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ABSTRACT The paper presents an online version of the identification method for estimating the impulse
responses in the case of a two-input single-output linear empirical model of type 1 diabetes that allows
us to adapt the model parameters due to the intra-subject time variability in real time. The method
builds on and augments our original research by providing important enhancements concerning the
online parameter estimation, recursive formulation of essential equations, improved regularization, and
new effective approaches to numerically solve the estimation problem. Recursive equations are derived
to update the covariance matrix of the sample cross-correlation function, as well as the inverse of this
covariance matrix, where the customized Sherman-Morrison formula was considered. To efficiently update
the parameter estimate at each sample while avoiding direct calculation of the Hessian matrix inverse, two
alternative strategies are proposed to be applied instead. The first is based on the numeric minimization by
the conjugate gradient method, whereas the second takes advantage of the Schulz method to approximate
the inverse Hessian matrix. As a result, all steps of the identification algorithm were designed so that only
basic linear operations are required. Features to robustify the estimate were also involved, as the optimal
regularization strategies based on the inverse of the covariance matrix of the actual parameter distribution
and the inter-sample parameter drift were applied. In the end of the paper, a series of simulation-based
experiments was carried out to assess the effectiveness of the proposed method and to demonstrate all of
its aspects and important characteristics. The documented results showed that the method can yield valid
estimates of impulse responses and also effectively adapt parameters in real time under the influence of
time-varying physiology.

INDEX TERMS System identification, nonparametric model, correlation function, generalized least squares
method, robust identification, online parameter estimate, conjugate gradient method, Schulz method,
diabetes mellitus.

I. INTRODUCTION
Diabetes mellitus is a chronic metabolic disorder manifested
by a persistently elevated blood glucose concentration, also
called hyperglycemia, which causes numerous serious health
issues for the subject. This problem is currently attracting
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the increasing attention of scientists from various fields,
including control engineers. In this paper, we deal with
type 1 diabetes, which can be characterized as an absolute
insulin deficiency and is therefore considered the insulin-
dependent form of this disorder. Since the diabetic subject
is expected to be influenced by significant intra-subject time
variability of the physiology-based characteristics, there is
a need to design an online estimation algorithm that can
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ensure necessary adaptation of the model parameters in real
time.

It is known that the actual dynamics of glycemia is of
an underlying stochastic nature, since the human body is
subject to multiple random exogenous disturbances, which
include the level of physical activity and stress factors, while
significant roles are also played by the input uncertainties.
The aforementioned stochastic effects use to be modelled
by the corresponding process noise [1]. Therefore, it can be
concluded that statistical and regression methods are suitable
for parameter estimation.

An emerging significant practical reason for addressing the
problem of identifying and personalizing empirical models
of diabetes is to exploit this model within the model-based
design of the optimal insulin bolus dosing policy and in the
smart insulin bolus calculator algorithms. Moreover, it was
also reported that the individualized model is vital for synthe-
sis of model predictive control of glycemia [2], which leads
to an implementation of the so-called artificial pancreas [3]
and also for performing efficient state estimation [8].
Besides these sophisticated systematic applications, the

estimated model in the form of impulse responses to insulin
administration and carbohydrate intake can provide important
insights into the dynamics of glycemia, which can be utilized
in clinical practice in relatively straightforward and intuitive
ways. One of the conclusions that can be drawn from these
impulse functions is their magnitude, which is proportional
to the static gain of the corresponding submodel. Then, these
static gains can be used to determine the so-called insulin-
carbohydrate ratio for the standard bolus calculator formula,
and hence to make the therapeutic decisions by appropriately
adjusting the strategy of insulin therapy. In addition to
that, by analyzing the peak times of the estimated impulse
responses, which typically result in the finding that the insulin
administration effect is delayed compared to the carbohydrate
intake effect, the timing of insulin administration can
be adjusted accordingly to effectively compensate for the
carbohydrate intake.

It is generally known that traditional identification
approaches based on minimizing the single step-ahead
prediction error of simple linear stochastic models in a
combination with the ordinary least squares method or the
recursive least squares method yield insufficient prediction
performance, as well as poor physiology compliance and gen-
eral validity. There obviously exist identification approaches
that attempted to address the aforementioned issues [9],
but these usually lack any closed-form analytical formula
(solution) to obtain the parameter estimate, which results
in increased computational complexity and problems with
convergence of iterative schemes.

To address these challenges, the paper proposes a novel
online identification method to obtain a time-varying model
capable of long-term predicting glycemia under the influence
of intra-subject variability while featuring the parameter
estimate that can be determined by the means of the
generalized least squares method. The theory builds on our

study [10] that presented the generalization of the Wiener-
Hopf equations for the two-input single-output systems and
an offline correlation-based method to estimate the unknown
impulse functions.

The paper has been divided into the following sections.
In section II the preliminaries, the model structure, and the
definition of exponentially weighted recursive estimate of
the correlation function are presented. Section III introduces
the generalized Wiener-Hopf equations and the formulation
of the estimation problem based on the generalized least
squares method, together with a detailed explanation of
the regularization strategies. Section IV comprises the
derivations of crucial recursive formulas for updating the
covariance matrix of the correlation functions estimate,
as well as the recursive relation for updating its inverse.
In section V, the conjugate gradient optimization method
is adopted to solve the identification problem numerically.
Alternatively, section VI deals with the Schulz method to
approximate the Hessian matrix inverse. Finally, section VII
describes the experimental setup and discusses the results of
simulation-based experiments designed to assess the actual
effectiveness of all novel aspects of the proposed method
applied to virtual diabetic data obtained under the influence
of time-varying physiology.

