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ABSTRACT Android is widely recognized as one of the leading mobile operating systems globally. As the
popularity and usage of Android OS and third-party application stores continue to soar, the process of
developing and publishing applications has become increasingly accessible. However, the absence of a
robust filtering mechanism to ensure that applications only request appropriate and secure permissions
poses a significant concern. While extensive research has been conducted on malware analysis, the realm
of intrusive applications remains largely unexplored. The lack of defensive measures to promptly identify
invasive applications tilts the balance in favor of malicious actors and developers who may embed intrusive
behavior within their products. It is imperative to develop new monitoring tools and techniques that address
these privacy gaps. In light of this, we propose a Continuous Threat Monitoring Framework (CTMF)
designed to safeguard mobile users from intrusive apps both before and after installation. Our framework,
implemented and evaluated in the Android environment, offers practical deployability without imposing
excessive overhead. It fills the void by considering the changes occurring within an app while it remains on a
user’s device, setting it apart from existing anti-intrusiveness solutions primarily focusing on app installation.

INDEX TERMS Insider threats, intrusive applications, android applications, mobile security, threat analysis.

I. INTRODUCTION
Android stands out as one of the most prevalent and depend-
able mobile operating systems, with a staggering 3.3 billion
global users in 2023, securing a substantial 71.8% share
of the mobile operating systems market [1]. This pervasive
adoption can be attributed to the platform’s modularity and
accessibility, with free development tools like Android Studio
facilitating widespread application creation [2]. As of March
2023, the Google Play Store hosted an extensive array of
2.67 million apps, underscoring the integral role mobile
applications play in our daily lives [3].

The associate editor coordinating the review of this manuscript and

approving it for publication was S. K. Hafizul Islam .

However, amidst this digital landscape, an alarming trend
emerges—nearly 49% of U.S. consumers, as per McAfee’s
report, neglect to employ mobile security software, rendering
them susceptible to sophisticated cyber threats and data
breaches [4]. The Android permission system stands as the
primary defense against these perils, intending to alert users
to permission requests before granting them. However, its
effectiveness has been questioned, especially due to users’
inattention and misunderstanding of the system’s prompts.
This has been highlighted by prior studies [5], [6], [7].

To address these concerns, researchers have proposed
supplementary solutions, such as improving the usability and
effectiveness of the Android permissions system, particularly
against intrusive third-party applications [8], [9], [10], [11],
[12], [13], [14], [15], [16], [17]. These endeavors primarily
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aim to assist users in selecting less invasive applications
or replacing installed apps with more secure alternatives.
However, a critical observation reveals that many of these
solutions are limited in capturing the evolving permission
requests across different app versions.

Our investigation into existing works revealed a common
limitation—they rely on a single snapshot of the declared
configurations such as permissions and system actions [8],
[9], [10], [11], [12], [13], [14], necessitate changes to the
underlying operating systems [15], [16], or primarily target
developers rather than end users [17]. Thus, we believe that
these solutions might fall short of capturing the dynamic
evolution of permission requests over various app versions.

In response, our research introduces theContinuous Threat
Monitoring Framework for Android applications, leveraging
a cutting-edge scoring mechanism proposed in [10]. Unlike
existing approaches, our framework adopts a live scoring
approach, evaluating an app’s score based on its declared
permissions as well as its actual usage over its lifespan on
the device. We employ an altered growth rate formula to
scrutinize changes in permissions usage across different app
versions [18]. Our work makes four novel contributions:
(i) adopting a scoring technique demonstrated to outperform
counterparts in recent literature [14], (ii) introducing the
concept of live scoring, (iii) utilizing an altered growth
rate formula to detect anomaly usage of permissions, and
(iv) providing a detailed implementation addressing intricate
technical challenges.

This paper is structured as follows: Section II delves into
related works, Section III discusses the technical background
of our framework, Section IV provides insights into the
implementation specifics, and finally, Section VII concludes
our research.Wewould like to emphasize that the source code
and data used in this research will be made available upon the
paper’s acceptance.

II. RELATED WORKS
This section summarizes the related works on risk assessment
techniques and server-side-independent solutions.

Before Android 6.0, numerous works in this research area
existed, but we will not delve into them due to significant
changes introduced in Android after that version. From
Android 6.0 onward, several studies were conducted to devise
risk assessment techniques. Yan Hu et al. employed the HITS
page ranking algorithm to construct a static call graph of
Android applications, aiding security analysts in identifying
vulnerabilities and sensitive methods in malware [8]. While
their primary focus is on malware, their approach offers
valuable insights. They encountered a similar challenge
to ours in extracting permissions-related information from
Google Play, opting for a third-party solution instead of
developing their own. Another work targeting malware was
Khariwal et al., who developed IPDroid, which takes another
approach to malware detection, employing a combination of
permissions and intents to identify the most effective mix
for detecting malware [19]. Chih-Chang et al. proposed a

framework for estimating privacy risk scores of mobile apps,
acknowledging the potential privacy concerns associatedwith
their data collection practices [9]. The authors devised an
automated privacy risk assessment, focusing on data access
permissions and privacy policies. The work leverages the
UT CID ITAP dataset, which comprises identity assets,
their vulnerabilities, and associated risk values. Identity
assets are collected from apps through privacy policies and
Android manifest XML files. We believe relying solely on
the information declared in the privacy policy and manifest
files may not accurately represent the app’s actual behavior.
User behavior, such as denying permissions or not reaching
specific functionalities, can impact the real-world privacy
risks associated with an app.

