNN captures correlation information for each image in
a lane sequence over continuous time. The decoding layer
is primarily responsible for converting high-level seman-
tic information of lanes extracted in the encodinglayer into
pixel-level semantic information. The output of the final
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model represents the detection result for the last frame of the
lane sequence over continuous time.

E. SPATIAL-TEMPORAL RNN (ST-RNN)
A paramount challenge in lane detection lies in the accu-
rate recognition and tracking of dynamic shifts in vehicular
trajectories across a series of video frames. Lane markings
are distinguished by their inherent spatial-temporal conti-
nuity within natural settings: spatially, they are generally
characterized by smooth and unbroken lines; temporally,
their positions and configurations undergo gradual transfor-
mations in response to vehicular motion, often exhibiting a
degree of regularity. To harness this spatial-temporal data
comprehensively, this investigation adopts a Convolutional
Long Short-Term Memory (Conv-LSTM) architecture as the
cornerstone of the Spatial-Temporal Recurrent Neural Net-
work (ST-RNN) module, tasked with discerning the dynamic
attributes of lane markings through consecutive video frames.

The Conv-LSTM framework integrates the robust spatial
feature extraction prowess of Convolutional Neural Networks
(CNNs) with the sequential temporal analysis capabilities
inherent to Long Short-Term Memory (LSTM) networks.
This synergistic combination is particularly apt for addressing
the spatial-temporal complexities in lane detection. Within
the Conv-LSTM paradigm, convolutional operations sup-
plant the fully connected mechanisms typical of conventional
LSTM, thereby enabling the model to adeptly parse spatial
features of lane markings per frame, all while preserving the
integrity of temporal data. Furthermore, the gated controls
within Conv-LSTM judiciously orchestrate the timing for the
integration of novel input features and the expurgation of
obsolete data, thus safeguarding the uniformity and coher-
ence of lane marking features throughout the video sequence.

The architecture’s suitability for lane detection is under-
scored by its capacity to not only interpret intricate spatial
details within individual frames but also to monitor and
appraise temporal shifts in lane marking characteristics
across a succession of frames. Fig. 5 elucidates the oper-
ational principles of Conv-LSTM, where the convolutional
gates encode both spatial and temporal variations of lane
markings. This mechanism empowers the ST-RNNmodule to
effectively distill the sequential consistency and uniformity
of lane markings, thereby enhancing the precision of lane
detection predictions.

As illustrated in Fig. 5, the flow of information is mod-
ulated by the forget gate’s sigmoid unit, which adjudicates
the preservation or elimination of data from Xt and Ht−1 ,
with residual data proceeding to the input gate. The sigmoid
layer ascertains which data segments necessitate updates, and
the tanh layer formulates novel cell state data for subsequent
updates. The model’s final output is derived by amalgamat-
ing the output gate’s sigmoid-filtered information with the
tanh-processed memory cell data.

Conv-LSTM’s tripartite gate mechanism—encompassing
the forget gate (ft ), input gate (it ), and output gate (Ot )—
orchestrates the flow from memory cells (Ct ). These cells not

FIGURE 5. Conv-LSTM.

only encapsulate the characteristics of the current input but
also exert control over the transmission of antecedent infor-
mation via the forget and input gates. This design endows
Conv-LSTM with the facility to more efficaciously mar-
shal and harness antecedent data when processing sequential
datasets, thus capturing the sequence’s long-term depen-
dencies with greater acuity. The relational dynamics of
information transfer are encapsulated by (2)-(4):

it = σ (Wxi ∗ Xt +Whi ∗ Ht−1 +Wci ◦ Ct−1 + bi) (2)

ft = σ (Wxf ∗ Xt +Whf ∗ Ht−1 +Wcf ◦ Ct−1 + bf ) (3)

Ct = ft ◦ Ct−1 + it ◦ tanh(Wxc ∗ Xt +Whc ∗ Ht−1 + bc)

(4)

Herein, σ signifies the sigmoid activation function, ◦ rep-
resents the element-wise product of matrices, and ∗ indicates
convolutional operations. This empirical framework utilizes
convolutional operations for feature extraction, while gate
structures, comprised of sigmoid layers and point-wise mul-
tiplication maneuvers, selectively filter the information.

III. EXPERIMENTS
A. TVTLANE DATASET
The tvtLANE dataset [11], a derivative of the Tusimple
dataset, was utilized for the experiments. Detailed informa-
tion on the training and testing sets is delineated in Table 1.
The tvtLANE dataset is composed of two components: high-
way sections and rural road segments. The highway sections
are derived from the Tusimple dataset, while the rural road
segments are gathered from rural areas in China. Each image
within the dataset is standardized to a resolution of 128 ×
256 pixels. The training set comprises 9548 labeled images,
which underwent a fourfold data augmentation process. The
testing set consists of 1268 labeled images. To augment
the dataset, the 13th image from each Tusimple sequence
was labeled, and an additional 1148 rural road images were
incorporated to broaden the dataset’s coverage. The dataset
was organized into 19383 sequences, with each sequence
containing images from five consecutive time points.