The novel aspects presented in this work can be summa-
rized as follows:
• Parameter estimate in terms of the generalized least
squares method to minimize its variance

• Exponentially weighted sample cross-correlation func-
tion and its recursive version

• Recursive formulae for updating the covariance matrix
of the sample cross-correlation function and its inverse

• New statistics-based optimal regularization strategies
• Effective numerical solution of the estimation problem
by means of the conjugate gradient method

A. STATE OF THE ART
The design of methods and algorithms for estimating
personalized mathematical models of glycemia dynamics in
subjects with type 1 diabetes has been the subject of extensive
scientific endeavor and research so far, as we will briefly
analyze in this section.

The results considering basic linear stochastic models,
such as ARX, ARMAX, and the Box-Jenkins model iden-
tified using standard algorithms minimizing the prediction
error [11], were described in a study [12] and in an
overview [13]. The authors claimed that the parameters
of the ARMAX and the Box-Jenkins model had to be
estimated using iterative methods, despite the fact that they
are generally considered sensitive to convergence to a local
minimum due to the non-convex nature of the optimization
problem. Another important drawback is that the ARXmodel
is not structurally compliant with basic physiology, since
the autoregressive dynamics is shared between the insulin
administration effect submodel and the carbohydrate intake
effect submodel [10].
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A comparison of stochastic linear models was presented
in [14], yet in this case the authors applied online identifica-
tion in terms of the recursive least squares method. Similarly,
the adaptive ARMAX model was estimated at each time step
by the recursive extended least squares method in [15] and by
the weighted recursive least squares method in [16]. Another
recursive identification technique for the ARX model by
the means of normalized least mean squares method was
presented in [17] and by the weighted recursive least squares
method in [18].
However, as mentioned in [19], the single step-ahead

prediction error criterion considered for the identification
yields amodel with poor validity and prediction performance.

Another problem of applying the recursive least squares
method to adapt the parameters of linear models in real time
is that the possible effects of exogenous random disturbances
affecting the dynamics of glycemia [1] are hard to distinguish
from the effects of time-varying system parameters. As a
result, the online estimation algorithm will incorrectly adapt
the parameters due to the effects of process noise.

Our recent work [9] proposed an offline identification
strategy, which featured a numerical minimization of the
multiple step-ahead prediction error of the model. It is
important to mention that the compatibility of the model with
the physiology of diabetes was ensured by performing the
estimation in an appropriately constrained parameter space
of the model poles, zeros, and gains.

From a different perspective, the papers [20] presented
an offline identification method considering the continuous-
time transfer function structure of the model. The aim of the
identification was to find the parameter vector that minimizes
the quadratic prediction error criterion by means of the
Gauss-Newton algorithm. Although this approach appears to
be interesting, there was a lack of online estimation features
and the method was completely deterministic.

A similar continuous-time transfer function-based model
was proposed in [23], where the system identification was
performed pursuing an offline procedure based on the
minimization of the sum of the squared prediction errors.
However, since the residuals were a nonlinear function of
the model parameters, the nonlinear least squares method
formulation had to be considered, hence no closed analytical
formula could be derived.

A nice review including the in-vivo results for methods of
glycemia prediction in the context of machine learning and
internet of medical things can be found in [27].
From online estimation approaches, in the older work [28]

a complex nonlinear model was considered in combination
with the Bayesian estimation applied to determine the time-
varying model parameters. One of the important features
was the online parameter reestimation to adapt the model
due to the influence of intra-subject time-variability. In par-
ticular, the parameters reestimation was performed with
each available sample while involving glucose measurements
from the so-called ‘‘learning window’’. This strategy can be

considered to be themost relevant to the goals specified in this
paper, yet there was identified a physiology-based nonlinear
model compared to a linear empirical nonparametric model
considered in our work.

II. MODEL STRUCTURE AND PRELIMINARIES
In this paper, we will consider a two-input single-output
linear nonparametric model with finite impulse responses.
In the context of empirical modeling of glycemia dynamics
in subjects with type 1 diabetes, the model output y [mmol/l]
represents the deviation of glycemia from its steady-state
value Gb [mmol/l]. The first input u [U/min] denotes the
deviation of the insulin administration rate from the basal
insulin dosing rate ub [U/min], and the second input d [g/min]
stands for the carbohydrate intake rate. The output of this
model gets [10]

y(k) =
Mu∑
i=0

gui u(k−i) +
Md∑
i=0

gdi d(k−i) + ϵ(k) , (1)

where gui are the impulse response coefficients of the insulin
administration effect, gdi are the impulse response coefficients
of the carbohydrate intake effect, andMu,Md are the assumed
lengths of these impulse responses, respectively. Signal ϵ(t)∼
N (0, σ 2

ϵ ) stands for the uncorrelated zero-mean random
process, which is meant to represent continuous glucose
monitoring sensor noise [29], [30] combined with the effects
of other exogenous unmeasurable disturbances.