The scoring technique introduced by Mohsen et al. in their
paper [10] holds relevance to our work, as our framework
is built upon their ideas and concepts. Particularly the
notions of using user preferences, broadcast receivers, and
permissions to calculate the security score of an app. In their
study, user preferences are characterized as a rating score
the end user assigns to a permission group. Moreover,
Mohsen et al. incorporate the prevalence of broadcast
receivers’ actions in privacy score computations, representing
a noteworthy enhancement over other approaches such
as [11] and [12].

However, it’s important to note that their approach relies
solely on the information declared in the manifest file.
As mentioned earlier, some of these declared permissions
may never be activated or used. Additionally, their work
lacks discussion on the technical details of obtaining this
information directly from a mobile phone.

On a similar conceptual basis as our approach,
Rashidi et al. developed an advisory app that consistently
monitors requested permissions, offers recommendations,
and ranks applications [13]. Nevertheless, unlike our
application, which depends on a pre-computed seed dataset,
their app targets highly qualified users.

Several server-side solutions have been introduced, such as
the Privacy-Palisade app by Quattrone et al. [15]. This app
identifies outliers, specifically apps employing uncommon
permissions, using the Isolation Forest technique. The
solution requires changes to the Android OS, specifically
modifications to the Android Launcher. Our approach draws
the intrusiveness score from an app’s permissions, actions,
and user ratings. Importantly, extracting the app’s data man-
dates no modifications to the underlying operating system.
João Marono et al. presented an additional solution [16],
which comprises an Android app, a privacy quantification
module, and a server. In this solution, the server is responsible
for downloading and processing the source code of the
specified app, along with its configuration file. Subsequently,
the obtained results are forwarded to the quantification
module for score calculation, and the calculated score is
then transmitted back to the app. Notably, this approach has
limitations, as it does not address paid applications, analyzes
apps in isolation, without comparing them to similar apps
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or considering their descriptions, and overlooks the different
states of an application after its installation.

Rahman et al.’s research [17] similarly focuses on analyz-
ing the source code, utilizing static code metrics such as lines
of code and bad coding practices. SonarQube was employed
for metric extraction, and risk scores were generated using
the Androrisk tool. The primary objective of this study is
to assist developers in identifying privacy and security risks
during the early stages of application development. Notably,
the application of this approach to help users avoid intrusive
or vulnerable applications is constrained by SonarQube’s
requirement for access to the application’s source code.While
the research on intrusiveness or insider threat detection is
extensive, we cannot cover all the details within the confines
of this article. Therefore, we recommend referring to a
comprehensive and recently published literature review on
insider/intrusiveness detection for further information and
in-depth analysis [20].

In summary, our work brings forth novel contributions: (i)
we adopt a cutting-edge scoring technique, demonstrated to
outperform its counterparts in recent literature [14]. (ii) We
introduce the concept of live scoring. This approach assesses
an app’s score based on declared permissions and actual
usage over its lifespan on the device. (iii) We employ an
altered growth rate formula to scrutinize changes in permis-
sions usage across different app versions. (iv), we provide
a detailed implementation, addressing intricate technical
challenges.

III. TECHNICAL BACKGROUND, REQUIREMENTS &
PROPOSED FEATURES
In this section, we overview the basic concepts and quantita-
tivemetrics for calculating the intrusiveness of an application.
These concepts are fundamental to our work and define
conditions/notions on which the following proof of concept
has been developed. We also briefly explain a few technical
terms we use throughout the forthcoming sections.

A. TERMS AND DEFINITIONS
Below are the terms and definitions that we will be
referring to throughout the paper. To ensure a comprehensive
understanding, each term is accompanied by an explanation
of its significance and context within the framework:

• Broadcast Receivers Actions; Receivers Actions;
Actions: These terms are used interchangeably to refer
to the set of actions assigned to ‘<intent-filters>‘ of
broadcast receivers. This set of actions dictates how
the app responds to incoming broadcast messages,
influencing its behavior and functionality.

• Permissions: This term refers to the complete set of
permission strings requested by an Android application.
Permissions dictate the level of access an app has to
various system resources and user data.

• Receiver Score; Receiver’s Privacy Score: The privacy
score of an app is calculated based on the actions of
its broadcast receivers. This score reflects the app’s

potential privacy implications in terms of its interaction
with broadcast messages.

• Permissions Score; Permissions Privacy Score: This
score represents the privacy implications of an app based
on the permissions it requests. It evaluates the potential
risks associated with granting the app access to certain
system resources and user data.

• Seed Data Set: This is the reference data set of Android
applications used as a basis for evaluating and scoring
new apps. It serves as a benchmark for comparison and
analysis.

• Suggestion(s) Set: This subset of the seed data set is
specifically curated to improve app suggestions within
a particular genre. It helps refine recommendations
based on the characteristics and preferences of the target
audience.

