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ABSTRACT Time Series Analysis (TSA) is a critical workload to extract valuable information from collections
of sequential data, e.g., detecting anomalies in electrocardiograms. Subsequence Dynamic Time Warping
(sDTW) is the state-of-the-art algorithm for high-accuracy TSA. We find that the performance and energy
efficiency of sDTW on conventional CPU and GPU platforms are heavily burdened by the latency and
energy overheads of data movement between the compute and the memory units. SDTW exhibits low
arithmetic intensity and low data reuse on conventional platforms, stemming from poor amortization of
the data movement overheads. To improve the performance and energy efficiency of the SDTW algorithm,
we propose MATSA, the first Magnetoresistive RAM (MRAM)-based Accelerator for TSA. MATSA leverages
Processing-Using-Memory (PUM) based on MRAM crossbars to minimize data movement overheads and
exploit parallelism in sSDTW. MATSA improves performance by 7.35x/6.15x/6.31x and energy efficiency
by 11.29x/4.21x/2.65 x over server-class CPU, GPU, and Processing-Near-Memory platforms, respectively.

INDEX TERMS Time series analysis, processing-using-memory, memory-bound, emerging technologies.

I. INTRODUCTION filter relevant subsequences to minimize the cost of applying

In the era of Internet-Of-Things and Big Data, emerging
applications operate on petabyte-scale datasets that are
increasingly difficult to store and analyze. Small sensors and
edge devices continuously generate data sampled over time,
resulting in time-ordered observations (e.g., temperature or
voltage). Such a collection of data values is referred to as
a time series (TS) [1]. TS is a common data representation
in many real-world scientific applications, including sensing,
genomics, neuroscience, financial markets, epidemiology, and
environmental sciences [2].

Time series analysis (TSA) splits the time series into
subsequences of consecutive data points to extract valuable
information from large datasets. This information can help
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complex and expensive domain-specific analysis algorithms.
A real-life example is the detection of anomalies in an
electrocardiogram and the elimination of subsequences that
indicate normal behavior [3]. TSA determines subsequences
of interest using different similarity approaches, such as
the Euclidean Distance (ED) or the subsequence Dynamic
Time Warping (sDTW). Prior work demonstrates that SDTW
provides a higher precision than ED in most scenarios [4];
as such, we focus on optimizing sDTW algorithm for TSA
analysis.

sDTW is an embarrassingly parallel workload, because each
query can be executed without data dependencies from other
queries by multiple concurrent processing units. However,
sDTW builds a 2D dynamic programming matrix that incurs
quadratic runtime and memory complexity. To understand the
bottlenecks of sDTW in state-of-the-art conventional CPU
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and GPU architectures, we comprehensively characterize
the kernel’s performance on these platforms (section II-D).
We observe significant performance and energy efficiency
overheads in sSDTW due to: 1) underutilization of the execution
units, and 2) a large number of expensive main memory
accesses. The first problem stems from the low number of
operations that the SDTW kernel executes per byte brought
from memory, which keeps the arithmetic units idle for
the largest part of the execution time. The second problem
stems from the large memory footprint of the dynamic
programming matrix, causing poor spatial and temporal
locality. Consequently, SDTW exhibits poor performance on
CPU and GPU platforms.

To overcome the memory access challenge, prior works [5],
[6], [7] have considered memory-centric platforms that
integrate processing and storage elements on the same chip
to reduce data movement across the constrained data bus
that connects a CPU to main memory [8], [9]. Based on that,
we implement and characterize sSDTW in a real Processing-
Near-Memory (PNM) platform, UPMEM [10], and observe
that this new platform does not provide performance benefits
compared to CPU and GPU executions, due to the large
latency of simple operations such as addition and comparison
operators. Overall, we conclude that the sSDTW kernel exhibits
memory-bound behavior on CPU and GPU platforms and
compute-bound behavior on the PNM platform (section II-D).

In contrast to PNM, Processing-Using-Memory (PUM) [7],
[11], [12], [13], [14], [15] executes operations using the
memory cells and sense amplifiers, completely eliminating the
memory and compute dichotomy. PUM enables 1) performing
computation in the memory array, since the memory units that
store the data also execute the computation, and 2) exploiting
a much larger amount of parallelism available in the memory
microarchitectures ( as high as the number of crossbar columns
available, i.e., thousands) compared to conventional CPU and
GPU systems. From the technology perspective, non-volatile
memories (NVM) offer a promising substrate to implement
PUM [16]. However, different NVM substrates exhibit
varying latency, energy, and endurance characteristics, a key
design constraint for different accelerators. Magnetoresistive
RAM (MRAM)-based PUM substrates offer low read/write
latencies, low energy per operation, and high endurance [17].
Considering these characteristics, in this paper, we explore
MRAM as a potential NVM substrate to accelerate the SDTW
kernel.

To this end, our goal in this work is to leverage MRAM-
based PUM to enable high-performance and energy-efficient
sDTW execution for a wide range of applications. We propose
MATSA, the first MRAM-based Accelerator for TSA. MATSA
derives its performance benefits from three key mechanisms.
First, MATSA decomposes sSDTW’s computational kernel into
simple bitwise boolean computations and executes them in the
MRAM crossbar. This key idea significantly minimizes data
movement overheads as it is performed where data resides.
Second, we implement a novel data mapping that reduces
the runtime memory footprint of sDTW from quadratic to
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linear based on four vectors. This key idea enables computing
the complete 2D dynamic programming matrix on-the-fly
without storing it. Third, MATSA integrates an effective
computation scheme that overcomes the inter-cell computation
dependencies of the matrix by 1) following an anti-diagonal
approach and 2) exploiting pipelining to increase parallelism.

We evaluate MATSA’s performance based on state-of-the-

art latency and energy characteristics of MRAM devices [18],
[19]. To do so, we implement an in-house simulator for
MATSA and select 64 synthetic datasets to understand its
design tradeoffs. Then, we use six real-world datasets (Human,
Song, Penguin, Seismology, Power and ECG) to compare three
different versions of MATSA against other state-of-the-art
platforms, showcasing its applicability to a wide range of real
case scenarios. Our evaluation shows that MATSA improves
performance by 7.35x/6.15x/6.31 x and energy efficiency by
11.29x/4.21x/2.65 x over server-class CPU, GPU, and PNM
platforms, respectively.