However, in contrast to the original offline algorithm [10],
here we consider the parameter-varying structure of
model (1). To this end, we will introduce the bracket notation
·[ ] for particular objects in order to disambiguate their
instances in time and make the notation of crucial recursive
relations neater throughout the paper. According to the
outlined notation, ·[k − 1] refers to the previous sample and
·[k] refers to the current sample with respect to time. The
output of the parameter-varying model holds

y(k) =
Mu∑
i=0

gui [k]u(k−i) +
Md∑
i=0

gdi [k]d(k−i) + ϵ(k) . (2)

A. EXPONENTIALLY WEIGHTED ESTIMATE OF THE
CROSS-CORRELATION FUNCTION
Before presenting the correlation-based identification
method itself, the exponentially weighted sample cross-
correlation function will be introduced as a necessary
prerequisite.

The cross-correlation function Rxz(n) of two general
discrete-time infinite-length signals x(k), z(k) is, under the
assumption of ergodicity, defined by the expectancy [31]

Rxz(n) = E
{
x(k)z(k−n)

}
∀k ∈ N , (3)

for the lag argument n∈Z. If x(k)= z(k), then Rxx(n) is called
the autocorrelation function. It is important to note that the
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property

E
{
x(k)z(k+n)

}
= E

{
x(l)z(l+n)

}
∀k, l ∈ Z (4)

holds for (3) if x(k), z(k) are stationary and ergodic.
Therefore, if the underlying processes are not stationary,

the ergodicity does not apply, and the cross-correlation
function will be sample-dependent as

Rxz(n)[k] = E
{
x(k)z(k−n)

}
. (5)

Now we introduce the exponentially weighted sample
estimate of the cross-correlation function (3) obtained by
processingN available samples while assuming the forgetting
factor 0<λ<1 as

R̂xz(n)[N ] =
1∑N−n

i=1 λ(N−n−i)

N−n∑
i=1

λ(N−n−i)x(i+n)z(i) , (6)

where n ∈ Z is the integer lag argument satisfying
n < N . Note that if λ = 1, then (6) is equivalent to
the standard formula [32], which was considered in [10].
Formula (6) implies that the newest sample is weighted as
λ(N−n−N+n) = λ0 = 1 while the oldest is, in the limit
number of samples, weighted as limN→∞ λ(N−n−1)=0 when
estimating the cross-correlation function. This means that (6)
is more suitable for estimating the sample-dependent cross-
correlation function in the case of non-stationary processes.

However, in the case of a time-varying model (2), the
estimate (6) cannot be claimed to be unbiased. In reality,
obtaining an unbiased sample cross-correlation function
would require to consider only the last term in the sum-
mation (6) as R̂xz(n)[N ] = x(N )z(N−n), which is totally
impractical due to the very high variance of such an estimate.
Therefore, formula (6) represents an estimate with a good
bias-variance trade-off that can be affected by tuning the
forgetting factor λ.

1) RECURSIVE FORM
To derive the recursive form of (6), which will be essential
for online identification, we assume that the length of the
processed timeseries increases with each sample as N ←
N + 1.

Then, the summation in (6) will be further denoted as

s(n)[N ] =
N−n∑
i=1

λ(N−n−i) . (7)

More importantly, the recursive formula for effective updat-
ing of summation (7) can be derived as

s(n)[N ] = λs(n)[N − 1]+ 1 . (8)

Finally, considering notation (7), the recursive relation to
update the estimate (6) can be derived as

R̂xz(n)[N ]=
1

s(n)[N ]

(
λs(n)[N−1]R̂xz(n)[N−1]+x(N )z(N−n)

)
.

(9)

It can be concluded that, due to the recursive formula (9),
calculating the entire summation in (6) at each sample
can be effectively avoided during online identification. The
presented exponentially weighted recursive estimate of the
cross-correlation function is one of the important novel
features of this paper.

III. ESTIMATE OF THE IMPULSE RESPONSE
COEFFICIENTS
To estimate the impulse response coefficients gu[N + 1],
gd [N + 1] considering N + 1 = k is the new sample and N
is the previous sample, the cross-correlation functions of the
system output with the inputs will be essential. The derivation
of these cross-correlation functions results in a generalization
of the Wiener-Hopf equation for a two-input single-output
system [10].
Consider the cross-correlation function Ryu(n)[N+1] of the

time-varying model (2) as

Ryu(n)[N+1] =
Mu∑
i=0

gui [N+1]Ruu(n− i)[N + 1]

+

Md∑
i=0

gdi [N+1]Rdu(n− i)[N+1] , (10)

and the cross-correlation function Ryd (n)[N+1], which can
be derived as

Ryd (n)[N+1] =
Mu∑
i=0

gui [N+1]Rud (n−i)[N+1]

+

Md∑
i=0

gdi [N+1]Rdd (n−i)[N+1] . (11)

Notice that Ryu(n)[N+1] and Ryd (n)[N+1] are dependent only
on the current parameters gu[N+1], gd [N+1], which is quite
convenient.

By replacing the true cross-correlation functions Ryu(n),
Ryd (n) with their sample-based estimates R̂yu(n), R̂yd (n),
we can claim that

R̂yu(n) = Ryu(n)+ ζ yu(n) , (12a)

R̂yd (n) = Ryd (n)+ ζ yd (n) , (12b)

which means that R̂yu(n), R̂yd (n) are random variables, while
ζ yu(n), ζ yd (n) are their corresponding uncertainties.
Equations (10), (11) can form the equivalent linear

regression system by considering the lag argument n=0 . . .P
[10] as (

R̂yu

R̂yd

)
=

(
R̂uu R̂du

R̂ud R̂dd

)(
gu

gd

)
+

(
ζ yu

ζ yd

)
, (13)

where submatrices R̂uu ∈ RP+1×Mu+1, R̂dd ∈ RP+1×Md+1,
R̂ud ∈ RP+1×Mu+1, R̂du ∈ RP+1×Md+1 have the general
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structure

R̂xz =


R̂xz(0) R̂zx(1) R̂zx(2) . . . R̂zx(Mx)
R̂xz(1) R̂xz(0) R̂zx(1) . . . R̂zx(Mx−1)
R̂xz(2) R̂xz(1) R̂xz(0) . . . R̂zx(Mx−2)

...
...