• IRP (Individual Receiver/Permission Prevalence):
IRP measures the prevalence of a specific broadcast
receiver action / Permission within the sample set
of Android applications. It provides insights into the
frequency of usage of a particular action across different
apps.

• AORP (App Overall Receiver/Permission Preva-
lence): AORP aggregates the individual receiver preva-
lence scores to calculate the overall prevalence of
broadcast receiver actions / Permissions for an app.
This metric offers a comprehensive view of an app’s
engagement with broadcast messages and its potential
privacy implications.

B. THREAT EVALUATION METRIC
To ascertain whether an application qualifies as intrusive,
it undergoes evaluation based on specific mathematical cri-
teria. One such metric, the App Overall Receiver/Permission
Prevalence (AORP), proposed in the literature [10], serves
to gauge abnormality and rank applications. AORP assesses
abnormality by separately computing scores for permissions
(AORPp) and receivers (AORPr ), subsequently combining
them to determine the final privacy score of an application.
AORP is defined as follows:

AORPfinal =
AORPr + AORPp

2

Whereas, AORPr and AORPp can be defined as follows:

AORPr =
−1

([c ·
∑

IRP∈Appi lg (IRP)] − 1)

AORPp =
−1

([c ·
∑

IRP∈Appi lg (IRP · g(p))] − 1)

Both formulas include a constant c and the IRP value. The
IRP quantifies the relative impact or usage of permissions or
broadcast receivers within the application data’s sample set.
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The formula for calculating IRP is as follows:

IRP =
x

total

In this context, x denotes the count of applications of
a particular genre utilizing a particular broadcast receiver
action or permission, while total signifies the total number
of applications in that genre. We intend not to alter the x and
total counters when evaluating new applications but rather
to update them solely upon changes to the seed dataset.
Therefore, we slightly adjust the existing IRP formula to
include the currently evaluated application as follows:

IRP =
x + 1

total + 1

To dissect the results of AORPr , we can examine the
smaller components of the formula. The value of IRP always
remains less than 1, implying that lg (IRP) is always less than
or equal to 0. Consequently, the following term is consistently
negative:

c ·

∑
IRP∈Appi

lg (IRP) ≤ 0 H⇒ [c ·

∑
IRP∈Appi

lg (IRP) ≤ 0] − 1 ≤ −1 H⇒ AORPp ≤ 1 (1)

Therefore, we observe that a score of 1.0 represents the
highest possible score, indicating minimal intrusiveness of
the application in terms of broadcast receivers or permissions
use. A lower score closer to 0 signifies greater intrusiveness.
A similar analysis can be applied to the permission score
(AORPp).
Where g(p) represents the user preference for a specific

permission group, such as setting the PHONE permission
group with a security level of 2, resulting in g(p) =

1
2 .

Analogously, we can demonstrate that the permissions’ score
AORPp ∈ (0, 1], leading to AORPfinal ∈ (0, 1].

C. FUNCTIONAL REQUIREMENTS
In this section, we delve into the core functional

requirements essential for the successful development of
our framework. These requirements serve as the foundation
upon which our implementation details are built, guiding
our efforts toward the realization of a robust and versatile
solution.

1) RECOMMENDATIONS AND EVALUATION
The recommendation will consist of the highest-scored app
from the suggestions set, ensuring it belongs to the same
genre as the evaluated application. We will also provide the
recommendation score and a Google Play link. This link
will allow the user to access the dedicated Play Market page
and consider our suggestion as a potential alternative to the
installed program being evaluated.

2) INSTALLED/UPDATED APPLICATIONS EVALUATION AND
REMOVED APPLICATIONS DETECTION
To accurately detect recently installed, updated, or removed
applications, we plan tomaintain a set of tuples formed during
evaluations. These tuples will include installed apps and their
respective last update times, structured as follows:

apps = {(pkgName, time) | pkgName ∈ ([′a′, . . .′ z′]

∪ [′.′])∗ ∧ time ∈ (0, +∞)}

where packageName denotes the package name of an
installed application and time represents the last time the
application was updated. Let’s consider installed as a map
that is structurally identical to apps, containing the currently
queried application from the device. Therefore, we can define
the detection procedure for all three types of applications as
follows:

updatedApps = { y | x ∈ apps, y ∈ installed,

x.packageName = y.packageName, y.time > x.time }

∪{ y | y ∈ installed, ∀x ∈ apps H⇒

x.packageName ̸ = y.packageName)}

We aim to make several evaluation modes available at the
user’s discretion to provide flexible and rigorous usability for
our application:

• All Applications Evaluation: The system does not
activate this mode; rather, it can only be initiated by the
end user.

• Background Evaluation: The evaluation mode begins
on login and is user-independent. It can only be
terminated by force-stopping the application, and it
evaluates newly installed/updated apps while removing
evaluation information for deleted ones.

• Re-evaluation: To re-evaluate a specific app in the list,
select it and request re-evaluation; only the selected app
will be evaluated

We rely on the Application Ranking for all evaluation
scores, but we also provide two additional practical scores
that adjust the formulas outlined in [10]:

• The Granted Permission Score (GPS) is utilized
during evaluation and focuses solely on the granted
permissions (GP). It’s important to note that while an
app may request certain permissions, users need to grant
them for the app to use them explicitly. GPS can be
defined as follows:

AORPGPS =
−1

[c ·
∑

x, total IRP lg (IRP · g(p))] − 1

where total ∈ GP represents the total number of granted
permissions, and IRP ∈ Appi represents the Individual
Receiver Prevalence for the evaluated app.

