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ABSTRACT Early detection of plant diseases is essential for effective crop disease management to prevent
yield loss. In this study, we developed a methodology for classifying diseases in rice leaves using four
deep learning models and a dataset with 2658 images of healthy and diseased rice leaves. Four models,
namely LeafNet, Modified LeafNet, MobileNetV2, and Xception, were compared. The Modified LeafNet
model involved updates to LeafNet’s architectural parameters, whereas transfer learning techniques were
applied to the MobileNetV2 and Xception pretrained models. The optimal hyperparameters for training
were determined by considering several factors such as batch size, data augmentation, learning rate, and
optimizers. The Modified LeafNet model achieved the highest accuracies of 97.44% and 87.76% for the
validation and testing datasets, respectively. In comparison, LeafNet obtained 88.92% and 71.84%, Xception
obtained 88.64% and 71.95%, and MobileNetV2 obtained 82.10% and 67.68% for the validation and test
accuracies on the same datasets, respectively. This study contributes to the development of automated disease
classification systems for rice leaves, thereby leading to increased agricultural productivity and sustainability.

INDEX TERMS Deep learning, convolutional neural networks, transfer learning, image classification.

I. INTRODUCTION
Agriculture represents a significant development in the evolu-
tion of moderately advanced human civilization. This allows
urban living by enabling individuals to generate surplus food
through crop cultivation. Large-scale agricultural operations
are required for crop production and human consumption.
However, crops have repeatedly been decimated by diseases,
which have had a profound negative impact on agricultural
productivity and the financial performance of the sector [1].
Additionally, tropical and temperate regions of theworld have
been adversely affected by a range of environmental factors
and abrupt changes in climate and atmosphere. Consequently,
these environmental factors may have considerable impacts
on crop production [2], [3].
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Early detection of plant diseases is crucial for healthy food
production. Plant disease identification plays a significant
role in normal plant ecology research. Owing to their subtle
features, farmers sometimes struggle to precisely diagnose
signs of plant diseases [4]. According to the report published
by the Foreign Agricultural Service of the United States
Department of Agriculture (USDA), rice was cultivated over
a total area of 163.99 million hectares in the years 2020
and 2021, with an average yield of 4.57 metric tons per
hectare and a total production of 502.10 million metric tons.
However, therewas a 2.16%decrease in production compared
to previous years [5]. These statistics represent a decrease
in the production of rice fields compared to previous years,
with several different diseases considered to be among the
factors affecting the growth and productivity of rice crops.
If not effectively controlled, these diseases, which can be
caused by pathogens such as bacteria, fungi, and viruses, can
lead to substantial losses for farmers [6]. Some common rice
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diseases include brown spot, hispa and leaf blast [7]. Effective
disease management strategies, such as crop rotation, the use
of resistant varieties, and timely application of fungicides,
can help to minimize the impact of these diseases on rice
production [8].
Chemical pesticides are one of the methods used to control

rice diseases [9]. They are applied to paddy fields to kill or
prevent the growth of pathogens such as bacteria, fungi, and
viruses that cause diseases. Depending on the type and stage
of the disease, these chemicals can be applied as foliar sprays,
seed treatments, or soil drenches [8]. Chemical pesticides can
be effective in controlling rice diseases, but they also have
potential negative impacts on the environment and human
health [10].

The early identification and diagnosis of rice diseases are
crucial for effective disease management. By identifying the
disease and its severity at an early stage, farmers can take
timely action to control its spread and minimize yield losses.
Early diagnosis also allows the use of more targeted and
less hazardous control methods, such as cultural practices or
the application of less toxic pesticides. Rapid and accurate
diagnosis can be achieved through a combination of visual
inspection, laboratory tests, and diagnostic tools, such as
molecular assays [11]. Somemodern diagnostic tools, such as
remote sensing and machine learning-based algorithms, can
also aid in the early detection of rice diseases [12].
Convolutional neural networks (CNNs) can perform con-

volutional operations on input data, providing a robust
system architecture capable of addressing complex prob-
lems. A CNN model consists of an input layer, alternating
convolutional and pooling layers, fully-connected layers,
and an output layer [13]. By exploiting robust autonomous
learning and feature extraction capabilities, this model can
automatically extract image features for classification and
identification [13]. Feature extraction occurs within the
convolutional layers, delivering the output to the fully- con-
nected layer for classification. CNN is one of the most
widely used deep learning architectures as it offers sub-
stantial model capacity and the ability to handle complex
information [13], [14].
In recent years, computer vision techniques have been

commonly used in detection and classification problems [15].
These techniques involve the use of image processing algo-
rithms to analyze digital images of plants and identify signs of
disease [16]. Computer vision can be used to detect diseases
at an early stage before symptoms are visible to the naked
eye. Some common computer vision techniques used in plant
disease detection include the following:

Image Segmentation is a process of dividing the image
into different regions or segments, each having similar char-
acteristics. This can be used to identify and isolate specific
parts of the plant, such as leaves, for further analysis [17].
Feature Extraction is the process of extracting relevant

information from images, such as texture, color, and shape.
These features can then be used to classify images as healthy
or diseased [18].

Machine Learning (ML) algorithms, such as support
vector machines, can be used to classify images based on
extracted features. These algorithms can be trained on a
dataset of labelled images of healthy and diseased plants and
then used to classify new images of plants [19].
A method known as transfer learning in deep learning uses

CNNs trained for a specific task as the foundation for models
to be used for other relevant tasks. The weights can be ini-
tialized using a network pretrained on large labelled datasets,
such as public image datasets, which can save time and effort
compared to starting from scratch and initializing the weights
arbitrarily. It is recommended to use models that have been
pretrained on a substantial dataset, such as ImageNet, before
being retrained for tasks defined on the target dataset. The
VGGNet, ResNet, Inception V4, DenseNets, and SqueezeNet
models, which were developed to categorize plant diseases,
rely heavily on transfer learning [20], [21].

Our study focused on the disease classification of rice
leaves.We utilized the LeafNet model, which is a CNN-based
network proposed by Barré et al. [22], as our base model.
LeafNet is a convolutional neural network-based model used
to analyze images of plant leaves and classify them into
different species.

In this study, we modified the LeafNet model to enhance
its ability to classify rice diseases using rice leaf images.
The model under study was compared based on impor-
tant parameters such as batch size, learning rate, precision,
recall, F1-score and accuracy. Two optimizers, Adaptive
Moment Estimation (Adam) and Root Mean Square Propa-
gation (RMSprop), were used for error minimization. Two
pretrained models were selected for comparison. The first
model was Xception, which was considered a heavily com-
plex model owing to its size and architecture. The second
model was MobileNetV2, which was considered a relatively
lightweight model compared to Xception. Transfer Learn-
ing was applied to both models to test and examine their
abilities and performance using only rice leaf images. The
pretrained models had been trained on the ImageNet dataset,
which contains a large number of general images. Transfer
learning was implemented in this study by employing the
pretrained models and freezing their convolutional layers.
The fully-connected layers were then trained using the rice
leaf image dataset. The hyperparameters were tuned and the
performance of the models was evaluated.

The key contributions of this paper are as follows:
(a)Modified LeafNet model: A convolutional neural net-

work capable of classifying rice leaf diseases from images.
The major characteristic of this model is its higher clas-
sification accuracy (i.e., validation and testing) compared
to that of the LeafNet model on the rice leaf disease
dataset.

(b) Transfer Learning: We employed state-of-the-art
models that demonstrated superior performance in clas-
sification tasks. In this study, we utilized Xception and
MobileNetV2, applying transfer learning to these models by
freezing their convolutional layers, using pretrained weights
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for these frozen layers, and training the fully-connected layers
exclusively for the classification of rice leaf diseases.

(c)Explainable Artificial Intelligence (AI): The interme-
diate class activation map technique was used to visualize
the pixels that most influenced the model’s predictions for
specific classes.

The remainder of this paper is organized as follows:
Section II presents the background study; Section III outlines
the data preprocessing methods and introduces the proposed
framework; Section IV delves into the evaluation metrics
used to assess the experiments conducted; Section V dis-
cusses the experimental results and their implications; and
Section VI concludes the study and suggests potential direc-
tions for future work.

II. RELATED WORKS
With the evolution of artificial intelligence (AI) and deep
learning (DL), solutions based on specially designed neural
networks have become more accurate and reliable [23]. Neu-
ral networks, particularly CNNs, have been used in various
applications involving disease diagnosis [24], [25], [26]. The
use of computer vision techniques to categorize rice leaf
diseases has gained popularity in recent years.