...
. . .

...

R̂xz(P) R̂xz(P−1) R̂xz(P−2) . . . R̂xz(P−Mx)

 ,

(14)

and vectors R̂yu∈RP+1×1, R̂yd ∈RP+1×1 get

R̂yu =
[
R̂yu(0) R̂yu(1) . . . R̂yu(P)

]T
, (15a)

R̂yd =
[
R̂yd (0) R̂yd (1) . . . R̂yd (P)

]T
. (15b)

We will further use the shorthand notation

R̂Y = R̂Ug+ ζ (16)

for (13).
It is important to note that the elements of regressionmatrix

R̂U and vector R̂Y in the regression system (16) change
completely at each iteration and can be effectively updated
according to recursive formula (9).
The parameter vector g ∈ RMu+Md+2×1 can be formally

defined as

g =
[
gu

gd

]
, (17)

where subvectors gu∈RMu+1×1 and gd ∈RMd+1×1 get

gu =
[
gu0 gu1 gu2 . . . guMu

]T
, (18a)

gd =
[
gd0 gd1 gd2 . . . gdMd

]T
. (18b)

Asmentioned before, wewill introduce the random vectors
ζ yu ∈ RP+1×1, ζ yd ∈ RP+1×1 representing the errors
(uncertainties) of the sample cross-correlation functions
R̂yu(n), R̂yd (n) for n=0 . . .P as

ζ yu =
[
ζ yu(0) ζ yu(1) . . . ζ yu(P)

]T
=

[
R̂yu(0)− Ryu(0) R̂yu(1)− Ryu(1)

. . . R̂yu(P)− Ryu(P)
]T

,

(19)

ζ yd =
[
ζ yd (0) ζ yd (1) . . . ζ yd (P)

]T
=

[
R̂yd (0)− Ryd (0) R̂yd (1)− Ryd (1)

. . . R̂yd (P)− Ryd (P)
]T

.

(20)

Vectors ζ yu, ζ yd can be joint into

ζ =

[
ζ yu

ζ yd

]
. (21)

The maximal lag number P must satisfy the condition

Mu +Md < 2P≪ 2N , (22)

and should be chosenwith regard to the character of estimated
cross-correlation functions R̂yu(n), R̂yd (n).

A. STATISTICAL PROPERTIES OF THE PARAMETERS
In order to reflect the presence of inter-subject parametric
variability typical for the diabetic patient population, we will
assume that the actual parameter vector g follows the multi-
variate normal distribution. Therefore, the mean-population
parameter vector gµ∈RMu+Md+2×1 will be defined as

gµ = E {g} . (23)

The covariance matrix 9 ≻ 0 ∈ RMu+Md+2×Mu+Md+2, rep-
resenting the statistical model of the inter-subject parametric
variability, will be defined as

9 = cov (g, g) = E
{
(g− E {g}) (g− E {g})T

}
, (24)

and can be further divided into submatrices such that

9 =

(
9uu 9ud

9du 9dd

)
. (25)

In practice, the mean vector gµ and the covariance matrix
9 have to be estimated by studying a set of parameter
estimates obtained experimentally from a sufficiently large
group of subjects. Considering np different subjects and the
corresponding estimated parameter vectors, where the p-th
parameter vector of the dataset is indexed as ĝ(p), then gµ

(23) can be estimated as the sample mean ḡ [32], [33]

ḡ =
1
np

np∑
p=1

ĝ(p) , (26)

and the sample covariance matrix 9 (24) can be obtained
as [32]

9̂ =
1

np − 1

np∑
p=1

[
ĝ (p)− ḡ

] [
ĝ (p)− ḡ

]T
. (27)

Furthermore, in order to reflect the presence of intra-
subject parametric variability, we will assume that the actual
parameter vector is time-varying, so the bracket notation
g[i] will be used to distinguish its individual occurrences.
Therefore, the actual parameter vector can be seen as a
random process, while anticipating that its drift leads to no
permanent bias, which can be noted as

E {g[i]} = g ∀i . (28)

According to (28) the expectancy

E {g[k]−g[k − 1]}=E {g[k]}−E {g[k − 1]}=0 . (29)

holds for the difference of two successive parameter vec-
tors representing the inter-sample parameter change. The
covariance matrix 8 ≻ 0∈RMu+Md+2×Mu+Md+2 of the inter-
sample parameter change g[N + 1]−g[N ] is defined as

8 = cov (g[k]− g[k − 1])

= E
{
(g[k]−g[k−1]) (g[k]−g[k−1])T

}
, (30)

and can be further divided into submatrices such that

8 =

(
8uu 8ud

8du 8dd

)
. (31)
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To estimate this covariance matrix, formula

8̂ =
1
np

1
l − 2

np∑
p=1

l−1∑
i=1

(
ĝ(p)[i+ 1]

−ĝ(p)[i]
) (
ĝ(p)[i+ 1]− ĝ(p)[i]

)T (32)

has to be applied to np sequences of the parameter estimates
ĝ(p)[i] with the length of l samples.