In acknowledgment of the proportionality between driving
speed and the distance coveredwithin identical time intervals,
the training set was sampled at intervals of 1, 2, and 3, while
a consistent interval of 1 was maintained for the testing set

VOLUME 12, 2024 40081



J. Li et al.: Enhanced SCNN-Based Hybrid Spatial-Temporal Lane Detection Model

TABLE 1. The training set and test set of tvtLANE.

TABLE 2. Sampling methods for the tvtLANE training set.

to preserve lane continuity. The sampling strategy for the
tvtLANE training set is explicated in Table 2. To detect con-
tinuous scenes, the model acquires knowledge of a sequence
of lane marking image features during a single training itera-
tion, wherein each sequence comprises

5 images. Utilizing information from the first 4 images, the
model aids in learning the lane marking positions depicted in
the final image, which is the sole image containing labels.
Each row in the figure represents a distinct sampling interval,
capturing a series of lane marking images and their corre-
sponding labels at consecutive time intervals.

The tvtLANE dataset encompasses a spectrum of diverse
scenarios as illustrated in the Fig. 6: with the former four
rows representing the antecedent four frames, the fifth row
corresponding to the incumbent frame, and the sixth row
depicting the Ground Truth pertinent to the current frame.
Scene 1 epitomizes the prototypical and most facilely iden-
tifiable scenario—a straight roadway under clement skies.
Scene 2 replicates the serpentine thoroughfares characteristic
of alpine passes or intricate junction turns, whereas Scene 3
illustrates a curvilinear segment of roadway enshrouded in
shadows, notwithstanding the presence of vehicular obstruc-
tions. Scenes 4 through 7 are representative of a variety
of conditions encompassing low luminance with unilateral
shadowing, low luminance beset by vehicular occlusions and
bilateral shadows, hyperexposure, and the complex interplay
of light during the waning hours of the day, respectively.
Scene 8 reflects the widespread issue of lane degradation,
particularly prevalent on rural and suburban roads. Scene 9
exhibits instances of vehicular occlusion under low light
conditions. Scene 10 presents a straight segment of roadway
under the cloak of shadows, while Scene 11 delineates a
curvaceous section of the road under low light conditions.

TABLE 3. Hyperparameters of the experiment.

B. EXPERIMENTAL ENVIRONMENT
To ensure a fair comparison across all experiments, we main-
tained a consistent experimental environment. Every test was
conducted on an Ubuntu 20.04 operating system with iden-
tical hardware specifications, including an Intel(R) Xeon(R)
Platinum 8358P CPU@ 2.60GHz, an RTX 3090 GPU, 90GB
of RAM, and 50GB of storage. The use of a uniform plat-
form mitigates any performance variations due to system
differences, thereby isolating the impact of the experimental
variables under study.

C. EXPERIMENTAL HYPERPARAMETERS
The hyperparameters, as enumerated in Table 3, were stan-
dardized across all experiments to ensure comparability.
The selection of these hyperparameters was grounded in
established practices within the field and previous empirical
findings that suggest their suitability for the models and
datasets employed in our research. A fixed epoch count of 10,
an initial learning rate of 1e-3 with a step decay schedule, and
the Adam optimizer were used consistently unless the investi-
gation required specific alterations to these parameters. Such
changes, if any, were part of a controlled approach to evalu-
ate their influence on the model’s performance. To enhance
the model’s generalization capabilities, data augmentation
techniques such as random cropping, rotation, and flipping
were incorporated into the training process. Additionally, the
training process involved a detailed learning rate adjustment
strategy, including the setting of an initial learning rate and
applying a step decay schedule to modulate the learning rate
effectively.

We took additional measures to promote the reproducibil-
ity of our experiments, including the use of a specific
deep learning framework, PyTorch 1.10.0, and CUDA ver-
sion 11.3, to eliminate variability due to software differences.
Detailed documentation of the experimental procedures,
along with the explicit declaration of software and hardware
environments, enables other researchers to replicate our setup
and validate our findings.

D. EVALUATION INDEX AND LOSS FUNCTION
The experiment undertook a segmentation performance eval-
uation on the lane dataset, employing Precision, Recall,
F1-score, and Accuracy as metrics to appraise the model’s
segmentation efficacy. Precision quantifies the ratio of true
positives within the positively detected sample set, while
Recall measures the fraction of true positives against the
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FIGURE 6. Scenarios with different continuous time series on the tvtLANE dataset.