In summary, we make the following novel contributions:

o We thoroughly characterize the state-of-the-art SDTW
time series analysis (TSA) algorithm’s performance and
energy efficiency on conventional CPU, GPU, and PNM
(UPMEM) platforms. Our characterization leads to new
observations about the characteristics of SDTW that limit
its acceleration in current conventional hardware.

o We propose MATSA, the first MRAM-based Accelerator
for TSA. MATSA 1) exploits a novel data mapping
tailored for MRAM substrates that reduce memory
footprint in sSDTW, 2) efficiently performs computation
in-memory to avoid off-chip data movement, and 3)
provides an effective computation scheme to increase
parallelism.

« We conduct a comprehensive evaluation of MATSA
across a diverse set of synthetic and real-world datasets.
Our results showcase 6.60x average improvement in
overall performance and a average 6.05x boost in
energy efficiency over state-of-the-art compute-centric
and memory-centric platforms.

Il. BACKGROUND AND MOTIVATION

A. TIME SERIES ANALYSIS

A time series T is a sequence of n data points #;, where 1 <
i < n, collected over time. A subsequence of T, also known as
a window, is denoted by T; ,,,, where i is the index of the first
data point, and m is the number of samples in the subsequence,
withl <i,andm <n —i.

There are two main approaches to perform time series
analysis: 1) the self-join, and 2) the query-filtering. In self-join,
all sequences of a given time series are compared against the
remaining subsequences of the same time series. In contrast,
query filtering compares a set of queries against a reference.

Time series analysis algorithms usually define a distance
metric to measure the similarity between two subsequences.
Based on such distance metric, the literature classifies the
subsequences with low distance as motifs [20] (similarities)
and high distance as discords [21] (anomalies). The state-of-
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FIGURE 1. Example of similarity calculation between two subsequences
(blue and green). The one-to-one approach in a) provides a low similarity
as it only compares each ith point of blue with each it point of green.

In contrast, DTW in b) successfully matches the points of the subsequences.

the-art set of tools to perform time series analysis is Matrix
Profile [22] (MP). Due to lower computation requirements,
prior MP algorithms utilize one-to-one Euclidean Distance
as the similarity metric. Recent proposals [4] have started
to utilize Dynamic Time Warping (DTW)-based solutions
because of higher precision [23]. DTW enables the detection
of events of interest in out-of-sync subsequences, e.g.,
in subsequences that have different sampling rates.

Figure 1 shows the key difference between the one-to-one
and the DTW approaches, in which we compare two similar-
shape subsequences that differ in their offset and scale.

We observe that the DTW algorithm offers better results
as it compares a given point with respect to several potential
candidates (i.e., determines the best alignment). In contrast,
one-to-one executes point-to-point alignment that cannot
determine the best alignment in the presence of an offset. One-
to-one can be considered as a special case of DTW where the
warping window is set to ‘1’. Therefore, we aim to optimize
DTW, a more generic and high-precision algorithm, to provide
a TSA accelerator for a wide range of applications.

B. TIME SERIES ANALYSIS APPLICATIONS

Time series analysis constitutes one of the most important and
general data mining primitives for a wide range of real-world
applications [24]: epidemiology, genomics, neuroscience,
medicine, environmental sciences, economics, and many more.
Table 1 presents a few examples for applications of TSA.

TABLE 1. Time series analysis main applications.

[ Field [ Reference ][ Field | Reference |
Bioinformatics [25] Speech Recognition [26]
Robotics [27] Weather Prediction [28]
Neuroscience [25] Entomology [29]
Machine Learning [30] Geophysics [31]
Econometrics [32] Statistics [33]
Finance [34] Control Engineering [35]
Signal Processing [36] Pattern Recognition [37]
Communication [38] Medicine [39]
Astronomy [40] Social Networks [41]
Clustering [30] Classification [42]
Earthquakes [43] GPS Tracking [44]
Virtual Reality [45] Gesture Recognition [46]
Trajectories [47] Traffic Monitoring [48]

In statistics, econometrics, meteorology, and geophysics,
the primary goal of time series analysis is prediction and
forecasting. At the same time, in signal processing, control
engineering, and communication engineering, it is used for
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FIGURE 2. Example TSA application, where TSA acts as a filter to avoid
most of the computation. TSA selects the relevant queries (anomalies) and
discards the irrelevant ones.

signal detection and estimation. In data mining, pattern
recognition, and machine learning, time series motif and
discord discovery are used for clustering, classification,
anomaly detection, and forecasting. Finally, the most impor-
tant application of time series motif and discord discovery
is clustering seismic data and discovering earthquake pattern
clusters from the continuous seismic recording. Consequently,
seismic clustering can be applied to earthquake relocation and
volcano monitoring to help improve earthquake and volcanic
hazard assessments.

Within this field, the subsequence Dynamic Time Warping
(sDTW) algorithm is a fundamental kernel due to its superior
accuracy and generality when compared to other TSA
methods [4]. Examples of real-life use cases that can benefit
from high-performance and energy-efficient SDTW are:

o Circulatory Failure Detection in Intensive Care
Units. TSA consumes 90% of the end-to-end execution
time [49]. Figure 2 describes the aforementioned process
based on an example processing flow.

« Electroencephalography (ECG). TSA is deployed
to monitor and filter ECG readings when monitoring
patients [50].

« Earthquake Detection. TSA is critical to process
seismograph data and detect anomalies for further
analysis [43].

C. DYNAMIC TIME WARPING (DTW)
DTW algorithm was first introduced by [51]. The first step
of DTW is to compute the distance between a particular
point from a subsequence and a set of points from another
subsequence, only keeping the minimum of them. This process
is repeated for all the points of the first subsequence. Then,
DTW computes the addition of all distances, providing a
similarity measure between the subsequences (the lower the
distance, the higher the similarity).

Assuming that we have two subsequences, Q (query) and R
(reference), of length n and m, respectively, where:
R=ri,nr,...