B. GENERALIZED LEAST SQUARES METHOD
To solve the linear regression system (16) and thus obtain
the estimate of the parameter vector (17), the generalized
least squares method [34] will be adopted. The rationale
for choosing the generalized least squares method instead
of the ordinary least squares method is that it provides
the mechanisms of ‘‘weighting’’ and ‘‘decorrelating’’ of
the residuals by the Cholesky decomposition of the inverse
covariance matrixQ−1 of the noise vector ζ , thus minimizing
the variance of the estimate [10]. Considering the generalized
least squaresmethod is also one of the novel aspects presented
in this paper, compared to the standard identification
approaches in the correlation framework.

The corresponding cost function customized by adding two
regularization terms gets the quadratic form

J (ĝ) =
1
2

[(
R̂Y−R̂U ĝ

)T
Q−1

(
R̂Y−R̂U ĝ

)
+
(
ĝ−ḡ

)T
α9−1

(
ĝ−ḡ

)
+
(
ĝ−ĝ[N ]

)T
β8−1

(
ĝ−ĝ[N ]

)]
, (33)

where Q ≻ 0 ∈ R2(P+1)×2(P+1) is the covariance matrix of
the noise vector ζ , 9−1 ≻ 0 (24), 8−1 ≻ 0 (30) are positive
definite regularization matrices, α ≥ 0, β ≥ 0 are positive
scalar weighting factors, ḡ is the mean-population parameter
vector (26), and ĝ[N ] is the parameter estimate from the last
sample.

The gradient ∇ĝJ (ĝ) = g(ĝ) : RMu+Md+2×1 →

RMu+Md+2×1 of the cost function (33) with respect to the
estimated parameter vector ĝ can be derived as

g(ĝ) = −R̂T
UQ
−1
(
R̂Y−R̂U ĝ

)
+ α9−1

(
ĝ−ḡ

)
+ β8−1

(
ĝ−ĝ[N ]

)
. (34)

The Hessian matrixH:RMu+Md+2×1→RMu+Md+2×Mu+Md+2

gets

H = R̂T
UQ
−1R̂U + α9−1 + β8−1 . (35)

The Hessian matrix is independent of ĝ (it is constant) and is
positive definite since Q−1 ≻ 0, 9−1 ≻ 0, 8−1 ≻ 0, α > 0,
β > 0.
The optimal parameter estimate that minimizes cost

function (33) can be obtained in the closed form based on
the optimality condition g(ĝ)=0 as

ĝ = H−1
(
R̂T
UQ
−1R̂Y + α9−1ḡ+ β8−1ĝ[N ]

)
. (36)

One of the advantages of this correlation-based method
over traditional prediction-error methods is that the computa-
tional complexity and dimensions of the estimation problem
are not dependent on the number of processed samplesN , and
therefore the online estimation should be more feasible.
The recursive formula to effectively update matrix R̂U

and vector R̂Y at each sample using the new output
measurement and the input data can be derived based
on (13), (15a), (15b) and the structure of partial submatri-
ces (14), while applying the recursive formula (9) for the
general cross-correlation/autocorrelation function estimate.
However, to keep the paper fluent, this will be omitted.
Taking the expectancy operator to the estimate (36) yields

E
{
ĝ
}
=

(
R̂T
UQ
−1R̂U + α9−1 + β8−1

)−1
·

(
R̂T
UQ
−1R̂Ug+ α9−1ḡ+ β8−1ĝ[N ]

)
. (37)

The above equation implies that the regularization terms
in (33) induce some bias, since if α=β=0, then E

{
ĝ
}
=g.

The covariance matrix P ∈ RMu+Md+2×Mu+Md+2 of
estimate (36) can be derived as

P =
(
R̂T
UQ
−1R̂U+α9−1+β8−1

)−1
· R̂T

UQ
−1R̂U

(
R̂T
UQ
−1R̂U+α9−1+β8−1

)−1
.

(38)

Due to the generalized least squares method, the estimate
covariance matrix P can be considered minimal. It is
important to note that if no regularization is applied, i.e.
α=β=0, then the above formula reduces to

P =
(
R̂T
UQ
−1R̂U

)−1
, (39)

which commonly occurs in the literature [34].

C. REGULARIZATION STRATEGIES
Regularization strategies use to be applied in order to
involve some prior knowledge about the identified system
in the estimation algorithm, decrease the variance of the
estimate, prevent overfitting and improve the generalization
of models by adding additional constraints or penalties to the
optimization process. Regularization techniques integrated
into the least squares method have a profound influence
on parameter estimation robustness. By imposing additional
constraints in the form of penalties, the susceptibility of
parameter estimates to outliers or extreme values in the data is
effectivelymitigated. Regularization strategies not only foster
more stable and generalized models, but also enhance the
robustness of parameter estimation, fortifying the reliability
of the inferred model coefficients [36].
Applying the regularization can be seen as penalizing

certain properties that describe unlikely systems [37], and
hence the robustness of the estimate should also be improved.
As a drawback, regularization always induces some bias
(see (37)), so a reasonable bias-variance trade-off must be
chosen [38].
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One way of involving prior knowledge in regularization
is via the inverse 9−1 of the covariance matrix (24)
of the actual parameter vector distribution, which can
be considered the ‘‘optimal’’ regularization matrix [38].
Therefore the first regularization term

(
ĝ−ḡ

)T
α9−1

(
ĝ−ḡ

)
in cost function (33) penalizes the deviation of the parameter
estimate ĝ from the mean population value ḡ (26).
Recall that the online parameter estimation was proposed

primarily in order to reflect the time variability of the actual
parameter vector, also referred to as intra-subject variability.
Therefore, to robustify the identification algorithm and
hence prevent unwanted excessive changes of the parameter
estimate throughout the iterations due to the presence
of outliers and deteriorated quality of input-output data,
a dedicated regularization term

(
ĝ−ĝ[N ]

)T
β8−1

(
ĝ−ĝ[N ]

)
is considered in cost function (33). This regularization
strategy penalizes the inter-sample change ĝ[N+1]−ĝ[N ] of
the estimate using the inverse 8−1 of covariance matrix (30)
of drift g[N+1]− g[N ] of the actual parameter vector.