Rice is a widely cultivated crop that serves as a staple food
in many parts of the world. Rice leaves are often affected by
various diseases and pests that can damage large quantities of
rice crops. Recently, finding solutions to improve production
in the agricultural industry has become a major concern.
Given their exceptional capabilities in extracting and learning
image features, CNN models can be used as effective image
classifiers to identify plant types and detect diseases.

Bashir et al. [27] presented a study focusing on the clas-
sification of rice diseases, specifically brown spot, false
smuts and bacterial leaf blight. They used a support vector
machine (SVM) classifier and reported 94.16% accuracy,
91.6% recall, and 90.9% precision based on a dataset of
400 images obtained from several sources.

According to Hossain et al. [28], recognizing rice leaf
diseases is critical for sustaining the global rice demand for a
large population. Nevertheless, rice leaf disease recognition
is limited by factors related to the image surroundings and
the conditions under which the images are captured. They
suggested a unique CNN-based approach to identify diseases
in rice leaves by lowering the network parameters. Numerous
CNN-basedmodels have been trained to recognize five preva-
lent rice leaf diseases, using a unique dataset of 4199 images
of rice leaves. Prasad et al. [29] suggested the use of an
InceptionResNetV2 model in conjunction with a transfer
learning strategy to identify diseases in rice leaf images. The
dataset was constructed from 5200 images and included three
categories of diseases: leaf blast, brown spot, and bacterial
blight. Furthermore, Ghosal and Sarkar [30] stated that owing
to their lack of experience, farmers find it extremely chal-
lenging to identify rice diseases visually. Therefore, they used
CNN models for automatic image recognition to solve such

issues through deep learning. Since there was no large dataset
of rice leaf diseases, they created a limited amount of data
and used transfer learning with a deep learning model. The
proposed CNN architecture based on the VGG-16 architec-
ture was trained and evaluated using data gathered from the
Internet and rice fields. According to Hossain et al. [28],
the CNN-based model achieved the best validation accu-
racy of 97.35% and a training accuracy of 99.78%. The
effectiveness of the suggested model was assessed using a
collection of separate images of rice leaf disease, with the
best accuracy of 97.82% and an area under the curve (AUC)
of 0.99. The model proposed by Prasad et al. [29], which
was an InceptionResNetV2-based model, achieved a reason-
able accuracy of 95.67%. Finally, the VGG16-based model
developed by Ghosal and Sarkar [30] achieved an accuracy
of 92.46%.

Patil et al. [31] conducted a study in which they utilized
the Faster R-CNN approach for the detection of infected
regions of rice leaf. Their results showed that they achieved
an accuracy of 96.43%using EfficientNet-B0 as the backbone
model.

A study was done by Barré et al. [22] to develop an
automatic system for identifying plant species using images
of leaves. The authors proposed a CNN-based system called
LeafNet. The authors used a dataset of leaf images from
different plant species to train and test the system. They eval-
uated the performance of the system using different metrics,
such as accuracy, precision, and recall. The results showed
that the system achieved high accuracy in identifying dif-
ferent plant species and outperformed traditional machine
learning methods.

Similarly, recent studies that utilized the same dataset
as ours have employed various approaches. For instance,
Zhang [32] proposed a feature extraction methodology for
classifying rice leaf diseases, namely healthy, brown spot,
hispa, and leaf blast, using an attention-based technique.
They utilized a weakly supervised data augmentation net-
work (WS-DAN) and obtained a testing accuracy of 87.60%.
Putra et al. [33] proposed a novel methodology known as
Hierarchical Transfer Learning (HTL), wherein they uti-
lized pretrained models such as DenseNet, XceptionNet and
MobileNet for feature extraction. Subsequently, the mod-
els were assembled and fused. The authors employed the
MK-II dataset, which consisted of brown spot, hispa, and
leaf blast, and achieved a validation accuracy of 91%. On the
other hand, Verma et al. [34] proposed a novel approach
using a lightweight CNN model for the classification of
corn, rice, and wheat diseases. Furthermore, they conducted
a comparative analysis with state-of-the-art pretrained mod-
els that are commonly used for image classification tasks.
However, for the rice classification dataset, the proposed
lightweight CNN model achieved an accuracy of 73.02%
for four distinct classes: brown spot, hispa, leaf blast and
healthy. Additionally, a similar study by Bhowmik et al. [35]
proposed an ensemble learning network with VGG16 and
the Light GBM model. They used four classes, which were
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brown spot, healthy, hispa and leaf blast, and achieved an
accuracy of 96.49%.