Q=q17q2,-~79i,-~7Qn ”j""?rm (1)
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DTW constructs an n-by-m scoring matrix (S) to determine
the similarity between the two subsequences. Each (i’, j)
cell of the matrix (s; ;) is filled in two steps. First, the algorithm
calculates the distance d(g;, r;) between the two corresponding
points of the subsequences. There are several approaches to
calculate such distance, while d(g;, ¢c;) = abs(g; — ¢;) and
d(gi,cj)) = (qi — cj)2 are the most common ones. Second,
the distance value is added to the minimum of the three
neighboring cells as follows:

sij = d(qi, ¢j) + min(si—1,j—1, Si—1j» Si,j—1) @)

The algorithm fills the entire matrix using dynamic pro-
gramming. Then, the goal is to find the best alignment (i.e.,
minimum accumulated cost), known as the warping path (W).
W is a contiguous set of matrix cells that defines the best
mapping between Q and R.

Subsequence Dynamic Time Warping (sDTW): sDTW is
a more general DTW algorithm that allows the query to be
aligned with part of the reference. Algorithm 1 presents the
pseudocode of sDTW.

Algorithm 1 Subsequence DTW (sDTW)
1: procedure sDTW(Q,R)
2: S <« zeros(N, M);
S[0, 0] = dist(Q[0], R[OD);
fori < 1toN do
S[i, 0] < S[i — 1, 0] + dist(Q[i], R[0]);
for i < 1toN do
forj < 1toM do
S[i, j1 < dist(Q[il, R[jD) +

min(S[i — 1,j— 11, S[i,j — 11, S[i — 1, j1);
return min(S[N, :])

R e A A

First, sDTW initializes the matrix S with zeros. Second,
it calculates the distance value of the top-left corner and then
the remaining elements of the first row, taking into account
the previous values. Third, it fills the remaining elements of
the matrix using dynamic programming row by row. Finally,
it returns the minimum element of the last row of the S matrix,
which indicates the similarity between the query and the best
alignment with (part of) the reference. The nested for loops
(lines 6 and 7 in Algorithm 1) are responsible for the quadratic
runtime and memory complexities.

D. BOTTLENECKS OF SDTW IN CONVENTIONAL AND PNM
PLATFORMS

sDTW’s quadratic computational complexity is challenging to
overcome, especially when accurate results are required and
algorithmic optimizations are insufficient. To determine the
bottlenecks in conventional platforms, we perform a detailed
characterization of parallelized and optimized SDTW kernels
on CPU, GPU, FPGA, and PNM platforms.

1) CPU
We profile the performance of sDTW on an Intel Xeon
Phi 7210 CPU using the Intel Advisor tool. We build
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== CPU Mem: 79 GB/s
CPU OPS: 144 GINTOPS

== GPU Mem: 828 GB/s
== GPU OPS: 15.7 TINTOPS
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FIGURE 3. Roofline plots for sDTW on a many-core CPU platform (left) and
a server-class GPU (right).

the roofline plot and present the result in Figure 3-
left. First, we observe that sSDTW-CPU can utilize only
41% of the system’s integer peak performance, i.e., 59
GINTOPS out of 145 GINTOPS, and exhibits low arithmetic
intensity (0.55 INTOP/Byte). Second, the total memory
traffic generated during runtime is 267 GB. In contrast, the
memory footprint of the sSDTW kernel is only 570 MB. This
demonstrates that sSDTW is a memory-bound kernel for CPU
targets.

2) GPU

Several prior works propose accelerating sSDTW using GPUs
(e.g., [52]). However, these implementations are tailored
and optimized for specific workload sizes. They rely on
high-latency global memory when working with arbitrary-
sized datasets, which results in large performance penalties
compared to the optimal input size. To quantify the bottlenecks,
we develop an optimized CUDA-based implementation that
supports arbitrary subsequence sizes and characterize it on the
NVIDIA Tesla V100 GPU. We analyze the SDTW kernel using
NVIDIA Visual Profiler [53] and generate the roofline plot in
Figure 3-right. We observe that SDTW-GPU’s performance
improves with respect to sSDTW-CPU but utilizes merely
1% of the GPU’s available peak performance. We explain
this observation by 1) the low arithmetic intensity of sDTW
and 2) the limited per-thread available local memory. Even
increasing the available local memory does not improve
performance and the algorithm hits the memory roof due to
1), thus greatly underutilizing the platform. Based on this
analysis, we conclude that GPU is not a good target for sSDTW
kernels executing on arbitrary subsequence sizes, which is the
common case in many applications.

3) FPGA

sDTW acceleration using FPGAs requires large onboard
memory to achieve high performance. As most of the prior
work based on FPGAs does not provide high on-chip memory
capacity, data is distributed over the chip. We develop an
optimized FPGA implementation targeting a Xilinx Alveo
U50 and build the roofline model in Figure 4-left. We observe
that the eight compute units that fit in the FPGA achieve less
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FIGURE 4. Roofline plots for sDTW on FPGA (left) and UPMEM (right)
platforms.

than 7% of the available peak throughput and are insufficient
to exploit the inherent parallelism in the SDTW kernel.

Key Observation 1: Conventional architectures fail
to provide a high performance and energy efficient
acceleration solution because execution time and energy
are wasted on the data movement between memory and
processing units.

4) PROCESSING-NEAR-MEMORY (PNM)

PNM platforms place processing units in the same die as
memory units. The idea behind this paradigm is to exploit
the lower latency and higher bandwidth available in memory
and mitigate the data movement overheads between the
processing units and memory. To evaluate the performance
and energy efficiency of SDTW on PNM, we implement
an optimized version of the algorithm on UPMEM [54],
the first commercially available server-class PNM platform.
We build the roofline model in Figure 4-right and observe
that SDTW is compute-bound in UPMEM. This observation
can be attributed to the low-power general-purpose cores
in UPMEM that offer poor throughput (146 GINTOPS in
contrast to 15700 GINTOPS for the GPU). As arithmetic
operations are at the core of SDTW, PNM cannot provide high
performance for it. We also observe that UPMEM reduces
the energy consumption by 37% with respect to the GPU
by reducing the data movement overheads (section IV-C).
However, poor performance in contrast to the GPU inhibits
the effective usability of the platform for the SDTW kernel.

Key Observation 2: General-purpose PNM sub-
strates provide higher energy efficiency compared to
CPU/GPU/FPGA platforms. However, they fail to offer
a high performance solution because of the limited
arithmetic computation throughput supported by the
hardware.