total positive detections. TP (True Positive) corresponds to
the aggregate of pixel points accurately identified as posi-
tive, TN (True Negative) to the sum of pixel points correctly
classified as negative, FP (False Positive) to the sum of
pixel points falsely detected as positive, and FN (False Neg-
ative) to the sum of pixel points erroneously classified as
negative. The calculation formulas for Precision, Recall,
F1-score, and Accuracy are shown as (5)-(8). The selection
of Precision, Recall, F1-score, and Accuracy as metrics for
evaluating lane detection models is grounded in their ability
to provide a holistic understanding of model performance.
Precision is critical for assessing the model’s accuracy in
predicting lane markings, minimizing false positives, which
is paramount in avoiding misguidance in autonomous driving
scenarios. Recall measures the model’s ability to detect all
relevant instances of lane markings, ensuring that the vehicle
can recognize and follow the correct path. The F1-score
is employed as a harmonic mean of precision and recall,
offering a balanced metric that accounts for the trade-off
between identifying lane markings accurately and ensuring
no relevant markings are missed. Lastly, Accuracy serves as
an overarching measure of the model’s performance across
all predictions, giving a straightforward indication of its
effectiveness in lane detection tasks. Collectively, these met-
rics rigorously evaluate the model’s capability to perform
with high reliability and precision, essential qualities for
autonomous driving systems.

Precision =
TP

TP+ FP
(5)

Recall =
TP

TP+ FN
(6)

F1 − score =
2× Precision× Recall
Precision+ Recall

(7)

Accurary =
TP+ TN

TP+ TN + FP+ FN
(8)

For this study, the weighted binary cross-entropy loss func-
tion was adopted, as delineated in (9).

L = −
1
N

N∑
i=1

[ω · yi · log(pi)+ (1− yi) · log(1− pi)] (9)

Here, yi signifies the actual label for the ith sample, pi
denotes the predicted label for the ith sample, and N repre-
sents the total sample count. Given the stark disparity between
the pixel counts of lane markings and background regions,
and the imbalanced nature of the positive and negative sam-
ples, a weight ratio ω = 0.02:1.02 was judiciously chosen.

Additionally, given the high demand for real-time perfor-
mance in lane detection, the Time metric was used to denote
the detection duration for a single image, thus evaluating the
model’s inference speed.

E. EXPERIMENTAL RESULTS ON TVTLANE DATASET
The experiments were designed to probe the influence of
SCNN enhancements and the selection of backbone net-
works on the lane detection model’s performance. Prior
research [24] has verified the beneficial impact of incor-
porating SCNN; therefore, our experimental framework
centered around five pivotal variables: the backbone network
choice,the method of inputting sequential images into SCNN,
SCNN’s information flow strategy, the sliding stride size
post-SCNN enhancement, and the channel dimensions of
feature maps pre- and post-enhanced SCNN input. By sys-
tematically varying these parameters, our objective was to
meticulously assess their individual and collective effects on
model accuracy and real-time execution. The experimental
outcomes are presented in Table 4. No. 1-No. 5 utilized
Segnet as the backbone network, whereas the remaining
configurations adopted ResNet, altering the five critical fac-
tors to determine their influence on accuracy and temporal
efficiency. To ensure the fairness and comparability of our
experiments, we standardized the training process by setting
the number of epochs to 10 for each experimental condition.

The findings underscore that models with ResNet as the
backbone network generally outperformed those with Seg-
net in terms of Accuracy and F1-score. Notably, the
ResNet_s = (8,16)_64 configuration from No. 6 achieved an
exemplary Accuracy of 95.4819% and an F1-score of 0.8562.
In the realm of Recall, the Segnet_s= (1,1)_64 configuration
reached a peak of 0.9996, highlighting its remarkable ability
to retrieve positives. The highest Precision was recorded in
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TABLE 4. Experimental results on tvtLANE dataset.

No. 8’s ResNet_s = (4,8)_128 configuration, at 0.9994.
These insights suggest that Segnet may be preferable when
the focus is on minimizing false negatives, while ResNet
is more adept at delivering high-precision detection. Our
proposed model is Resnet_ s = (4,8)_64 of No. 8, which can
balance Precision and Recall better, in addition, latency is
less.

Following the comprehensive evaluation of the proposed
models based on a consistent number of training epochs,
model No. 8 emerged as the optimal candidate in terms
of performance. In order to enable the model to learn fea-
ture distributions in a wider range of challenging scenarios,
we introduce the Tusimple dataset and retrain the proposed
model. After the initial training phase on the Tusimple
dataset, the obtainedmodel weights served as a robust starting
point for transfer learning, effectively functioning as pre-
trained parameters. Subsequent retraining of model No. 8 on
the tvtLANE dataset resulted in marked improvements in
various performance indicators. When evaluated against the
tvtLANE dataset, the model demonstrated exceptional Accu-
racy, achieving 97.87%, along with an F1-score of 0.943, a
Precision of 0.897, and a Recall of 0.994. This enhancement
in performance is attributable to the transfer learning process,
which allowed the model to develop a deeper understanding
of the feature distribution specific to the tvtLANE dataset,
thereby improving its precision in detecting lane markers
within the pertinent road segments.

F. SELECTION OF BACKBONE NETWORKS
The backbone networks under scrutiny were Segnet and
ResNet34, evaluated for their respective performances in
lane detection. Qualitative analysis involved monitoring the
variation in model Accuracy and F1-score across epochs for
the 12 experimental groups, as documented in Table 4 and
illustrated in Fig. 7 and Fig. 8.Fig. 7 depicts a trajectory of
ascending Accuracy over the training epochs before reaching
a plateau. Particularly, No. 6, 9, and 11 achieved superior
final accuracy levels,with No. 1 and 6 demonstrating rapid
convergence. This trend suggests that models with ResNet as
the backbone tend to excel in Accuracy.