• Granted Final Score (GFS) is computed as the
average of the Receiver Score (AORPr ) and the Granted
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Permission Score (AORPGPS ):

AORPGFS =
AORPr + AORPGPS

2

3) EVALUATION SUMMARY AND DETAILED VIEW
Our solution enables end-users to request reviews of their
evaluations, which requires maintaining a comprehensive
record of all app evaluations conducted throughout the
device’s application lifecycle. Additionally, users should have
access to detailed information about a specific evaluation,
including the app’s details, all assigned scores, and its
Anomaly Level.

4) IN THE MARKET EVALUATION
Users may wish to evaluate an app for malicious or intrusive
behavior before installing it. The Evaluate In-the-Market
feature facilitates this process by providing the app’s Google
Play URL or package name. This allows users to compare
the privacy scores of different apps and choose the least
intrusive option. It’s important to note that evaluations are
based solely on the permissions listed on the Google Play
store pages, which may not correspond directly to specific
permission groups or names. To address this limitation,
we developed a routine called PlayStoreInterpreter,
which maps Play Store permissions to their corresponding
manifest permission groups. However, it’s important to
acknowledge that this mapping relies on certain assumptions,
which may result in different approximations. In this specific
case, we rely on information provided by Google LLC [21].

5) ANOMALY DETECTION
Updates play a critical role in the life cycle of an app, often
introducing new features, improving existing functionality,
and incorporating new broadcast receivers and/or permission
declarations. These updates can significantly impact the app’s
privacy ranking and serve as a key indicator when evaluating
its intrusiveness trend. We utilize a modified growth rate
formula adapted from [18] to address this. The alteration
accounts for the fact that the growth rate of intrusiveness
corresponds to a lower final score - meaning, the more
intrusive the application, the lower the final score. The growth
rate (GR) is defined as:

GR = −
xi − xi−1

xi−1
,where xi ∈ R, 0 < xi ≤ 1, ∀i ∈ N

Here, GR represents the growth rate of an application, and xi
represents the ith evaluation.
However, we need to calculate the growth rate value over

a period, not just between the two most recent evaluations.
Therefore, we adapt the mean growth rate (MGR) formula
from [22]:

MGR =

∑n−1
i=1 −( xi−xi−1

xi−1
)

n− 1
, ∀n ∈ N, xi ∈ R, 0 < xi ≤ 1

The numerator represents the sum of all consecutive growth
rates, and we divide by n − 1 to account for one less growth
rate.

If the MGR approaches 1.0 (100%), it indicates that,
on average, the application’s current privacy score is defi-
nitely lower than half of the previous score, as follows for
all consecutive evaluations:

current_score < 0.5 × previous_score

Therefore, our anomaly detection subroutine must alert the
user in case of such misbehavior. We define three status
indicators:

• 0 ≤ mean growth rate ≤ 0.5: Assigned green status,
indicating acceptable changes.

• 0.5 < mean growth rate < 1: Assigned orange status,
indicating considerable intrusiveness rate detection.

• mean growth rate ≥ 1: Assigned red status, indicating
an ultimate threat to end-user privacy.

6) BACKGROUND ASSESSMENT
The assessment of installed, updated, or removed applications
needs to occur both in the background and foreground, with
a primary focus on accurate background activity. We conduct
application assessments only upon installation or update to
ensure reliability and efficiency. An essential requirement
is that the background process should initiate automatically
upon device boot completion without the need for the user
to restart the app. Furthermore, the app should remain
operational evenwhen closed, meaning it should not be force-
stopped.

7) NEW DATA SET PREPARATION
To ensure the ongoing effectiveness of our solution, we need
to update or replace the current seed dataset and all extracted
information periodically. However, this presents challenges
as we do not alter the values in the IRP calculation or the
suggestion set during new evaluations. Acquiring new seed
data involves resource-intensive and time-consuming tasks
such as scraping, downloading, and parsing applications from
Google Play. To simplify this process, we’ve incorporated the
collection of the new seed dataset into the evaluation process.
The new dataset must be processed and incorporated into
future updates.

IV. PROPOSED FRAMEWORK
In this section, we will explore the building blocks of our
proposed framework, encompassing the features discussed
in earlier sections. The framework is designed to facilitate
continuous threat monitoring for Android applications. Cer-
tain related features may be grouped, and the implementation
of specific features may span multiple subsections. Our
framework revolves around the Privacy Watcher app, and
thus, we will provide a more detailed examination of its
implementation compared to other components.
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A. TECHNOLOGY STACK
We developed the Privacy Watcher app primarily using Java
and utilized Firebase Real-time Database [23] for database-
related operations. Additionally, Firebase Authentication was
used to handle user sign-up and sign-in procedures, both on
the client and server side [23]. Finally, we employed Python’s
Django Framework to develop the server-side API as an
alternative to extracting permissions/actions.