E. OVERCOMING BOTTLENECKS IN TSA

1) NEED FOR PROCESSING-USING-MEMORY (PUM)

We observe that when executing the sDTW kernel, 1) CPU,
GPU, and FPGA platforms are memory-bound, and 2) PNM
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platforms are compute-bound. In contrast to these platforms,
PUM accelerators execute operations directly using the
memory cells where data resides [15]. PUM enables 1)
exploiting large internal memory bandwidth for memory-
bound kernels, and 2) exploiting massive computation
parallelism (as high as each bitline) for compute-bound
kernels, overcoming key restrictions of CPU, GPU, FPGA and
PNM architectures. Based on these observations, we argue
that an accelerator based on PUM is needed to improve
TSA’s performance and energy efficiency providing a balanced
solution.

2) CELL TECHNOLOGY CHOICE

A PUM-based accelerator’s performance, energy efficiency,
and endurance depend on the underlying substrate’s cell
technology; thus, it is a critical design choice. Non-Volatile-
Memories (NVM) offer a low-energy substrate for PUM as
they do not require periodic refresh operations in contrast to
DRAM-based PUM [55]. However, it is challenging to support
frequent write operations as NVM-based PUM architectures
due to significant write latency and low endurance [56].
Table 2 presents the characteristics of NVM technologies
we considered for accelerating the sSDTW kernel. We discard
NAND Flash, ReRAM, and PCM in the first step due to their
low endurance and high write latency. Next, we consider
FRAM due to its high endurance but discard it due to the
high read latency. We then consider MRAM technologies
(section II-F) and discard STT-MRAM due to a high write
latency. In contrast to STT-MRAM, SOT-MRAM offers 1)
high endurance, 2) low read and write latencies, and 3) CMOS
compatibility that eases manufacturability. Considering these
characteristics, we argue that SOT-MRAM is a promising
substrate for implementing PUM accelerators for kernels
with frequent write operations, and evaluate its feasibility
for accelerating the SDTW kernel.

TABLE 2. Characteristics of different NVM technologies [57].

[ Technology | Write/Read Energy | Write/Read Time | Write Cycles |
NAND Flash 470pJ / 46pJ 200us /25.2us 10°
ReRAM 1.1nJ / 525£] 10us / Sns 10°
PCM 13.5pJ / 2pJ 150ns / 48ns 107
FRAM 1.4nJ / 1.4nJ 120ns / 120ns 1015
STT-MRAM 2nJ / 34pJ 250ns / 10ns > 101°
SOT-MRAM 334p) / 247p] 1.4ns/ 1.1ns > 101

We conclude that the MRAM-PUM acceleration approach
has the potential to overcome TSA’s bottlenecks and provide
a faster and more efficient solution than the state-of-the-art.

F. MRAM-BASED PUM COMPUTATION

Many prior works demonstrate significant performance
and energy efficiency improvements for machine learning
workloads via PUM in resistive crossbars [58] by exploiting
matrix-vector multiplication. Other approaches can exploit
bitwise operations with high performance and energy
savings [59], [60], [61]. Figure 5-a shows a typical crossbar
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FIGURE 5. a) Crossbar organization. b) Magneto-resistive cell. c)
Reconfigurable SA that performs in-memory operations based on the
voltage variations across the bitline.

RMem

organization with memory cells connected using bitlines and
wordlines.

Figure 5-b shows the basic structure of a Spin-Orbit Torque
(SOT)-MRAM cell composed of a stack of Magnetic Tunnel
Junctions (MTJs) (cyan and red blocks in the figure) and a
Heavy Metal Layer (grey block in the figure).

« Magnetic Tunnel Junction (MTJ). Consists of a fixed
layer with a pinned magnetization direction, a free layer
whose magnetization can be changed, and an insulating
tunnel barrier between them.

« Heavy Metal Layer. This layer is placed next to the MJT
to facilitate the spin-orbit torque effect. Common heavy
metals used include tantalum (Ta) and tungsten (W).

The change of orientation of one of the layers of the stack
results in a variation in the device’s electrical resistance.
However, compared to Spin-Transfer-Torque MTJ (STT-
MT]J) [57], SOT-MIJT features separated read and write paths,
enhancing endurance and widening the read/write margin.
Then, sense amplifiers interpret the resulting voltage as
boolean:

« Read Operation. During a read operation, the resistance
of the MTJ is measured. The resistance is sensitive to
the relative alignment of the magnetization in the fixed
and free layers, allowing the stored data (Boolean values
representing O or 1) to be read.

o Write Operation. During a write operation, an electric
current is applied through the heavy metal layer, inducing
a spin current. This spin current exerts torque on the free
layer, causing its magnetization direction to switch and

changing the stored Boolean data.
Unlike STT-MTJ, which faces read disturbance issues

limiting the read circuit frequency, SOT-MTJ allows for
flexible adjustment of current magnitude in the read
circuit without concerns about read disturbance effects.
As a consequence, it enables more accurate sensing
which is crucial to implement in-memory operations. This
suggests SOT-MRAM as a better candidate for PUM
applications.

Bitwise PUM Mechanism: The matrix-vector PUM map-
ping proposed in prior works cannot be applied to dynamic
programming (DP) algorithms (e.g., SDTW) since they
perform matrix-vector multiplication. DP requires computing
a 2D scoring matrix by traversing it row-by-row. Moreover,
prior crossbar substrates offer limited support for other
operations (e.g., minimum calculation). To overcome this
challenge, MAGIC [62] proposes decomposing complex
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operations into simple Boolean functions (e.g., AND, NOR,
XOR) to support them in the substrate. The key idea is
to vertically map the operands (e.g., 32-bit integers) to
the crossbars’ columns using (typically) one bit per cell
(e.g., each operand value takes 32 bits of a given column).
Then, the desired operation (e.g., addition) is decomposed
to simple bitwise operations (e.g., NOR) and performed bit-
by-bit via sequentially activating two cells for each operand
simultaneously. This approach creates a difference in the
voltage over the bitline depending on the content of the
activated cells, which depends on the resistance they hold.
Then, a modified sense amplifier calculates the result based
on that voltage difference and thresholds, storing it in a cell of
the same column. While this process is inherently sequential
and the latency per operation is higher than a CMOS-based
approach, the 1) independence across columns and 2) the lack
of data movement enables immense parallelism and, thus,
an overall higher throughput than CMOS-based solutions.
Figure 5-c shows a sense amplifier (SA) slightly modified
with respect to commodity ones, including different voltage
thresholds for the operations.