FIGURE 7. Curve of accuracy as a function of epoch.

FIGURE 8. Curve of F1-score as a function of epoch.

Similarly, the evolution of F1-score in Fig. 8 mirrors that
of Accuracy, with an initial increase followed by stabilization
over the course of training epochs. Once more, No. 6, No. 9,
and No. 11 attained commendable final F1-score, with No. 1
and No. 6 showing swift convergence rates. This reinforces
the superiority of ResNet-backed models in performance.

The advantage of ResNet can be ascribed to its innova-
tive residual connections, which mitigate the vanishing and
exploding gradient issues in deep networks. ResNet main-
tains robust performance even within deeper architectures
and can capture a richser spectrum of abstract features,
thus amplifying model performance. Consequently, for lane
detection tasks that hinge on advanced feature representa-
tions, ResNet as the backbone network is often the superior
choice, particularly for applications where detection accuracy
is paramount.

Nonetheless, when compared to ResNet’s benefits,
Segnet’s streamlined architecture offers an advantage in infer-
ence speed due to its elimination of redundant computations
in residual connections, significantly curtailing inference
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time. The experimental data indicates that Segnet-basedmod-
els approximately double the inference speed of their ResNet
counterparts, providing a notable edge for real-time lane
detection systems that necessitate swift responses. Hence,
Segnet emerges as the more apt option when immediacy is
the primary concern.

G. THE METHODOLOGY OF SEQUENTIAL IMAGE INPUT
TO THE ENHANCED SCNN
In this study, we evaluated two distinct sequence image input
methodologies: pre-stacking prior to input and direct input.
The efficacy of these methods was comparatively analyzed
in experiments delineated as No. 1 and No.5. Specifically,
No. 1 implemented the pre-stacking technique, whereas
No. 5 utilized the direct input approach. The results of No. 1
revealed an Accuracy of 95.094% and a Recall of 0.9996,
with F1-score and Precision measured at 0.7170 and 0.8350,
respectively. By contrast, No. 5 reported an Accuracy of
94.2032%, a Recall of 0.9632, with the F1-score and Preci-
sion being 0.7491 and 0.8772, accordingly. Despite a slight
reduction in Accuracy and Recall by 0.89% and 3.64%,
respectively, for the pre-stacking method, it demonstrated
a notable enhancement in the F1-score and Precision by
approximately 3.21% and 4.22%. These findings suggest
that the pre-stacking input method, while compromising on
overall classification accuracy, offers improved performance
in terms of the trade-off between false positives and false
negatives.
Latency, the measure of temporal cost, was comparable

between the two input strategies. The latency was 0.4453 s
for No. 1 and 0.4293 s for No. 5, with a negligible disparity
of merely 0.016 s. The direct input strategy necessitated the
processing of five images, each with a channel count of ’c’,
whereas the pre-stacking approach involved a single image
with a channel count of ’5c’. Batch processing capabilities
allowed for concurrent processing of the five images, thereby
equalizing the processing time for both input methods. Given
that the channel count did not exceed 1000—a threshold
beyond which inference times typically increase—the time
required for both methodologies was essentially identical.

In conclusion, the pre-stacking input method, despite a
modest reduction in Accuracy and Recall, resulted in gains
in F1-score and Precision, which may render it more suit-
able for applications requiring heightened detection accuracy.
The negligible difference in temporal overhead between the
approaches ensures that users can employ the pre-stacking
method without significant concerns about computational
delay. This presents a versatile option for the implemen-
tation of lane detection algorithms within the constraints
of embedded systems or in scenarios demanding real-time
computation.

H. INFORMATION FLOW STRATEGIES ADOPTED BY
ENHANCED SCNN
In this study, we evaluated two distinct information flow
strategies within the Spatial-Temporal Recurrent Neural

Network (SCNN): concatenation and replacement. These
strategies were compared in No. 1 and No. 3, with No. 1
implementing the concatenation strategy and No. 3 utilizing
the replacement strategy. The concatenation approach yielded
an Accuracy of 95.094% and a Recall of 0.9996, accompa-
nied by an F1-score of 0.7170 and a Precision of 0.8350.
Conversely, the replacement strategy resulted in a marginally
reduced Accuracy of 94.567% and Recall of 0.9912 but
demonstrated enhanced Precision and F1-score values of
0.8512 and 0.7335, respectively. This suggests that while the
replacement strategy may slightly compromise classification
Accuracy, it offers superior performance in mitigating false
positives and false negatives, which is crucial in reducing
error rates for lane detection tasks. The capacity to minimize
such errors is particularly important; false positives can lead
to unwarranted vehicle maneuvers, and false negatives may
fail to identify potential hazards, both of which elevate the
risk of traffic incidents. The replacement strategy’s advan-
tage lies in its improved error trade-off, thereby refining the
model’s discriminative ability for lane detection.