III. PROPOSED FRAMEWORK
The methodology adopted for the classification of diseases
from rice leaf images is shown in Fig. 1. The primary aim of
this study is to classify rice leaf diseases into four classes:
brown spot, leaf blast, hispa and healthy. The main stages
of our methodology are dataset preparation, data preprocess-
ing (which involves augmentation of the leaf images in the
dataset), training of the model, and model evaluation based
on the classification of diseases in the given images.

FIGURE 1. Overview of the methodology used in this study.

A. DATASET PREPARATION
In this study, rice leaf images were used to classify rice leaf
diseases. The dataset was categorized into four classes: brown
spot, leaf blast, hispa and healthy. A total of 2658 labelled
images were sourced from publicly accessible datasets avail-
able on the Kaggle platform [36], [37]. The collected dataset
was further split into training, validation and testing sets.

The training and validation sets were used during model
training, and the testing set was kept unseen for the model.
Model evaluation was performed on the validation and testing
sets. The details of the dataset used in this study are listed in
Table 1. Four sample images, one for each class of the dataset,
are shown in Fig. 2. Furthermore, the leaf images were in
JPEG format when retrieved from the Kaggle platform.

TABLE 1. Data splitting details.

FIGURE 2. Samples of images obtained from the Kaggle platform.

B. DATA PREPROCESSING
The images in the dataset were initially zoomed in to enhance
the visibility of spots or infected regions on the rice leaves.
In Fig. 3, images from the original dataset are shown along
with their zoomed-in versions. Subsequently, these prepro-
cessed images were rescaled and resized. For rescaling,
the pixel values of the images were multiplied by a factor
of 1/255, ensuring that each pixel value fell within the range
of 0 to 1. This was primarily performed to normalize the
dataset to the same scale values.

We recognize the significance of addressing real-world
challenges in the detection of rice leaf diseases. One of the
anticipated challenges is the diversity of imaging conditions,
which can introduce variability and potential artifacts into
images. To overcome this, we employed data augmenta-
tion techniques to enhance the robustness and real-world
applicability of our models. This was done by applying
various augmentation techniques to the training images,
such as rotating by 30◦, horizontal and vertical flipping,
adjusting the height and width within a range of 80%
to 120%, and modifying the brightness within a range
of 80% to 120%.

We conducted rigorous validation and testing to assess
the ability of the models to handle potential artifacts
or alterations introduced during the preprocessing phase.
These preprocessing techniques can be incorporated into
the system to facilitate automated processing of real-world
unprocessed images before their utilization in disease
classification.
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FIGURE 3. Examples of original (left) and preprocessed (right) images
used in this study.

C. LEAFNET MODEL
In this study, LeafNet [22] was used as the base model. The
LeafNet model contained 11 convolutional layers and three
fully-connected layers. The architecture of the LeafNetmodel
is shown in Fig. 4. This model was trained with an input size
of 256×256, a max pooling filter of 3×3, and varying kernel
filters in each convolutional layer. The first two layers used
a filter shape of 9 × 9 and the next two layers used a filter
shape of 5×5. The remaining layers had the same kernel filter
shape of 3× 3. The fully-connected layers of the model were
composed of two dense layers, each with 2048 neurons, and
an output layer that employed a Softmax activation function.
However, the output layer was mapped to four classes instead
of 185 classes for our model.

D. MODIFIED LEAFNET MODEL
To improve the classification of rice leaf diseases, we pro-
posed a modified version of the LeafNet model. The model
summary and parameters of each layer in the Modified
LeafNet model are listed in Table 2. The architecture
of the proposed Modified LeafNet model is illustrated
in Fig. 5.