IIl. MATSA ARCHITECTURE

A. OVERVIEW

MATSA is an MRAM-based Accelerator for Time Series
Analysis. Figure 6 presents an overview of our proposed
architecture. MATSA is composed of several chips divided
into multiple banks. Banks belonging to the same chip share
buffers and I/O interfaces and work in a lock-step approach.
Each bank is composed of several Multiple Memory Matrices
(MATs). The MATs share a Global Row Buffer (GRB) and
are connected to a Global Row Decoder (GRD). We place a
Local Row Buffer (LRB) for every pair of subarrays to improve
performance. Each subarray is composed of magnetoresistive
devices that are connected to the Write Word Lines (WWL),
Write Bit Lines (WBL), Read Word Lines (RWL), Read
Bit Lines (RBL), and Source Lines (SL). The compute-
enabled subarrays perform the sDTW computation using
Reconfigurable Sense Amplifiers (RSAs).

The execution flow is orchestrated by a hierarchy of small
controllers implemented as finite state machines (FSMs).
MATSA comprises of 1) a global controller that orchestrates
inter-bank flow, 2) inter-mat controllers that take care of the
inter-mat flow, and 3) subarray controllers that activate the
memory rows and drive the RSAs to run sDTW’s algorithm.

B. MATSA SUBARRAYS

MATSA subarrays are comprised of MRAM cells following a
crossbar organization and can work either in regular memory
or compute mode. This is a desirable feature since our design
consists of 1) subarrays that temporarily buffer the data until
they are being processed and 2) subarrays that perform the
actual computation. Adjacent subarrays are connected using
pass gates and aux columns (purple one in Figure 6) to enable
the data flow through the hierarchy.
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FIGURE 6. MATSA's high-level architecture and data mapping flow.

1) MEMORY SUBARRAYS

MATSA subarrays in regular memory mode support both
read and write data operations and work in the same way
as conventional non-PUM-enabled memory.

2) COMPUTE SUBARRAYS

MATSA subarrays working in compute mode perform bit-
wise operations on input data located in cells of the same
column. This enables the parallel execution of many operations
since all columns in the subarray work in parallel. The key
idea is to select two or three input values simultaneously
using the Memory Row Decoder (MRD). This produces
an equivalent resistance that depends on the content of
the selected cells and modifies the sensing voltage across
the column accordingly. MATSA'’s Ctrl can select different
operations from the Reconfigurable Sense Amplifiers (RSAs)
that are placed per column. We modify the RSAs to execute
operations by equipping them with different resistances to
model the voltage thresholds, logic gates (i.e., NOR, XOR,
INV), a register, and a multiplexer (see Figure 6). The RSAs
in Compute subarrays support the same operations as memory
subarray RSAs, enabling switching between operating in
compute and memory modes.

C. PUM OPERATIONS
MATSA implements the following PUM operations to support
the execution of SDTW (detailed in Algorithm 1):

« Vertical Row Copy. MATSA executes consecutive mem-
ory read and write operations in the same cycle to improve
performance by activating two rows simultaneously.
In the first half cycle, the subarray’s MRD activates the
source row read by the LRB. Next, the destination row
is activated to store the data in the second half cycle.
This mechanism works at MAT and bank levels using
the Global Row Buffer (GRB) to accelerate the copies
across the hierarchy.

Diagonal Row Copy. The Ctrl executes a diagonal
copy shift data between adjacent columns. The Ctrl
leverages the available registers in the RSA and the
interconnections between the RSAs. The operation is
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executed in two steps. First, the RSA reads the value in
the source column. Second, the destination RSA (in an
adjacent column) reads the value from the source RSA
and writes it to its column.

Addition/Subtraction. MATSA executes Bit-serial
addition/subtraction across columns. The Ctrl executes
operations starting from the least significant bit of the
two operands until the most significant bit. Every bit
operation requires two memory cycles, further divided
into four half cycles. In the first half-cycle, the RSAs read
voltage difference across all cells activated in the same
bit lines as input operands and calculate the Sum. The
RSA updates the Sum based on the stored Carry value
in the register. In the second half-cycle, the RSAs write
the Sum value to the destination cell. In the third half-
cycle, the RSAs calculate the new Carry value based on
a majority function of the operand rows and an auxiliary
row reserved for the Carry bit. In the fourth half-cycle,
RSAs write the new Carry value in the auxiliary row for
the next Carry calculation.

Absolute Calculation. To calculate the absolute value,
MATSA first checks the sign bit, leading to two possible
scenarios: 1) if the number is positive, no change is
needed; otherwise, 2) if the number is negative, MATSA
inverts the bits of the number and adds ’1’ to the result
(similar to 2’s complement).

Minimum Value. To calculate the minimum value
between three elements, MATSA performs two com-
parisons based on the subtraction operation. First,
it calculates the difference between the two numbers.
Second, it checks the resulting sign from the previous
step and selects one of the two numbers for comparison
against the third. The final comparison sign determines
the minimum between three values. The logic can be
similarly extended for comparing more than three values.

D. DATA MAPPING

Section II-D demonstrates that sSDTW is an embarrassingly
parallel algorithm. We design MATSA’s data mapping
to leverage MRAM’s parallel column-wise computation
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capability. Three data structures are involved in the sDTW
computation: 1) reference sequence (of length O(M)), 2)
query sequence (of length O(N)), and 3) the warping matrix
(dynamic programming matric with size O(NM)). The data
structures are mapped to the subarray as follows:

« Reference Elements (R[j]). We vertically map each
reference element to 32 cells of a column. If 1) the
number of available columns is larger than the number
of elements in reference, we replicate the reference to
multiple columns to increase parallelism (distributing the
queries between them). If 2) the number of available
columns is lower than the number of elements in
reference, we divide the query and complete the process
in sequential batches. No action is needed if 3) available
columns are equal to the number of elements in reference.

e Query Elements (Q[i]). We vertically map each query
element to 32 cells of a column. New query elements are
introduced on the left side of the crossbar, and they are
right-shifted in each successive step (see section III-E).

e Current S_vector (S[1i, j]).We define the current
vector of the warping matrix as the S_vector. We verti-
cally map each element of the S_vector to 32 cells of
a column, being aligned with the query and reference
elements (i and j indexes, respectively).

o Temporal S_vectors (S[i-1, j-1], S[i-1,
j1, S[i, 3j-1]1). We vertically map the three
temporal vectors along the reference and query elements.
Mapping the temporal vectors in the same subarray
leverages parallelism in the subarray as each column
can compute lines 8-9 of Algorithm 1 completely in
parallel. Then, those vectors are efficiently updated also
in parallel for the next iteration of the loop thanks to the
vertical and diagonal row copies.

o Aux Cells. Each column has a slice of 64 cells used to
hold the partial results during the execution flow.