Moreover, the replacement strategy is time-efficient,
requiring only 0.223 s for inference, in contrast to the 0.445 s
necessary for the concatenation strategy. This substantial time
reduction can be attributed to the fewer operations involved
in the replacement strategy’s information flow process.
Theoretically, the temporal cost for the replacement strat-
egy encompasses convolution and replacement operations,
whereas the concatenation strategy involves convolution and
concatenation operations. With a sliding stride of 1 and an
input feature map size of 64×128 for SCNN, the replacement
strategy necessitates 32 convolutions and replacements in
the top-down process, compared to the 64 convolutions and
63 concatenations required by the concatenation strategy. The
reduced operational count in the replacement strategy, which
is approximately half that of its counterpart, accounts for its
expedited processing time. The high real-time performance
of the replacement strategy is vital for lane detection tasks,
where swift and precise responses are essential for maintain-
ing vehicular safety. Conversely, the concatenation strategy,
with its more complex transmission process, may result in
prolonged inference times, rendering it less suitable for high
real-time demand scenarios.

In summary, the replacement strategy outperforms the
concatenation strategy in achieving a balance between accu-
racy and real-time efficiency for lane detection,thus offering
significant benefits for the advancement of lane detection
systems.

I. ENHANCED SCNN SLIDING STEP SIZE ‘S’
The effect of the sliding stride s on the SCNN’s perfor-
mance post-improvement was investigated to substantiate
the experimental outcomes and enhance their credibility.
SCNN models based on Segnet and ResNet architectures
were refined, and sliding strides s of (1,1), (4,8), and (8,16)
were tested. These modifications were reflected in No. 2 and
No. 4, No. 6 and No. 9, and No. 7 and No. 8, respectively. For
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s = (1,1), the model demonstrated the highest performance
metrics but also the longest inference time; specifically, No. 2
and No. 4 achieved an Accuracy of 95.6%, Recall of 0.9985,
F1-score of 0.7255, and Precision of 0.8432, with an infer-
ence time of 0.55 s. As the sliding stride increased to (4,8),
a decrease in performance metrics was observed, along with
a substantial reduction in inference time to 0.35 s, as evi-
denced by No. 6 and No. 9. This indicates that a sliding
stride of s = (4,8) provides a more optimal balance between
performance and temporal efficiency. Further incrementing
the sliding stride to (8,16) resulted in a continued decrease
in performance metrics, with No. 7 and No. 8 reporting an
Accuracy of 93.7%,Recall of 0.9910,F1-score of 0.7050, and
Precision of 0.8190, and an inference time of 0.36 s.
These findings suggest that while s = (1,1) offers a

slight improvement in performance metrics at the expense
of increased inference time, s = (4,8) achieves a favorable
balance between the two, and s = (8,16) demonstrates a
decline in performance with no significant time efficiency
gain. With s = 1, convolution operations are computed layer
by layer, which, due to separate computation and memory
access for each convolutional layer, results in decreased GPU
utilization efficiency and, consequently, a longer process-
ing time. Increasing s from (1,1) to (4,8) compromises the
inter-layer information correlation, leading to a reduction
in Accuracy-related metrics. Further increasing s from (4,8)
to (8,16) employs traditional multi-level convolutions with
improved GPU efficiency but does not significantly decrease
inference time.

In scenarios where high real-time performance is
paramount, such as autonomous highway driving, a medium-
sized sliding stride (e.g., s = (4,8)) may be preferable to
maintain high Accuracy while minimizing inference time.
Conversely, in complex urban environments where detection
Precision is crucial, a smaller sliding stride (e.g., s = (1,1))
should be selected to enhance Accuracy.

J. THE FEATURE MAP CHANNEL DIMENSIONS PRE- AND
POST-ENHANCED SCNN INTEGRATION
This investigation focused on the impact of channel size vari-
ations on the performance of the Spatial-Temporal Recurrent
Neural Network (SCNN) by evaluating configurations with
48, 64, 80, and 128 channels. The corresponding results are
detailed in No. 8, No. 9, No. 10, and No. 11. Specifically,
No. 8, with a channel size of 64, yielded an Accuracy of
94.8%, a Recall of 0.9952, an F1-score of 0.7183, and a
Precision of 0.8310, with an inference duration of 0.35 s.
A reduction in channel size to 48 (No. 9) led to a slight
decrease in performance, albeit with a marginal reduction
in inference time. Conversely, increasing the channel size to
80 and 128, as explored in No. 10 and No. 11, did not result
in notable performance gains but did incur longer inference
times due to increased model complexity. These observations
suggest that a channel size of 64 is optimal, providing the
SCNN with adequate representational capacity for high per-
formance without incurring unnecessary

In essence, No. 8 stood out by combining representational
Accuracy with the shortest inference time. The channel size
of 64 was found to be sufficient for the SCNN to accurately
capture the features of the lane images without restricting
the model’s capacity or adding complexity that might lead to
overfitting or increased computation. In summary, a channel
size of 64 strikes an optimal balance between inference speed
and representational capability, rendering it ideal for lane
detection applications.