B. APPLICATION FRAMEWORK OVERVIEW
Figure 1 provides a high-level overview of our framework.
Next, we will delve into a more detailed examination of some
of its key components.

1) XML EXTRACTOR
The XML Extractor is a web application, entirely written
in Python, using Django, and hosted on Heroku [24]. The
application decompiles the AndroidManifest.xml on
POST request and returns a JSON object containing the
application’s permissions and broadcast receivers’ actions.
Please note that this service is intended as a backup if the
alternative local option, Section V-D, stops working due to
Android’s changes.

2) FIREBASE
Firebase is a platform developed and maintained by
Google that provides solutions for easy integration and
development [23]. We utilize two services of Firebase:
Authentication, which represents the email/password stan-
dard authentication scheme for our application, and Realtime
Database - a tree-structured database [25], easily stored and
accessible, provided that the user has a network connection.

3) PLAY STORE
We leverage the Google Play store to retrieve the genres of the
installed applications because it is required to calculate the
privacy scores. Additionally, we retrieve the permission list
of uninstalled apps for the Evaluate In-the-Market feature.

4) AAPKS.COM
aapks.com is a website that shares free Android applica-
tions [26]. We use it to locate the APK file of a given
application, which is needed for the Download and Evaluate
feature.

5) PRIVACY WATCHER APP
The Privacy Watcher App serves as the central component of
our solution. It is an Android-based application that leverages
various services including the Play Store, Firebase, aapks,
and XML remote service. Its primary function is to empower
users to monitor their installed apps and make informed
decisions about which apps to install from the market.

The entire Android application and its external library flow
heavily rely on callbacks and listeners. This mandates using
a design pattern to handle all the changes resulting from

executing these callbacks and listeners. Therefore, we select
to implement the Observer Design Pattern. We divide the
whole application structure into three types of actors.

• Only listeners: Classes that execute an update upon a
triggered event.

• Only updaters: Classes that only trigger an event.
• Both listeners and updaters: Parts of the application
that have both roles in executing a triggered update and
notifying other listeners about a change.

In the next section, we will discuss the implementation details
of our proof of concept.

V. IMPLEMENTATION DETAILS
This section provides a comprehensive overview of the imple-
mentation details for key components of our framework,
such as the database structure and login procedures, different
flavors of evaluations, anomaly detection, and ensuring
continuous background monitoring of applications.

A. DATABASE STRUCTURE AND AUTHORIZATION RULES
To ensure optimal performance and user experience, we orga-
nize our seed data set into two main parts:

• Summary Set: This encompasses data collected from
the entire provided set, categorized by genre. The
summary set is further divided into two categories:
– Counters: This contains information about the

actions and permissions present within apps from
a specific genre.

– Sizes: This segment stores the number of appli-
cations sorted by genre.

• Suggestions Set: This set is formed from a filtered
subset of data, ordered and filtered by the scored AORP
rank.

We calculate the permission and receiver scores for all
the applications in the suggestion set. We then sort the
applications in this set based on the mean value as follows:

AORPfinal =
AORPr + AORPp

2

We select a minimal subset of each genre’s top 100 scored
applications. To ensure persistence, we utilize the Firebase
Real-time Database API for remotely storing all application-
related data [23]. The database adopts a tree structure
rather than conventional tables and relations, and we design
structured, minimalistic sub-trees for each application part.

Authorization is implemented using Firebase Realtime
Database’s integrated functionality, restricting user access
based on Authentication UID issued by the Firebase Authen-
ticate module [23]. We define Database Rules to control read
and write permissions, applying them per sub-tree [23].

B. REGISTRATION/LOGIN
We employed Firebase Authentication functionality [23] to
ensure robust implementation of the Authentication service.
This service safeguards user credentials and is integral to
the operations of two components in our system: the XML
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FIGURE 1. A high-level overview of the Continuous Threat Monitoring Framework (CTMF). The Remote Service is kept as a backup option if the
local extraction of the permissions and system actions is impossible.

Extractor, which permits access to the extraction of
the actions/permissions stack only to authorized users, and
the Privacy Watcher, which relies on the Authenti-
cation UID for authorized interactions with the Firebase
Realtime Database [23]. For the sign-in/up process, we seam-
lessly integrated the standard email/password authentication
scheme using the Firebase API [23]. We establish persis-
tent authentication by employing Encrypted Shared
Preferences to securely store the user’s email and
password, mitigating the need for frequent login requests.
Upon deregistration, the user’s details and evaluation stack
are downgraded, retaining only the necessary data for
generating the new seed data set. The Authentication process
is streamlined using the Singleton Design Pattern,
facilitating convenient access from various application com-
ponents. Users are prompted to specify their permission
group preferences during registration, following the method-
ology outlined in [10]. Upon completion of this process, the
permissions score and final score for the suggestion data set
are computed, and the relevant data is then retrieved to the
Firebase Realtime Database.

C. SUGGESTIONS AND THEIR EVALUATIONS
We follow these steps to implement recommendations:
first, we traverse the permission stack and identify the
app’s permission group. Then, we calculate the score using
modified formulas from [10] (as detailed in Section III-B).
Next, we compute the mean value of the pre-computed
receiver score and the permission rank. The evaluated

suggestion is then displayed in a dedicated window unless
the evaluated application belongs to an unknown genre
or significantly outperforms our suggested programs. This
display includes the application package name, its score, and
a Google Play link.