We calculate the distance between each data point in the
reference and the query by iterating over the current S_vector
of the warping matrix (see Algorithm 1). Each element in the
S_vector (mapped across different crossbar columns) requires
accessing previous S_vector values that are mapped to the
same column (i.e., S[i — 1,/]) and adjacent columns (i.e.,
Sli,j — 11, S[i — 1,j — 1]). To break this data dependency,
we add three temporal S_vectors in the crossbar array that
are updated in each step of the computation: S[i — 1,7 — 1],
S[i—1, j]and S[i, j—i] (see Figure 6). Overall, our optimization
reduces the memory footprint from O(NM) (whole matrix) to
O(4M) (S_vector plus three aux ones).

E. EXECUTION FLOW

MATSA’s execution flow follows a wavefront approach,
which reflects the computation pattern in dynamic program-
ming applications. The motivation is that SDTW’s matrix has
to be computed in the wavefront manner due to inter-cell
dependencies. Figure 7 shows an example of how we tackle
this restriction by assuming one reference time series (red one)
and two queries (green and ocher).
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FIGURE 7. Wavefront-based sDTW computation in MATSA.
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The key idea is to make computation flow diagonally by
assigning one element in the wavefront to each processing
element (PE), and using the diagonal row copy operation
(section III-C) to shift data between columns on the wavefront.
This is needed since each cell requires taking values from
its left column, thus their data values need to be available
prior to computation. Because of that, each PE advances
computation in the vertical direction with one cell delay with
its left PE, ensuring that the data needed to calculate the next
value is available. Figure 7-a shows an initial state where the
computation just started. In this example, only PEs where
their column contain black rectangles are are performing
computation. Note that in every step the wavefront introduces
a new PE to the active set, achieving maximum performance
after number_of _PEs steps. When reaching point, all PEs are
able to perform useful work in a given execution step. Figure 7-
b shows how this initialization phase can be amortized by
pipelining. By introducing a new query to compare against the
reference before the prior one finishes, MATSA ensures that
all PEs have work to do even during the transitions between
queries. Overall, this execution flow enables 1) leveraging the
subarray columns in parallel for the query, and 2) creation
of an inter-subarray pipeline to leverage parallelism across
queries, i.e., by processing queries in parallel. The execution
flow of each cell goes through the following steps:

1) Distance Calculation. Calculation of dist(Q[i], R[j]),
which provides the first partial result P1. This process
implies several substeps depending on the selected
distance metric, (e.g., subtraction — absolute value).

2) Minimum. Calculation without storing the result of
min(S[i—1,j—1]1, S[i—1,jl1, S[i, j— 11), which produces
the value for the next step S1.

3) Addition. Calculation of the addition between the
minimum value selected in the previous step (S1) and
the partial result P1.

4) Diagonal Copy. Copying the S[i,j] vector into the
S[i, j — 1] vector shifted by one to the right.

5) Diagonal Copy. Copying the S[i — 1, j] vector into the
S[i — 1,j — 1] vector shifted by one to the right.

6) Vertical Copy. Copying the S[i, j] vector into the S[i —
1, j] vector.
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void matsa (DTYPE x ref, DTYPE * queries, uint64_t =
ref_size, uint64_t x query_sizes, uint64_t n_queries,
char * mode, char * dist_metric, DTYPE anomaly_thres
, bool % anomalies, DTYPE x distances)

LISTING 1. MATSA's host interface function.

7) Diagonal Copy. Copying the Q[i] vector into the same
Qli] vector but shifted one position to the right.

F. PROGRAMMING INTERFACE AND SYSTEM INTEGRATION
1) PROGRAMMING INTERFACE

We expose an API (Listing 1) that allows to invoke MATSA
from the host processing unit.

MATSA expects input data to be in a supported type-
/precision DTYPE (integer: int8, intl6, int32 or
int64; fixed-point: fp32 or fp64), the selected mode
(either query_filtering, where queries are compared against
the reference or self join, where slices of the reference
are compared against themselves) and the distance metric
(abs_diff or square_diff). MATSA can also take an anomaly
threshold, which returns an array with the detected ones.

2) SYSTEM INTEGRATION
MATSA is designed to work synergistically with the CPU to
accelerate TSA. We propose three MATSA versions to meet
the requirements of different environments, as we describe
next.
a) MATSA-HPC. A high-performance PCle-based acceler-
ator intended to be integrated into servers.
b) MATSA-Embedded. A small chip intended to be
integrated with edge devices (e.g., sensors).
¢) MATSA-Portable. A USB-based accelerator intended
for use in desktops and laptop computers.

IV. EVALUATION

A. METHODOLOGY

To comprehensively quantify the performance and energy
efficiency improvements of MATSA, we compare it with the
following systems.

o CPU-ARM (cpuarm): 4-core ARM CPU @ 2.5GHz,
32KB L1 and 8GB LPDDRA4.

o CPU-i7 (cpui7): 6-core (12 threads) Intel i7 x 86 CPU
@ 3.2GHz, 64KB L1, 256KB L2, 12MB L3 and 64GB
DDRA4.

o CPU-Xeon (cpuxeon): Two 18-core (36 threads) Intel
Xeon Gold 6154 x 86 CPUs @ 3GHz, 32KB L1, IMB
L2,24.75 MB L3 and 768GB DDRA4.