K. CONFUSION MATRIX AND P-R CURVE
In the domain of lane detection, the precise evaluation of
a proposed method’s performance is critical. The confusion
matrix is an established tool for gauging the efficacy of neural
networks in discerning various categories, offering a lucid
approach to appraise the model’s proficiency in identifying
lanes (the positive class) versus non-lane regions (the back-
ground or negative class).

To elaborate, each column of the confusion matrix aligns
with a category as predicted by the model, whereas each
row reflects the actual true category. Within the realm of
lane detection, attention is predominantly directed towards
two categories: lanes and background. Hence, the confusion
matrix is categorized into four segments: True Positive (TP),
False Positives (FP), True Negatives (TN), and False Nega-
tives (FN). Here, TP denote the accurately detected lanes, and
TN indicate the correctly identified background. Conversely,
FP pertain to background erroneously labeled as lanes, and
FN to lanes that have been overlooked.
For the empirical segment of this research, the confu-

sion matrix is utilized to ascertain the performance of our
advanced lane detection model on both the TuSimple and
tvtLANE datasets.The TuSimple dataset is an extensively
recognized benchmark in lane detection, while the tvtLANE
dataset has been expressly compiled and labeled for this
investigation, enriching the diversity and complexity of our
testing scenarios. The derived confusion matrices from these
datasets are depicted in Fig.9. Analysis of these matrices
facilitates a profound comprehension of the proposedmodel’s
merits and constraints in the lane detection task, in addition to
its generalization potential across varied road environments.

In the domain of lane detection, the Precision-Recall (P-R)
curve is an invaluable tool that reflects the ability of themodel
to discern lanes from the surrounding background at various
threshold levels. This curve succinctly captures the essential
balance between precision—the proportion of true lane detec-
tions among all detected lanes—and recall, the proportion of
true lane detections out of the lanes present in the dataset,
across each threshold. The inherent complexityand variabil-
ity of driving environments, coupled with the unpredictable
nature of road conditions, necessitate a judicious optimization
of the threshold to fine-tune the model’s performance for lane
detection. Our experiments have entailed the plotting of the
P-R curve for our proposed hybrid spatial–temporalmodel for
lane detection, utilizing the TuSimple and tvtLANE datasets.
These plots are depicted in Fig. 10.
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FIGURE 9. Confusion matrices on different datasets: (a) tvtLANE dataset; (b) Tusimple dataset.

FIGURE 10. P-R curves on different datasets: (a) tvtLANE dataset; (b) Tusimple dataset.

TABLE 5. Real-time performance analysis.

On the tvtLANE dataset, the model’s Recall hovers around
0.998, signifying its proficiency in detecting the vast majority
of true lane markings. Nonetheless, the initial low Precision
suggests a susceptibility to false positives. In contrast, on the
Tusimple dataset, the model sustains a comparably elevated
Recall without a marked decline. The Precision commences
at a robust 0.833 and progressively increases, implying that
enhancing the model’s confidence threshold correlates with a
reduction in false positives. These trends affirm the proposed
model’s efficacy in lane detection.

L. REAL-TIME PERFORMANCE ANALYSIS
In scenarios involving high-speed vehicular travel, the sur-
rounding environment undergoes rapid changes, demanding
that lane detection algorithms process high- definition video
streams efficiently. It is, therefore, imperative to perform a
real-time analysis of lane detection algorithms to evaluate
their suitability for use in autonomous or assisted driving
systems. The algorithm’s efficiency directly influences the
response time and reliability of these systems. To ascertain

the capability of the lane detection algorithm to perform
consistently under dynamic conditions, a real-time analysis
was conducted on various methods, as delineated in Table 5.

In real-time analysis, our primary focus is on four metrics:
Parameters, GFLOPs (Giga Floating Point Operations Per
Second), Latency, and FPS (Frames Per Second). GFLOPs
is commonly used as a standard for evaluating model compu-
tational complexity and performance, with higher GFLOPs
typically indicating a greater demand for computational
resources. Latency represents the inference time for a single
image, FPS is the reciprocal of latency, and Parameters
denote the size of the model parameters.

During the real-time analysis, the ResNet_s =(4,8)_64
configuration was highlighted for its ability to achieve an
F1-score of 0.8433, which, although slightly lower than that
of the (1,1) stride configuration, was deemed acceptable
in light of real-time constraints. Remarkably, ResNet_s =
(4,8)_64 demonstrated significant advantages in computa-
tional efficiency, with 175.831 GFLOPs and a latency of
0.0517 s, substantially surpassing the 0.1223 s latency and
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198.789 GFLOPs of the (1,1) stride configuration. This
indicates that the algorithm represented by ResNet_s =
4,8)_64 requires fewer computational resources during exe-
cution, implying better optimization and lower algorithmic
complexity. This model achieved the highest frame rate of
19.342 frames per second (FPS), outperforming the 8.177
FPS rate of the smaller stride setting. These findings reveal
that by optimizing the stride and channel count within the
SCNN, the ResNet_s = (4,8)_64 configuration consider-
ably improves the model’s real-time processing capabilities,
which is integral for autonomous driving systems that require
swift decision-making. Consequently, ResNet_s = (4,8)_64
shows promise for delivering both high efficiency and robust
performance in lane detection tasks.