D. APP EVALUATION AND REMOVAL DETECTION
We’ve implemented two methods to retrieve intent-filter
actions and permissions since using Android Package Man-
ager and the GET_INTENT_FILTERS flag was impossible
due to their deprecation in Android 11 and 12. The first
method, as detailed in Section IV-B1, involves parsing
AndroidManifest.xml on a remote web service using andro-
guard. The parsed actions and permissions are then sent
to the Privacy Watcher App. The second method entails
extracting and parsing AndroidManifest.xml on the device for
both installed and downloaded Android packages as follows:

1) The Privacy Watcher app starts by searching
for the package file in the public source directory
(/data/app/Androidpackage.apk). If not
found in the first directory, it assumes it is in the second
directory.(/storage/emulated/0/Download/
Androidpackage.apk). The app then stores
the located APK using the following statement:
ZipFile apk = new ZipFile(filePath),
where filePath is one of the directories mentioned
in this step.

2) The XMLExtractor Java class extracts the
AndroidManifest.xml file from the APK by
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TABLE 1. Sample outputs from the first two steps we performed to decode a manifest file.

executing the following statement:
ZipEntry m= apk.getEntry
(`AdroidMnfest.xml')
All AndroidManifest.xml files in .apk directo-
ries have the same name.

With the manifest file extracted, the next step is to retrieve
the permission/action stack using a parser to decompile the
compressed manifest file on the device. The decompilation
process involves the following steps:

1) To retrieve the permission/action stack from the
compressed manifest file, the Privacy Watcher
app must first extract the file’s contents. This is done
by calling apk.getInputStream(manifest).

2) Once the stream’s contents have been retrieved, they
are converted into an array of byte code using:byte[]
code=IOUtils.toByteArray(stream)

3) If the array of byte code is base64 encoded,1 it
can be converted into a string using: str=new
String(Base64.encode(code,Base64.
DEFAULT)
The resulting encoded string should look similar to the
sample output shown in Step 1 of Table 1.

4) Next, we base64 decode the encoded string and
remove all non-alphanumeric characters using the
replaceAll() method with a regular expres-
sion "[^A-Za-z-0-9_.-]" .2 This results in
a string without spaces. To identify the permis-
sion and intent actions, we add a space before
every occurrence of android.permission. and
android.intent.action. in the string. After
applying these filters, the string contains all the neces-
sary information from AndroidManifest.xml for
evaluation, as shown in Step 2 of Table 1.

5) Finally, with spaces introduced to separate each
permission and intent action, the XMLExtractor
creates stacks for both permissions and intent actions
and returns it to theAppEvaluation class, where the
permission and broadcast receivers can be evaluated.

1A method of encoding binary data into ASCII characters to ensure safe
transmission over text-based communication protocols.

2A sequence of characters that forms a search pattern, used for pattern
matching within strings.

To ensure the accuracy of our application, it’s essential
to retrieve information about all installed applications.
We use the getInstalledApplications method and
the QUERY_ALL_PACKAGES permission. To compute the
practical scores, i.e., Granted Permission Score,
we use the checkPermission function and check if the
return result is equal to:
PackageManager.PERMISSION\_GRANTED
The Granted Final Score is calculated by taking

the mean value of the Granted Permission Score and Receiver
Score [27].

E. DOWNLOAD AND EVALUATE
Initially, we planned to download the APK file from the
Google Play Store directly. However, we encountered a
challenge due to the lack of an official API provided
by Google for this purpose. Alternatively, we turned to
third-party websites like aapks.com [26]. The Download and
Evaluate approach involves three main steps:
(i) Locating the download link involves sending a request

to the website’s search engine and parsing the returned results
(https://aapks.com/?s=<packageName>)

(ii) Downloading the APK: Once the download link is
obtained, we proceed to download the APK file. Dur-
ing this process, we register a broadcast receiver for
the ACTION_DOWNLOAD_COMPLETE event and prompt
the user to grant the WRITE_EXTERNAL_STORAGE and
READ_EXTERNAL_STORAGE permissions.

(iii) Alerting the user: After the download is complete,
we notify the user and inform them again when the evaluation
is ready.

However, this approach has limitations:
- Inconsistency in application versions: There is no

guarantee that the downloaded application will match the
exact version intended by the user.

- Uncertainty in retrieving desired applications: Factors
such as the app not being listed or requiring payment can
hinder retrieving the desired application’s download link.

- Safety concerns with aapks.com: While we use the
relatively safe parsing tool JSoup [28] to protect users
from most malicious software, aapks.com has been flagged
as a phishing and malicious website by several sources.
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TABLE 2. The permission matching table used to map the permissions found in Google Play to their corresponding manifest permissions.

The extracted APKs may contain errors or modifications,
although they are not inherently dangerous until installed.
Nonetheless, users should approach the URL evaluation
results with caution.