¢ GPU (gpu): NVIDIA Tesla V100 with 32GB of HBM.

o FPGA (fpga): Xilinx Alveo U50 with 8GB HBM
memory.

« UPMEM (upmem): Server-class Processing-Near-
Memory DIMMs with 2560 DPUs running at
425MHz [10].

¢ MATSA-Embedded (matsa-embedded): consist-
ing of 128 compute-enabled crossbars (1MB) and
896 regular-memory crossbars (7MB).
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FIGURE 8. Overview of MATSA simulator.

« MATSA-Portable (matsa-portable): consisting
of 1024 compute-enabled crossbars (8MB) and
7168 regular-memory crossbars (S6MB).

o MATSA-HPC (matsa-hpc): consisting of 4096
compute-enabled crossbars (32MB) and 28672 regular-
memory crossbars (224MB).

1) BASELINES

We use ZSim+Ramulator [63] and McPAT for the cpuarm
platform. For the cpui7 and cpuxeon platforms, we have
access to the target hardware and measure performance
and energy consumption values by averaging five repeated
executions. The energy consumption is determined using
Intel RAPL tools. To evaluate the performance of the upmem
platform, we implement and optimize the sSDTW algorithm
as shown in Algorithm 1. To evaluate the performance on
the fgpa platform, we implement the sDTW algorithm
using High-Level Synthesis vendor tools from Xilinx and
optimize the implementation to utilize eight compute units
and maximize the utilization of the available HBM bandwidth.
We evaluate the performance of the gpu platform by
optimizing a CUDA-based implementation of sDTW to
maximize the HBM bandwidth utilization via memory
coalescing. We measure the GPU’s energy consumption using
the NVIDIA-smi tool.

2) MATSA

Due to the lack of a cycle-accurate simulator for MRAM-based
accelerators, we implement an in-house simulator for MRAM-
based PUM. Figure 8 shows an overview this simulator.
We provide the workload characteristics and the MRAM
device characteristics under study, and the simulator computes
the performance and energy efficiency in return. We plan to
release this simulator for public use of the community after
acceptance of this work.

We perform a sensitivity analysis by sweeping MRAM
devices’ latency and energy from conservative to optimistic
values based on MRAM device trends [64] listed in Table 3.
Based on that, we conservatively select an operating point
(highlighted in bold) for the evaluations taking into account
realistic MRAM device progress projections. We input the
workload parameters and MRAM characteristics obtained
from the parameter sweep to the simulator to get the
workload’s execution time and energy consumption.
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TABLE 3. MATSA design space exploration parameters.

[ Parameter [ Values |
Crossbar Size (cells) 256x256
Number of Crossbars 128, 256, 512, 1024, 2048, 4096
Read Latency (ns) 1,3,5,10,20
Write Latency (ns) 1,3,5,10,20
Read Energy (pJ) 20, 50, 100
Write Energy (pJ) 30, 70, 400

3) DATASETS

We perform MATSA’s design exploration using the datasets
in Table 4, which ease understanding of the tradeoffs. Then,
we compare MATSA against baselines in real scenarios using
the real datasets in Table 5. The data type for these evaluations
is int 32, which covers the data ranges of all the evaluated
the workloads.

TABLE 4. Workloads used in MATSA characterization.

[ Parameter [ Values ]

64K, 128K, 256K, 512K
4K, 8K, 16K, 32K
4K, 8K, 16K, 64K

Reference Size
Query Size
Number of Queries

TABLE 5. Real-world workloads used in our evaluation.

[ Time Series | Reference Size | Query Size | Num. Queries |

Human 7997 120 128K
Song 20234 200 64K
Penguin 109842 800 32K
Seismology 1727990 64 16K
Power 1754985 1536 16K
ECG 1800000 512 16K

B. MATSA CHARACTERIZATION

We perform a design space exploration of MATSA taking
into consideration performance parameters of the cells (i.e.,
read/write latencies and energies).

1) READ/WRITE LATENCIES

We evaluate how changing the read/write latencies affects the
execution time and present the results in Figure 9. We observe
that, increasing read latency by 10x incurs a 4.7 x execution
time penalty, while increasing the write latency incurs a 6.5 x
penalty.

Key Observation 3: using a low write latency memory
technology is crucial for MATSA’s design.

2) READ/WRITE ENERGIES
We evaluate how the total execution energy varies with the

per word write/read energy, and show the results in Figure 10.

We observe here that the contributions of read energy and
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FIGURE 11. Execution time when varying dataset sizes (num_queries = 8K,
matsa_cols = 128K).

write energy are similar, thus both of them have to be carefully
taken into consideration.

Key Observation 4: read energy contributes 45%
and write energy contributes 55% to the total energy
consumption of a given execution.

3) DATASET SIZES

First, we evaluate how the execution time varies with different
dataset sizes (i.e., ref_size and query_size) and present the
results in Figure 11. Second, we evaluate how the execution
energy varies with different dataset sizes and present the
results in Figure 12. We observe that both reference size
and query size contribute equally to the execution time and
energy. This happens because the total number of operations
needed is directly proportional to ref_size x query_size. Our
observation corroborates our earlier analysis stating that
query-specific SDTW implementations do not fairly represent
GPU performance, and there is a need for a more general
solution.

Key Observation 5: Total execution time and energy
consumption are proportional to both ref_size and the
query_size.
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4) MATSA SIZES

We evaluate how the execution time varies when changing the
number of MATSA’s compute-enabled columns in Figure 13.
MATSA provides almost-ideal scaling.

Key Observation 6: Bit-serial computation across
columns enables almost-ideal scaling when increasing
the size of the workload.

5) ENDURANCE

Assuming that MATSA is built using 5/10ns rd/wr cells and
runs 24/7 for ten years, we estimate that each cell will be
written &~ 4 x 10° times. Based on Table 2, limited-endurance
cells (e.g., ReRAM) would fail within one day. In contrast,
high-endurance cells (10 writes for SOT-MRAM) can
provide a very large usable lifetime.

6) HARDWARE OVERHEADS

MATSA introduces hardware overheads in two components:
1) Reconfigurable SAs and 2) MATSA controllers. Recon-
figurable SAs add 13 transistors to a traditional SA, thus
taking into consideration typical SA and cell areas [65], [66],
our design increases the overall crossbar area by less than
1%. MATSA controllers are implemented as small finite-state
machines whose area is negligible compared to the memory
arrays.