To conclude, our experimental outcomes indicate that
careful optimization of the backbone network and SCNN
parameters can significantly enhance the efficacy of lane
detection models. In particular, the integration of an opti-
mized SCNN into a ResNet backbone not only preserves
accuracy but also satisfies the real-time processing demands
essential for the practical deployment of lane detection
systems.

M. VISUALIZATION OF DETECTION OUTCOMES
Visualize the 11 diverse scenes contained in the above Fig. 6.
By feeding these sequential images from disparate scenarios
into a dozen model groups, we have obtained the detection
results for scenarios on the tvtLANE dataset, as illustrated in
Fig. 11. The representation of these outcomes is such that for
each model group, the inaugural row manifests the model’s
output lanes detected are emblazoned in red against the back-
drop of the original input image; the subsequent row reveals
the model’s binarized output, exclusively containing lanes,
where white denotes detected lanes, and black constitutes the
background.

These results conspicuously exhibit disparities in lane
detection efficacy among the models when handling diverse
scenarios. In the rudimentary Scene 1, all twelve model
groups evince commendable detection capabilities. However,
in the sunny curved scenarios of Scenes 2 and 3, models
from No. 1 to No. 5 render relatively rudimentary detection
outcomes, with pronounced deficiencies at the convergence
points in the distance; conversely, models from Experi-
ments 6, 9, and 10 approximate the Ground Truth more
closely, indicating superior detection outcomes. Scenes 4 to 7
challenge the models’ resilience to luminance fluctuations,
and No. 1, No. 6, No. 10, and No. 11 demonstrate substantial
robustness. In Scene 8, characterized by lane degradation, all
models save for those from No. 4, No. 5, and No. 12, capably
discern the lanes.In scenes 9-12, except for experiments 1,
4, and 10, the performance of the other models is generally
good. We particularly focus on the proposed model, i.e.,
No. 8, which demonstrates effective adaptability to various
challenging environments.

An aggregate analysis of detection outcomes across all
scenarios enables us to infer that the selection of the backbone

network is a pivotal determinant of detection performance.
Models from No. 2 to No. 5 generally underperform relative
to those from No. 6 to No. 11, and the inferior results of
No. 12 can be ascribed to an overabundance of feature map
channels introduced into the SCNN post-expansion via 1× 1
convolution, engendering a dilution of feature information
among feature maps and thereby impeding the model’s lane
detection efficacy. These insights accentuate the significance
of judicious backbone network selection and channel num-
ber calibration in the engineering of lane detection models
to assure proficient and precise detection across variable
environments.In the conducted lane detection experiments,
beyond the choice of backbone network, additional variables
such as the sequential image input technique into the SCNN,
the SCNN’s information flow paradigm, the magnitude of
the sliding step s, and the dimensionality of the feature
map channels all markedly sway the detection outcomes.
The pre-input stacking approach outperforms in reconciling
false positives with non-detections, while the replacement
information flow strategy enhances the precision and depend-
ability of the model more effectively. Modulation of the
sliding step s indicates that an intermediate step maintains
detection accuracy whilst bolstering the model’s inferen-
tial velocity, particularly apt for scenarios with stringent
real-time exigencies.Optimization of feature map channel
dimensions suggests that a median channel count can strike
a balance between representational capacity and computa-
tional expediency, with a 64-channel configuration exhibiting
superior performance across diverse scenarios. These revela-
tions emphasize the imperative of a holistic consideration of
various elements in the conceptualization of lane detection
models to attain optimal detection outcomes in an array of
scenarios. For instance, in scenarios with pronounced light-
ing variability, an information flow strategy with augmented
resistance to interference may be requisite, while in contexts
demanding high real-time responsiveness, electing an appro-
priate sliding step s becomes paramount to balance inferential
speed with detection precision.

N. VISUALIZATION RESULTS BASED ON CAM
In the domain of lane detection, given the unpredictability of
lighting conditions, obstructions, and road surface statuses,
more intuitive visualization techniques are necessitated for
the analytical assessment and enhancement of detection
results. The visualization methodology previously employed,
entailing the generation of binary detection images and the
concatenation of detected lanes onto the original image, falls
short in affording an in-depth comprehension of the model’s
decision-making processes.To facilitate a more lucid under-
standing and corroboration of the model’s behavior, Class
Activation Mapping (CAM) is utilized for a visualization
of heightened interpretability. CAM employs a heatmap to
accentuate the image regions that the neural network prior-
itizes during classification decisions, with intensifying hues
toward red denoting heightened neural attention. A heatmap
that aligns high response zones with actual lane locations
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FIGURE 11. The detection results of different scenarios on the tvtLANE dataset.