F. EVALUATE IN-THE-MARKET
The Evaluate In-the-Market feature provides an
alternative to the Download & Evaluate feature, elim-
inating the need to download the APK file. This feature
aims to quickly approximate the privacy permission score
by utilizing the permission data on the Google Play store.
The Privacy Watcher app retrieves the app’s genre(s)
and permissions through pattern matching. It’s important to
note that these retrieved permissions may not correspond
to those in the manifest file. We define a procedure based
on certain assumptions to establish a matching between
the two permission sets, which may result in different
approximations. These assumptions are derived from the
information provided by Google LLC [21]. We show our
permission matching table in Table 2. Once the matching
is established, the evaluation process is similar to that of
installed applications. With the Privacy Watcher app,
users can compare the approximate scores of two or more
apps. This feature allows users to compare between apps
based on their privacy scores before installing any of them;
see Appendix VII-A.

G. CONTINUOUS EVALUATION AND NOTIFICATION
The primary function of the Privacy Watcher app is to
evaluate installed apps for any malicious behavior continu-
ously. This evaluation is based on the formula outlined in
Section III-C5. The results are conveyed to the user through
three colors and shapes: Greenheart, Orange exclamation
mark, and Red hand (refer to Figure 5). Additionally,
a notification system alerts users if an app exceeds the red
status threshold of 1.0 to alleviate the need for manual checks.

H. ADAPTING TO IMPLICIT BROADCAST RECEIVER
LIMITATIONS
In earlier Android versions, implicit broadcast receivers
could monitor installation, update, and uninstall events.
However, since Android 8.0, Google has restricted the use

of such receivers. To address this limitation and accom-
modate unexpected changes, we adopted Job Scheduling,
as recommended in [29], to schedule new jobs every
3-5 minutes. Although we experimented with different
scheduling intervals, we found that shorter intervals were too
frequent and disrupted jobs.

Our objective is to ensure that our application automat-
ically starts after each successful device reboot without
requiring manual intervention from the user. To accomplish
this, we utilize the BOOT_COMPLETED intent, which is one
of the exempted implicit broadcast receiver actions, and reg-
ister it with the associated RECEIVE_BOOT_COMPLETED
action [27].

VI. EVALUATION OF CTMF
In Sections I and II, we explained the uniqueness of our
work compared to the literature. Consequently, our evaluation
must consider that. As such, we evaluated our framework
on multiple levels, including compatibility, performance, and
accuracy.

A. COMPATIBILITY
In Section IV, we explained our implementation choices
to accommodate for compatibility. Our app has undergone
rigorous testing by running it on both real and emulated
smartphones. While our main focus was on Android 11,
we also ensured compatibility with Android 12 by testing the
framework’s performance on this version as well. Below is
the device that we used the most during the testing:

• SamsungGalaxyNote S20Ultra, runningAndroid 12 on
One UI 4.1 (baseband version N986BXXU4F VE7 with
Android security patch level: 1 June 2022), Qualcomm
Snapdragon 865 Octa-core, 12 GB RAM/128 GB of
internal and 128GB of SD storage.

Furthermore, our inclusion of the XML Extractor,
Section IV-A as a backup aims to accommodate any changes
that might arise in the future.

B. PERFORMANCE
The acceptability of the Privacy Watcher app by the end
users relies on many factors, one of which is performance.
To evaluate the execution time, we conducted tests on specific
features of the Privacy Watcher app, namely (i) Evaluate
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TABLE 3. The time (in seconds) it takes to complete each listed task.

FIGURE 2. The comparison of permission scores obtained through
on-device evaluation and market evaluation for 30 applications
belonging to popular genres. The Diff column indicates the difference
between the two scores, with a ’−’ indicating that the market score is
smaller than the device score, and a ’+’ indicating the opposite.

Installed Apps, (ii) XML extraction, (iii) Genre extraction,
(iv) Download & Evaluate, and (v) Evaluate In-the-Market.
For operations 1-3, we used a dataset of 169 applications,
while for operations 4 and 5, we considered popular apps
such as Booking.com, Reddit, Telegram, Spotify, and Viber.
The tests were conducted on the Samsung device, refer to
Section VI-A. To make a fair comparison, we will use the
maximum values obtained during each category’s testing.
Our evaluation criteria include CPU usage, memory usage,
network consumption, and execution time. We used the
Android Profiler tool to collect all execution data
concerning CPU, Memory, and Network usage.

On average, the Privacy Watcher app has the following
overhead upon evaluating 169 installed applications: 30.4%
CPU usage, 229.7 MB memory usage, and 0.94 and
0.14 MB/s incoming and outgoing network usage, respec-
tively. It is worth noting that this overhead occurs only when
the Privacy Watcher app is run for the first time or when there
is a change in the list of applications. Table 3 shows the results
of our runtime analysis, indicating that the solution does not
impose significant execution or resource overhead, making it
reasonably practical to use.

C. EFFICIENCY
We aim to evaluate the efficiency of our framework by
primarily testing its scoring mechanism. While previous
studies have demonstrated its superiority over comparable
methods [14], we opted to further validate these findings
through experimentation with real datasets. Our efficiency
testing comprises two main aspects: approximation accuracy
and detection accuracy.