C. SYSTEM EVALUATION

1) MATSA-EMBEDDED AND MATSA-PORTABLE

We compare the performance of MATSA-Embedded (32K
compute-enabled columns) and MATSA-Portable (256K
compute-enabled columns) with cpuarm, cpui7, and fpga
baselines in Figure 14a. The smallest version, MATSA-
Embedded, provides 30.20x/1.30x/8.14 x lower execution
times than cpuarm, cpui7, and fpga, respectively.
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FIGURE 15. Execution times and energy consumption of MATSA-HPC
(num_cols = 1M) versus baselines (rd_lat = 5ns, wr_lat = 10ns, rd_en =
50nJ, wr_en = 70nJ).

MATSA-Portable is further able to improve the performance
by 241.66x/10.40x/65.28x with respect to the same
baselines, respectively. These performance improvements
stem from the higher available parallelism in PUM, where all
compute-enable columns can compute independently. Next,
we compare the energy consumption of MATSA-Embedded
and MATSA-Portable with the same baselines in Figure 14b.
MATSA-Embedded reduces the energy consumption by
45.67x/10.64x/24.58 x with respect to cpuarm, cpui?
and fpga baselines, respectively. We observe that 1) the
energy reduction comes from eliminating the expensive off-
chip data movement and 2) MATSA-Portable reduces the
energy consumption by roughly the same factor as MATSA-
Embedded. We deduce from these results that scaling MATSA
improves the performance but does not penalize the energy
efficiency.

2) MATSA-HPC

We first perform a performance comparison of MATSA-HPC
and present the results in Figure 15a. We observe that MATSA-
HPC achieves 7.3x/6.15x/6.3x lower execution times than
cpuxeon, gpu and upmem, respectively, owing to enormous
available parallelism (one million compute columns). Second,
we compare the energy consumption of MATSA-HPC in
Figure 15b and observe that it provides 11.29x/4.21x/2.65 x
lower energy consumption than cpuxeon, gpu and upmenmn,
respectively. The energy efficiency benefits of MATSA-HPC
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stem from the elimination of the off-chip data movements.
We note that cpuxeon is bottlenecked by 1) the limited
parallelism (number of cores) and 2) the high data movement
costs through the memory hierarchy. The gpu baseline
provides high parallelism but is limited by data movement
from and to memory. The PNM-based upmem baseline
provides high parallelism and lowers data access costs
compared to CPU and GPUs. However, the sDTW kernel
is compute-bound in upmem due to small general-purpose
cores, in contrast to MATSA, a dedicated accelerator design
for the sDTW kernel.

3) MATSA BENEFITS
Table 6 summarizes MATSA’s benefits.

TABLE 6. MATSA’s speedup and energy over baselines.

[ MATSA Version | Baseline | Speedup | Energy Savings |

Embedded cpuarm 30.20x 45.67 %
Portable cpui7 10.41x 10.65x
FPGA 65.01x 24.58 x
Xeon 7.35% 11.29x
HPC UPMEM 6.31x 2.65%
GPU 6.15x 4.21x

V. RELATED WORK

To our knowledge, MATSA is the first SDTW accelerator
via MRAM-based PUM. We compare extensively to CPU,
GPU, FPGA, and state-of-the-art PNM platforms in section I'V.
In this section, we describe related works focusing on
accelerating SDTW and prior PUM-based accelerators.

A. ACCELERATING DYNAMIC TIME WARPING (DTW)
Several works attempt to accelerate the SDTW kernel using
GPUs [52], [67] and FPGAs [68]. section IV demonstrates that
MATSA improves upon the performance of GPUs and FPGAs
by 6.15x and 65.28 x respectively, and supports arbitrary-
sized datasets, a key drawback of prior work.

B. PROCESSING NEAR/USING MEMORY

There has been a significant interest in Processing-
[Near/Using]-Memory-based solutions for overcoming the
von Neumann bottleneck in modern computation platforms [5],
(81, [15], [69], [701, [711, [72], [73], [74], [75], [76], [77],
(781, [79], [80], [81], [82], [83], [84], [85], [86], [87],
[88], [89], [90] for various applications using accelerators
or general-purpose cores. In [91], ARM cores are used as
NDP compute units to improve data analytics operators (e.g.,
group, join, sort). IMPICA [92] is an NDP pointer chasing
accelerator. Tesseract [93] is a scalable NDP accelerator
for parallel graph processing. TETRIS [94] is an NDP
neural network accelerator. Lee et al. [95] propose an NDP
accelerator for similarity search. GRIM-Filter [77] is an NDP
accelerator for pre-alignment filtering in genome analysis.
Boroumand et al. [9] analyze the energy and performance
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impact of data movement for several widely-used Google
consumer workloads, providing NDP accelerators for them.
CoNDA [70] provides efficient cache coherence support
for NDP accelerators. SparseP [96] provides efficient
data partitioning/maping techniques of the SpMV kernel
tailored for near-bank NDP architectures. NDC is an NDP
architecture [97] that has been proposed for MapReduce-
style applications. Xu et al. [98] propose a memristor-based
accelerator for accelerating the sDTW kernel. Despite
promising performance, they do not discuss endurance
challenges associated with memristors that restrict the
lifetime of the accelerator. In contrast, MATSA considers
this challenge and offers a usable lifetime of several decades.
Chen and Gu [99] propose an sSDTW accelerator that exploits
DTW pipelining using a specially designed time flip-flop.
Although this work uses memristors for computation, they do
not leverage PUM. The data must be moved from/to memory
(i.e., memristors do not store the data). In contrast, MATSA
eliminates off-chip data movement to obtain high performance
and energy efficiency.

VI. CONCLUSION

This paper presents MATSA, the first MRAM-based Accel-
erator for Time Series Analysis. The key idea is to exploit
magnetoresistive crossbars to enable energy-efficient and fast
time series computation in memory. MATSA provides the
following key benefits: 1) significantly higher parallelism
exploiting column-level bitwise operations, and 2) reduction
in data movement overheads by leveraging PUM. MATSA
improves performance and energy consumption over CPU,
GPU, FPGA, and PNM platforms.
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