FIGURE 12. Visualization results based on CAM on the tvtLANE dataset.

bespeaks the model’s robust generalization capacity and
reliability. In contrast, high response zones manifesting in
non-lane areas indicate susceptibility to occlusions, lighting
shifts, and other perturbations. Fig. 12 presents the CAM
heatmaps of the proffered model on both the TuSimple and
tvtLANE datasets. It can be seen that the pixel values in the
lanes show red, while the background parts show yellow or
even blue, indicating that the model pays greater attention to
the lanes and lower attention to the background.

O. COMPARATIVE ANALYSIS OF VARIOUS LANE
DETECTION METHODS ON THE GENERAL DATASET
TUSIMPLE
In our rigorous assessment, we benchmarked an array
of lane detection algorithms against our proposed model.
The selected lane detection models span a spectrum of
methodologies, including, but not limited to, Eigenlanes,
SCNN, ENet-SAD, RESA, LaneAF, LSTR, FOLOLane,

CLRNet, LaneATT, and CondLane, each predicated on dis-
tinctive operational principles. For instance, Eigenlanes,
CLRNet, and LaneATT employ anchor-based detection;
SCNN, ENet-SAD, RESA, and LaneAF engage semantic
segmentation; LSTR is predicated on a model-based frame-
work; FOLOLane capitalizes on keypoint estimation; while
CondLane executes a row-wise approach to detection.

As delineated in Table 6, our model demonstrates a notable
advantage over existing algorithms. Achieving a processing
throughput of 19.3 FPS, the model attains an exemplary
Accuracy of 98.21%. When juxtaposed with other models
utilizing ResNet and DLA architectures, such as CLRNet
with anAccuracy of 96.87%, and LaneATT, closely following
at 96.83%, our model evidences a substantial Accuracy incre-
ment of 1.34% and 1.38%, respectively. Moreover, relative
to the SCNN, a seminal semantic segmentation-based lane
detection approach, our model registers a 1.68% uplift in
Accuracy. Such results underscore that our proposed model
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TABLE 6. Comparison with different algorithms on the Tusimple dataset.

not only excels in Accuracy metrics but also retains the
essential attribute of real-time processing capability.

IV. CONCLUSION
To address the challenges of lane detection in complex
scenarios characterized by lane wear, uneven illumination,
and vehicle obstructions, which lead to suboptimal detec-
tion performance and insufficient real-time capabilities, this
study redefines the task of lane detection as a binary seman-
tic segmentation problem. Consequently, a novel hybrid
spatial-temporal model for lane detection has been success-
fully developed and empirically validated. This model is
designed to process a temporal sequence of lane imagery,
striving to meet the stringent demands for accuracy and
real-time processing in lane segmentation within real-world
applications.

The proposed model consists of four distinct stages. The
initial stage involves preprocessing the input images from
sequential time frames, which aims to extract salient fea-
tures and reduce computational complexity by downscaling
and amalgamating the images. Following this, the SCNN
is enhanced with an increased sliding step and replacement
strategies to expedite the flow of feature information. The
ResNet-34 architecture, in conjunction with our enhanced
SCNN, constitutes the model’s encoder. ResNet-34 is tasked
with extracting the lanes’ global features, encompassing
shape and color characteristics, whereas the enhanced SCNN
capitalizes on the inherent continuity of lane markings to
extract their shape features. Subsequently, the Conv-LSTM
module is employed to instantiate the ST-RNN, which
extracts features correlating across the temporal image
sequence. The final stage involves the decoder, which trans-
lates the high-level semantic information elicited by the
encoder into pixel-level semantic information, culminating
in precise lane detection. The output of the decoder presents
the detection outcome for the last temporal frame in the
sequence of lane images. Experimental results corroborate
that our proposed model not only demonstrates exceptional
robustness but also adeptly balances accuracy with real-time
performance in comparison to benchmark models. This

research introduces an innovative deep learning model design
paradigm for the realm of lane detection.

This manuscript delves into the exploration and examina-
tion of lane detection in complex environments, employing
convolutional neural networks to process sequential imagery.
The method’s efficacy is substantiated through comprehen-
sive experimentation. Nonetheless, the current state of lane
detection in intricate settings is fraught with challenges and
obstacles, indicating considerable potential for enhancement.
Firstly, there is an imperative to explore more lightweight
network architectures to improve the real-time deployment
of lane detection, rendering the model more amenable to
embedded systems and edge computing devices, hence pro-
viding more efficient solutions for real-life applications in
automated or assisted driving. Secondly, further investigation
into the instance segmentation of multiple lanes is imperative,
aiming to refine the perception and adaptability of the lane
detection system. This endeavor has implications that extend
beyond the advancement of autonomous driving technology,
offering tangible industrial value for sectors such as urban
traffic management. By integrating these initiatives within
our research framework, we seek to steadfastly propel the
industrial application of intelligent transportation systems
and self-driving vehicles.
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