Compared with the aforementioned optimal statistics-
based regularization techniques, rather heuristic strategies,
particularly the combination of regularizations to provide
smoothness, stability, and causality, were originally proposed
in [10].

D. TUNING THE ALGORITHM
When tuning the maximal lag P, the number of available
samples N has to be considered since increasing the lag
argument n in (6) truncates the summation interval to N −
n and thus might provide highly uncertain estimates of
the correlation functions. Besides that, P also affects the
complexity of the identification problem as the number of
equations in (13) is 2P. On the other hand, if 2P approaches
Mu + Md , the accuracy and validity of the estimated model
deteriorates.

Concerning the lengths Mu, Md of the estimated impulse
responses, their choice should reflect the given sample time
and the anticipated dynamics of the identified system such
that the identified finite impulse response model sufficiently
covers the decay phase of the impulse response.

However, the most crucial parameter to be tuned is the
forgetting factor λ in the sample correlation function (6).
By adjusting the forgetting factor λ, the adaptive properties
of the identification algorithm can be affected such that
a lower λ generally provides faster adaptation. Therefore,
a lower λ should be applied in the case of highly time-
varying systems, which require fast adaptation of parameters,
while a higher λ is suitable for systems, the parameters
of which are not expected to evolve significantly over
time. It is worth noting that intensive forgetting leads to
inconsistency and deteriorated accuracy of the model due to
the phenomenon of discarding the valuable information in
the older samples. Therefore, a reasonable trade-off between
the model accuracy and the adaptation rate must be chosen
carefully.

To adjust the strength of both regularization terms, the
scalar parameters α > 0 and β > 0 can be tuned.
The tuning procedure can be carried out as follows: First,
a nonregularized estimate of impulse responses is obtained
by letting α = 0, β = 0, while its quality and validity are
visually assessed to roughly match the expected physiology-
compliant responses. Then, α can be gradually increased until
satisfactory shapes of the impulse responses are achieved.
After doing so, α is fixed, and β can be gradually increased
until acceptably smooth transitions between consecutive
estimates of the impulse responses are obtained.

IV. COVARIANCE MATRIX OF THE CROSS-CORRELATION
FUNCTION ESTIMATE
Consider the error of sample cross-correlation function (6) as

R̂yu(n)[N ]− Ryu(n) = R̂yu(n)[N ]−E
{
R̂yu(n)[N ]

}
. (40)

By substituting the output y(k+n) according to (2) we get (41),
as shown at the bottom of the next page. Since u(k) and d(k)
are deterministic, (41) gets

R̂yu(n)− Ryu(n) =
1

s(n)[N ]

N−n∑
k=1

λ(N−n−k)ϵ(k+n)u(k) . (42)

The covariance matrix Q ∈ R2(P+1)×2(P+1) of the noise
vector ζ (21) is essential for the generalized least squares
method estimate (36) and hence to obtain the parameter
estimate with minimal variance. This covariance matrix is
formally defined as

Q=E
{
ζ ζT

}
, (43)

which can be divided into submatrices as

Q=
(
Qyuyu Qyuyd

Qydyu Qydyd

)
=E

{(
ζ yuζ yuT ζ yuζ yd

T

ζ ydζ yuT ζ ydζ yd
T

)}
. (44)

The i-th row element and the j-th column element of
submatrix Qyuyd can be derived according to (42) and the
definitions (19), (20) of vectors ζ ϵu, ζ ϵd as

Qyuyd
ij [N ] = E

{(
R̂yu(i)[N ]− Ryu(i)[N ]

)
×

(
R̂yd (j)[N ]− Ryd (j)[N ]

)}
=

1
s(i)[N ]s(j)[N ]

E

{
N−i∑
k=1

λ(N−i−k)ϵ(k+i)u(k)

×

N−j∑
l=1

λ(N−j−l)ϵ(l+j)d(l)

 . (45)

By customizing a formula that can be found in [39], the
identity [10]

E

{
m∑
k=1

Xk
n∑
l=1

Yl

}
=

m∑
k=1

n∑
l=1

E {XkYl} (46)

can be derived considering two general random vectors
X ∈ Rm×1 and Y ∈ Rn×1. Applying the above identity,
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equation (45) reduces to (47), as shown at the bottom of the
next page.

Since ϵ is considered uncorrelated noise, its autocorrela-
tion function is the Dirac delta function

Rϵϵ(w) =

{
σ 2

ϵ w = 0
0 w ̸= 0

(48)

with the argument w=k+i−l−j and the measure equal to the
noise variance σ 2

ϵ [32], [33].
Due to this property, the double summation in (47) ∀i ≥ j

reduces to a single summation

Qyuyd
ij [N ] =

1
s(i)[N ]s(j)[N ]

σ 2
ϵ

N−i∑
k=1

λ2(N−i−k)u(k)d(k+i−j) .