To enhance the performance of the model, we made certain
changes to the original LeafNet model architecture. Specifi-
cally, we maintained a consistent kernel size of 3×3 across
all convolutional layers, as opposed to the original model’s

utilization of kernel sizes of 9×9, 5 × 5, and 3×3. Addi-
tionally, we employed a 3×3 max-pooling layer. In contrast,
the original LeafNet model utilized a 2×2 max-pooling layer.
These modifications were crucial for achieving improved
results for our specific application. The output layer in the
Modified LeafNet model used four neurons representing
four different classes, whereas the original LeafNet model
contained 185 neurons representing 185 different classes.
These changes improved model performance by extracting
the important features for better classification.

The input parameters of all the models evaluated in this
study are listed in Table 3. Table 4 presents an overall sum-
mary of these models.

The process flow structure is shown in Table 5. It describes
the steps applied for data preprocessing, model building,
hyperparameter tuning, and model evaluation.

Hyperparameter tuning was performed via a grid search
method by changing the parameters of batch size, learning
rate, and optimizers. After training the model for a specified
number of epochs, we saved the best weights in the HDF5
format that were obtained based on the minimum loss value
of the validation data. We then utilized this trained weight file
to classify rice leaf images on a local machine.

E. PRETRAINED MODELS
The Xception and MobileNetV2 models were selected for
this study to demonstrate and compare the differences
between the complex and lightweight models. Both models
are deep convolutional neural networks with different input
sizes and architectures. The input size for the Xception model
was 299× 299×3, whereas that for MobileNetV2 was 224×

224×3. In this study, a standard input size of 224 × 224×3
was used. Both models were previously trained extensively
on an ImageNet dataset for the classification of 1000 subjects.
The pretrained models can be imported with weights using
the Keras Application Programming Interface (API).

Transfer learning was applied to the MobileNetV2 and
Xception models by loading the weights from the previous
training on the ImageNet dataset and subsequently freezing
the convolutional layers from block1_conv1 (Conv2D) to
block14_sepconv2_act (Activation) in the Xception model
and from Conv1 (Conv2D) to out_relu (ReLU) layers in
the MobileNetV2 model. The original fully-connected layers
were removed and replaced with Flatten and Dense layers.
The Flatten layer transformed the feature map obtained from
the max-pooling layer into a format that can be understood
by the Dense layers, which were responsible for classifying
the input. The rice leaf dataset was then used to train new
fully-connected layers for classification.

Table 6 lists the last few layers of Xception and
MobileNetV2 models. By leveraging models pretrained on
extensive datasets, transfer learning enables the extraction of
useful features without the need for a vast amount of train-
ing data. This reduced the computational resources required
for training and led to improved performance because the
pretrained models typically learned a rich set of features via
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FIGURE 4. Architecture of the original LeafNet model [22].

TABLE 2. Model summary of the modified leafnet model.

training on a large-scale dataset. In addition, transfer learn-
ing allows the reuse of well-designed architectures such as
Xception and MobileNetV2, reducing the need for laborious
model design and experimentation.

F. INTERMEDIATE CLASS ACTIVATION MAPS
In a CNN model, visualizing intermediate class activations
during the training process provides deeper insight into
the feature extraction process, particularly for image-based
datasets. The term ‘‘activation’’ refers to the output of a
layer in the network, with outputs from pooling and convo-
lutional layers referred to as ‘‘feature maps.’’ The purpose of
visualizing these activations is to display feature maps and
to better understand how the network decomposes an input
image using learned filters.

The intermediate class activation map (ICAM) is a visual
tool used to interpret the decision-making process of a CNN
model [38]. It provides a visualization of the extracted
features of the important regions of an input image that
contribute to the final prediction made by the model [38],
[39], [40]. By visualizing these regions, one can gain insights
into what the model is focusing on, and whether the model
uses appropriate features to make its predictions.

To generate an ICAM, the model was modified to pro-
duce intermediate activation of specific layers during the
forward pass. These activations were then used to compute
a weighted sum of the activations of the last convolutional
layer to generate a heatmap representation. The weights used
in the sum were obtained by computing the gradient of the
output of the model for the activation of the last convolutional
layer. The resulting heat map highlighted the regions in the
input image that had a significant impact on the prediction of
the model.