1) APPROXIMATION ACCURACY OF CTMF
In this section, our focus is on evaluating the Evaluate
In-the-Market approach, which relies solely on permissions
retrieved from the app store and mapped to corresponding

Manifest permissions (see Section III-C4). To assess its
accuracy, we evaluated a diverse set of 30 applications
spanning various genres such as communication, finance,
social, and card games. Table 2 depicts the results of our
analysis. While the permission scores obtained through the
Evaluate In-the-Market approach generally tend to be slightly
lower compared to those acquired through the Download
and Evaluate method (which provides ground truth scores),
they still offer valuable insights for users. Despite the minor
differences, the Market Evaluation scores provide a reliable
method for users to compare applications before installation,
facilitating informed decision-making. Additionally, users
who prioritize utmost accuracy can utilize the Download and
Evaluate feature of the Privacy Watcher app.

TABLE 4. Five-Point analytics based statistical threshold.

2) DETECTION ACCURACY
This evaluation aims to assess our chosen scoring mecha-
nism’s ability to identify malicious applications and compare
it with existing literature accurately. We utilized two datasets
containing labeled applications for this purpose. Initially,
we computed intrusiveness scores for all applications in both
datasets using our approach and the counterparts in recent
literature [14]. Subsequently, each application was assigned
an intrusiveness label based on these scores. To establish
thresholds for label prediction, we employed five-point
statistical analytics, dividing the data into quartiles repre-
sented by specific percentile ranges. Table 4 illustrates these
ranges and their corresponding labels, with red-highlighted
rows indicating intrusive apps and green ones denoting safe
or non-intrusive ones. This evaluation methodology was
chosen due to the literature’s inability to assess intrusiveness
across multiple app updates, prompting us to adopt a
threshold-based labeling approach using single instances of
apps to ensure consistency in evaluation criteria. It’s essential
to note that despite the classification criteria, the underlying
metrics remain consistent.

a: EVALUATION USING LARGE DATASET
The first dataset comprisedmanifest and store data of 870,515
Android mobile applications, including their status, sourced
from [30]. The status denotes whether an application was
removed from the market during the collection period, serv-
ing as our ground truth. Of the 485,738 apps removed by the
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TABLE 5. Evaluation with known intrusive applications.

Google Store, our approach successfully labeled 378,480 as
intrusive, achieving an accuracy of 77.919%. In comparison,
the literature’s scoring metric identified only 339,729 apps as
intrusive, resulting in an accuracy of 69.941%. These findings
underscore the superiority and heightened sensitivity of our
scoring mechanism in detecting apps prone to future removal
due to their inherent intrusiveness.

b: EVALUATION USING KNOWN INTRUSIVE APPS
While our approach has demonstrated superiority in accu-
rately identifying apps removed from the Google Store using
a literature dataset, this phase of evaluation focuses on
directly scrutinizing known intrusive applications recently
reported by media and news agencies [31], [32]. To achieve
this, we extracted permission and broadcast receiver data
from these notorious intrusive apps (refer to Table 5) and
used the aforementioned five-point criteria for threshold-
based classification to predict labels of these known intrusive
apps.

Table 5 reveals that our accuracy significantly outperforms
the literature in this aspect of the evaluation as well.
We accurately detected 24 out of 25 famously known

intrusive apps, whereas, using the literature metric, only 3 out
of 25 were correctly identified. These results clearly illustrate
the practicality and efficacy of our approach in identifying
intrusive apps.

D. ADDRESSING THREAT ACTOR UTILIZATION OF
PREVALENT PERMISSIONS
Concern: Threat actors may exploit the prevalence of
specific permissions in legitimate apps to evade detection by
privacy assessment mechanisms.

Response: We believe that our approach is unsusceptible
to this threat because it introduces user preferences (g(p))
associated with permissions. This ensures that a rogue app
will not necessarily pass privacy assessment solely based
on the prevalence of permission. The abnormality score
considers both permission prevalence and user preferences,
providing a more nuanced evaluation. Additionally, our
method offers the option to combine scores from permissions
and broadcast receivers. By averaging these scores, our
approach delivers a comprehensive assessment that factors
in abnormality based on receivers and the influence of user
preferences on granted permissions. Finally, we acknowledge
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FIGURE 3. Screenshot examples of the privacy watcher app.

FIGURE 4. The results page of all evaluated apps.

the significant effort required by attackers to identify popular
permissions across a large number of apps within a specific
category. The resource-intensive and time-consuming nature
of this process acts as a deterrent, increasing the difficulty
for potential attackers to exploit prevalent permissions
effectively.

FIGURE 5. The evaluation results of an installed app.

VII. CONCLUSION
In this study, we have developed a framework for continu-
ously monitoring Android applications, overcoming restric-
tions on certain Android APIs, and enabling evaluation of
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newly installed or updated apps. Our framework also allows
users to evaluate applications on Google Play before installa-
tion and detect anomalous apps using the growth rate metric.
We emphasize the importance of developing privacy-scoring
apps and urge theAndroid development team to enhance tools
for analyzing the AndroidManifest.xml. Additionally,
we highlight the need for a dedicated Google Play API to
extract application information effectively without resorting
to web scraping. Our work contributes to promoting better
privacy practices and robust monitoring in the Android
ecosystem, driving advancements in application security and
privacy evaluation.

APPENDIX
A. SCREENSHOTS
See Figures 3–5.
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