(49)

In the case i < j complementary to (49), the corresponding
formula can be obtained as

Qyuyd
ij [N ] =

1
s(i)[N ]s(j)[N ]

σ 2
ϵ

N−j∑
l=1

λ2(N−j−l)d(l)u(l+j−i) .

(50)

One may notice that Qyuyd
ji = Qydyu

ij , which implies that

Qydyu
=
(
Qyuyd

)T. The above steps can be taken to derive the
remaining submatrices Qyuyu, Qydyd of (44).
Since the covariancematrix (44) is symmetric, submatrices

Qyuyu,Qydyd are also symmetric, implying thatQyuyu
ji =Q

yuyu
ij

and Qydyd
ji =Q

ydyd
ij .

The above equations can be considered as a generalization
of the formulas from [10] for the case of exponentially
weighted estimates of correlation functions.

A. RECURSIVE FORMULA FOR THE INVERSE
Since we are dealing with online identification, recursive
relations are necessary to be derived to effectively update the
covariance matrix Q based on the new input data, but more
importantly to update its inverse Q−1.

Suppose that the elements of covariance submatrix Qϵϵud

defined ∀i ≥ j by (49) can be obtained from N+1 available
samples as (51), shown at the bottom of the next page.

The recursive formula can be obtained from (51) by
substituting Qyuyd

ij [N ] according to (49) as (52), shown at
the bottom of the next page. The recursive formula for the
case i < j complementary to (52) can be derived based
on (50) as (53), shown at the bottom of the next page,
which turns out to be equivalent to (52). The remaining

recursive equations for updating submatrices Qyuyu, Qydyd

can be derived analogously as (54) and (55), shown at the
bottom of the next page.

To derive a recursive formula for updating the inverseQ−1,
the Sherman-Morrison formula [40] will be exploited.
Considering an invertible matrix A ∈ RN×N and column

vectors p, r∈RN×1 then formula(
A+ prT

)−1
= A−1 −

A−1prTA−1

1+ rTA−1p
(56)

holds for the rank-one update of the matrix inverse.
However, we have to slightly customize the Sherman-

Morrison formula (56) to make it compatible with the
problem of finding inverse Q−1 of the covariance matrix.
Considering arbitrary column vectors u, v ∈ RN×1 and
matrices D,U,V,W∈RN×N, we have the inversion lemma(

V−1DAUW−1 + V−1uvTW−1
)−1

=WU−1
(
A+ D−1uvTU−1

)−1
D−1V . (57)

Let p = D−1u, r =
(
U−1

)T v and rT = vTU−1, then
according to (57) the Sherman-Morrison formula (56) can be
customized as(
V−1DAUW−1 + V−1uvTW−1

)−1
=WU−1A−1D−1V

−WU−1
A−1D−1uvTU−1A−1

1+ vTU−1A−1D−1u
D−1V . (58)

For the inversion of covariance matrixQ, matrixA represents
the old covariance matrixQ[N ] implying the dimension N=
2(P + 1), and vectors u ∈ R2(P+1)×1, v ∈ R2(P+1)×1 have to
correspond to update formulas (52), (53), (54), (55) such that

v = u =
(
up
dp

)
σϵ , (59)

where vectors up∈RP+1×1 and dp∈RP+1×1 are defined as

up =
[
u(N+1) u(N ) . . . u(N+1−i) u(N+1−P)

]T
, (60a)

dp =
[
d(N+1) d(N ) . . . d(N+1−i) d(N+1−P)

]T
. (60b)

Scaling of the old covariance matrix Q[N ] in update
formulas (52), (53), (54), (55) is dependent on N and the
indexes i, j. Therefore, matricesD,U,V,W in (58) must have
the diagonal structure

D = U = λ diag (s[N ]) , (61)

V =W = diag (s[N + 1]) = λD+ I , (62)

R̂yu(n)[N ]− Ryu(n) =
1

s(n)[N ]

[
N−n∑
k=1

λ(N−n−k)

( Mu∑
i=0

gui [k + n]u(k+n−i) +
Md∑
i=0

gdi [k + n]d(k+n−i) + ϵ(k+n)

)
u(k)

−E

{
N−n∑
k=1

λ(N−n−k)

( Mu∑
i=0

gui [k + n]u(k+n−i) +
Md∑
i=0

gdi [k + n]d(k+n−i) + ϵ(k+n)

)
u(k)

}]
. (41)
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where vectors s[N ], s[N + 1] get

s[N ] =
[
s(0)[N ] s(1)[N ] . . . s(P)[N ]

]T
, (63a)

s[N+1] =
[
s(0)[N+1] s(1)[N+1] . . . s(P)[N+1]

]T
.

(63b)

Since D is diagonal, its inverse is easy to calculate.
The final formula for updating the inverse Q−1 can be

derived according to (58) as

Q−1[N+1] = D−1Q−1[N ]D−1

− D−1
Q−1[N ]D−1vvTD−1Q−1[N ]
1+ vTD−1Q−1[N ]D−1v

D−1 .