The ICAM for the LeafNet and modified LeafNet models
are shown in Table 7, which depicts the ICAM for both
the LeafNet and modified LeafNet models, showcasing the
feature extraction process performed by these models. The
original image contained the affected area with pale yellow
dots on the middle-left side, indicating the leaf blast disease.
The images in the subsequent columns reveal the pixels
extracted from both models. Notably, the LeafNet model
failed to extract the affected pixels from the original image,
as is evident in column conv2d_8. In contrast, the Modified
LeafNet model successfully extracted the most influential
pixels. These extracted features, as revealed by ICAM, high-
light the ability of the modified LeafNet to concentrate on
the most significant and informative pixels, which forms the
foundation for the model’s classification process.

G. HYPERPARAMETERS
The performance of the models was influenced by several
variables including the optimizer, learning rate, metrics, batch
size, and epochs. For the models, the loss function was mini-
mized using the Adam or RMSprop optimizer, with learning
rates of 0.001 or 0. 0001. The number of images fed into the
model at a given time is referred to as batch size. Two different
batch sizes, 16 and 32, were used to evaluate the performance
of the models. Table 8 lists the hyperparameters of the models
used in the study.
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FIGURE 5. Architecture of the Modified LeafNet model.

TABLE 3. Models’ parameters used in this study.

TABLE 4. Summary of the models.

H. EXPERIMENTAL SETUP
In this study, experiments were conducted using Google Col-
laboratory with Python v3.8, TensorFlow v2.9.2, and Keras
v2.9.0. The hardware used was an NVIDIA Tesla T4 with
driver version 460.32.03.

TABLE 5. Process flow used in this study.

IV. EVALUATION METRICS
The aforementioned models, namely LeafNet, Modified
LeafNet, MobileNetV2 and Xception, were evaluated using
the testing and validation datasets. The chosen learning rate
was 0.0001 using the Adam optimizer. For the performance
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TABLE 6. Summary of last layers in the pretrained models.

comparison of each model, important performance metrics,
such as recall, precision, F1-score, and accuracy, were stud-
ied. These metrics were obtained using (1), (2), (3) and (4).
The 4×4 confusion matrices were used to acquire the values
needed to calculate the performance metrics, such as True
Positive (TP), True Negative (TN), False Positive (FP), and
False Negative (FN). The 4 × 4 confusion matrix with the
appropriate term for each case is presented in Table 9.

A. CONFUSION MATRIX
For a 4×4 confusionmatrix, it is often challenging to consider
the positive and negative samples. TP and TN terms varied
for each class in a 4 × 4 matrix. Based on the terms used in
Table 10, the TP and TN samples for each class are presented
in Table 9.

Similarly, FP and FN are crucial parameters of the confu-
sion matrix. Knowing perfect samples is an important part of
observing and evaluating a model. FP and FN samples for
each class are listed in Table 11.

B. ACCURACY
Accuracy represents the overall ability to correctly classify
the TP and TN classes from all images. This can be calculated
using (1).

Accuracy =
TP + TN

FP + TP + TN + FN
×100% (1)

C. PRECISION
Precision measures the ratio of TP samples to all posi-
tively predicted samples of that class. This can be calculated
using (2).

Precision =
TP

TP + FP
(2)

D. RECALL
Recall measures the ratio of TP samples to all positive sam-
ples of that class. This can be calculated using (3).

Recall =
TP

FN + TP
(3)

E. F1-SCORE
F1-score is another crucial parameter, and there is a difference
between this parameter and accuracy. Accuracy provides the
ratio of correctly predicted samples to all samples. However,
F1-score is the harmonic mean of precision and recall, which
provides a measure of the overall performance of the model
in terms of both precision and recall. This can be calculated
using (4).

F1 − score = 2 ×
Precision × Recall
Precision + Recall

(4)

V. RESULTS AND DISCUSSIONS
The training performance of the models is shown by the
training and validation curves for 400 epochs. The curves for
the Modified LeafNet and LeafNet models are illustrated in
Fig. 6, while those for the Xception andMobileNetV2models
are depicted in Fig. 7. These curves were obtained using the
Adam optimizer and a learning rate of 0.0001 with a batch
size of 32. They revealed that the models performed well and
had no overfitting or underfitting issues.

The confusion matrices and classification reports for the
LeafNet and Modified LeafNet models on the testing dataset
are shown in Fig. 8. From these results, we observed that
the Modified LeafNet model achieved better accuracy on the
testing dataset. It should be noted that the testing dataset
was completely unseen by the models. The modified LeafNet
model outperformed the LeafNet model, with an accuracy
of 97.44% for the validation dataset and 87.76% for the
testing dataset. According to the classification report, it can
be observed that bothmodels had themost misclassified cases
in the leaf blast class.

A comparison of the classification accuracies of the Xcep-
tion and MobileNetV2 models for rice leaf diseases is
presented in Fig. 9, by showing the confusion matrix and
classification report for eachmodel. It also provides accuracy,
precision, recall, and F1-score and displays the classification
accuracy score for each class.

As shown in Fig. 9, the Xception model performed
well with a batch size of 32, whereas MobileNetV2 per-
formed well with a batch size of 16. As evident in Fig. 9,
models with complex architectures, such as Xception, can
learn more. Therefore, a larger batch size accelerates the
training process, whereas the MobileNetV2 model has a
simpler architecture that requires a smaller batch size to
slow down the training process for the model to learn more
effectively.

The validation accuracies achieved by the aforementioned
models varied, as shown in Fig. 10. The highest accuracy
was obtained with the modified LeafNet model, which
achieved an accuracy of 97.44% for the classification of
rice leaf diseases. However, we observed that the LeafNet,
MobileNetV2 and Xception models also demonstrated
impressive performance. The LeafNet model achieved an
accuracy of 88.92%, whereas the Xception andMobileNetV2
models achieved accuracies of 88.64% and 82.10%,
respectively.
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TABLE 7. Intermediate class activation map (ICAM).

TABLE 8. Hyperparameters used in this study.

TABLE 9. Confusion matrix for four classes.

TABLE 10. True positive and true negative for four classes.

Furthermore, the models were evaluated on the test
dataset, which was kept unseen for the models. Consequently,
evaluating the models on the test dataset revealed their

TABLE 11. False positive and false negative for four classes.

FIGURE 6. Training and validation curves. (a) LeafNet. (b) Modified
LeafNet.

true performance. As shown in Fig. 10, the modified LeafNet
model outperformed the other models, achieving a test accu-
racy of 87.76%. In comparison, the LeafNet, Xception and
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FIGURE 7. Training and validation curves. (a) Xception. (b) MobileNetV2.

FIGURE 8. Model performance on the testing dataset. (a) Modified LeafNet classification report and confusion matrix. (b) LeafNet
classification report and confusion matrix.

MobileNetV2 models achieved test accuracies of 71.84%,
71.95% and 67.68%, respectively.

One possible explanation for the high performance of the
Modified LeafNet model is that it was specifically designed
for the classification of rice leaf diseases. Therefore, it may
have more robust features that are better suited for identifying
subtle differences between different types of rice leaf dis-
eases. In addition, the high accuracy of the Modified LeafNet
model may be attributed to the large number of parameters

it utilizes, which allows it to capture more intricate patterns
in the dataset.

In contrast, the MobileNetV2 and Xception models per-
formed reasonably well, even though they were not specifi-
cally designed for the classification of rice leaf diseases. The
success of these models suggests that transfer learning can
be an effective strategy for classifying images of rice leaf
diseases, even when the model was trained on different types
of images.
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FIGURE 9. Model performance on the testing dataset. (a) Xception classification report and confusion matrix. (b) MobileNetV2
classification report and confusion matrix.

FIGURE 10. Performance comparison among all four models (all models used a batch size of 32, except MobileNetV2, which
used a batch size of 16).

The main aim of this study was to build a model that could
recognize rice leaf diseases. There were some difficulties in

detecting rice leaf diseases owing to the imaging conditions.
The rice leaves were small, and all images that contained the
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TABLE 12. Comparative analysis of studies with the same dataset.

rice leaves had a white background. As the rice leaves in these
images were relatively small, it was difficult for the models to
detect them. Therefore, all the models initially exhibited low
performance owing to the condition of the images. To solve
this issue, data preprocessingwas applied, inwhich all images
were zoomed in to obtain a clearer view of the rice leaves.
In addition, data augmentation was applied to the images
in the training set, including horizontal and vertical flips,
vertical and horizontal shifts, and rotations. From the experi-
ment, it was observed that the image conditions can affect the
model performance, and that image preprocessing should be
considered.

CNN deep learningmodels are suitable for rice leaf disease
classification. Transfer learning can be applied to improve
model accuracy, as pretrained CNN models were trained
on general images, such as the ImageNet dataset. Before
applying transfer learning, the last few layers must be cor-
rectly replaced to fit the objective of the study, which is
the classification of rice leaf diseases. The LeafNet model
is a well-built model that generally detects and recognizes
leaf types and performs well, based on a study conducted
in [22]. In contrast, the Modified LeafNet model used in this
study was designed to classify rice leaf diseases. For future
researchers planning to study leaf classification, the follow-
ing three suggestions are recommended. Firstly, use CNN
models with transfer learning. Secondly, employ LeafNet as
a viable option. Lastly, consider using the Modified LeafNet
model, as it can provide improved accuracy when classifying
rice leaf diseases.

To facilitate a comparison with previous studies, Table 12
presents a comparative analysis of relevant studies that
utilized the same dataset as ours. This table presents the per-
formance of four algorithms from the literature for classifying
different rice leaf diseases. All algorithms, except one, were
tested on four classes: healthy, brown spot, hispa, and leaf
blast. Zhang [32] used the WS-DAN algorithm and reported
a testing accuracy of 87.60% for all classes. Putra et al. [33]
used the HTL algorithm and reported a validation accuracy
of 91% for three classes: brown spot, hispa, and leaf blast.
Verma et al. [34] used a lightweight CNNmodel and reported
a testing accuracy of 73.02% for all classes.

Bhowmik et al. [35] used an ensemble model (VGG16 +

Light GBM) and reported a validation accuracy of 96.49% for
all classes. In contrast, our proposedModified LeafNet model
achieved the highest validation accuracy of 97.44% among all
algorithms. These results demonstrate the effectiveness of the
Modified LeafNet and ensemble models for the classification
of plant leaf diseases.

Overall, our findings suggest that the Modified LeafNet
model is the most effective for classifying rice leaf diseases.
Additionally, transfer learning can be an effective method for
reusing well-designed pretrained models for accurate classi-
fication. Future studies should focus on exploring additional
deep learningmodels and image processing techniques to fur-
ther improve the accuracy of rice leaf disease classification.

VI. CONCLUSION
Rice leaf diseases, such as brown spot, hispa and leaf blast
can be classified using the proposed models. The models
were trained to identify these diseases using rice leaf images.
The Xception and MobileNetV2 models achieved testing
accuracy of 71.95% and 67.68%, respectively. The LeafNet
model is considered a state-of-the-art model for classifying
leaves. Therefore, we studied LeafNet and a modified version
of LeafNet to classify rice leaf diseases. Our results showed
that the Modified LeafNet model outperformed all models
in this study, achieving the best classification accuracy of
97.44% on the validation set and 87.76% on the testing set.

In addition to achieving higher accuracy, the goal should
encompass enhancing the dependability and robustness of the
model across diverse datasets. Thus, future studies should
focus on categorizing images of rice leaf diseases in the
presence of complex surroundings and varying lighting con-
ditions. As classification accuracy only provides a partial
description of most real-world activities, future work should
also place greater emphasis on interpretable CNN models
that present features for classifying diseases in ways that
are easy to understand. While our study excels in the clas-
sification of rice leaf diseases, it is imperative to recognize
several limitations that offer valuable insights for future
research. The primary limitation pertains to the dataset size
and variety. To address this, future work should prioritize the
collection of a more extensive dataset that encompasses a
wide range of rice leaf diseases. Such an enriched dataset
would undoubtedly enhance the robustness and practical
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utility of the proposed models. Additionally, we acknowl-
edge the significance of model size and inferencing time,
particularly for deployment on resource-constrained edge
devices. To mitigate this, our future work will explore
model optimization techniques, such as quantization and
pruning, to reduce the model size, thereby improving the
inference speed and enabling the creation of lightweight
models. Furthermore, external validation using independent
datasets is a crucial avenue for future research. By subjecting
our models to diverse real-world scenarios, we can ascer-
tain their performance beyond the confines of our specific
dataset, strengthening their credibility and demonstrating
their real-world utility. Finally, we are committed to exploring
alternative interpretability techniques to enhance the trans-
parency and interpretability of our deep learning models.
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