(64)

V. GRADIENT-BASED SOLUTION OF THE ESTIMATION
PROBLEM
An emerging practical problem of the proposed online
identification method is that at each iteration, new samples
of signals y(k), u(k), d(k) are available, thus the regression
system (13) changes completely in terms of full-rank update
due to updated sample cross-correlation functions R̂yu(n),
R̂yd (n), R̂ud (n), R̂du(n) and autocorrelation functions R̂uu(n),
R̂dd (n). This fact hampers solving the estimation problem
by the means of traditional online algorithms such as
the recursive least squares method [11] suitable for rank-
one update problems. Although we derived the recursive
equations to effectively update the regression system itself
and also update the covariance matrixQ and its inverse, there
is still a need to re-evaluate the parameter estimate according
to the closed form analytical solution (36) at each sample.
Due to the relatively large dimension 2 (P+1) ×

(Mu+Md+2) of the estimation problem, the complexity of
calculating the inverse ofMu+Md+2×Mu+Md+2 Hessian

matrix in (36) is significant, hence it may be even infeasible to
perform it in real time. Therefore, we propose to rather use a
suitable numeric optimizationmethod to find theminimum of
the quadratic form (33), in particular, the conjugate gradient
method [41] will be adopted.
Consider an unconstrained minimization problem of a

multivariate scalar cost function f (x) : Rn×1
→ R as

min f (x), where x ∈ Rn×1 and n = Mu + Md + 2.
To disambiguate the introduced notation, the gradient of the
general cost function f (x) will be denoted as g (x) : Rn×1

→

Rn×1 and for the Hessian, notationH (x) : Rn×1
→Rn×n will

be used.
The algorithm of conjugate gradient method is stated

as follows [43]. Considering i is the iteration number, the
formula to update the approximation of the optimal solution
gets the recursive form

xi = xi−1 + siδi , (65)

where xi−1 is the last and xi is the new approximation of the
optimal solution, si ∈Rn×1 is the direction vector and δi ∈R
is the step size.
The optimal step size δi can be determined as

δi = −
sTi g (xi−1)

sTi H (xi−1) si
. (66)

The direction vector si+1 follows the recursive formula

si+1 = siγi − g (xi) , (67)

where the scalar coefficient γi∈R can be determined as

γi =
g (xi)T g (xi)

g (xi−1)T g (xi−1)
. (68)

This iterative algorithm starts with s0=−g (x0).

Qyuyd
ij [N ]=

1
s(i)[N ]s(j)[N ]

N−i∑
k=1

N−j∑
l=1

λ(N−i−k)λ(N−j−l)Rϵϵ(k+i−l−j)u(k)d(l) (47)

Qyuyd
ij [N+1] =

1
s(i)[N + 1]s(j)[N + 1]

(
λ2σ 2

ϵ

N−i∑
k=1

[
λ2(N−i−k)u(k)d(k+i−j)

]
+ σ 2

ϵ u(N+1−i)d(N+1−j)

)
(51)

Qyuyd
ij [N+1] =

1
s(i)[N + 1]s(j)[N + 1]

(
λ2s(i)[N ]s(j)[N ]Qyuyd

ij [N ]+ σ 2
ϵ u(N+1−i)d(N+1−j)

)
(52)

Qyuyd
ij [N+1] =

1
s(i)[N + 1]s(j)[N + 1]

(
λ2s(i)[N ]s(j)[N ]Qyuyd

ij [N ]+ σ 2
ϵ d(N+1−j)u(N+1−i)

)
(53)

Qyuyu
ij [N+1] =

1
s(i)[N+1]s(j)[N+1]

(
λ2s(i)[N ]s(j)[N ]Qyuyu

ij [N ]+ σ 2
ϵ u(N+1−i)u(N+1−j)

)
(54)

Qydyd
ij [N+1] =

1
s(i)[N+1]s(j)[N+1]

(
λ2s(i)[N ]s(j)[N ]Qydyd

ij [N ]+ σ 2
ϵ d(N+1−i)d(N+1−j)

)
(55)
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In the case of minimizing the quadratic form (33) of
the parameter estimation problem, the gradient corresponds
to (34) and the Hessian can be determined according to (35).
The rationale for the conjugate gradient method is that the
algorithm can be terminated right after n iterations obtaining
the exact solution equivalent to (36). The termination can be
triggered if the magnitude of the gradient decreases below a
certain threshold, i.e. if g (xi)T g (xi)<κ .
As was already mentioned, for each new sample, the

optimal solution of the parameter estimation problem is
expected to change (drift), hence the conjugate gradient
algorithm has to be iterated again. However, the initial guess
x0[N+1] can be chosen equal to the optimal solution obtained
from the last sample xn[N ] to speed up the convergence.

VI. APPROXIMATE SOLUTION TO THE MATRIX INVERSE
In this section, we will propose an alternative approach to
find a solution to the parameter estimation problem based on
the closed form (36). The main motivation is that instead of
directly computing the inverseH−1 of theHessianmatrix (35)
by the means of standard algorithms of linear algebra at
each sample, the matrix inverse will be approximated using a
dedicated iterative method, as discussed below.

Consider a matrix function F (X) : Rn×n
→ Rn×n

representing the residual of the approximation of the inverse
H−1 by matrix X ∈ Rn×n as

F (X) = X−1 −H , (69)

where n=Mu+Md + 2.
To find the root of the residual function (69) i.e. the solution

to F (X⋆)= 0 that satisfies X⋆
=H−1, the Newton-Raphson

method generalized for matrix functions can be conveniently
adopted. The outlined combination of using the Newton-
Raphsonmethod to approximate thematrix inverse is referred
to as the Schulz method in the literature [44].
The Schulz method iteration [46] gets

Xi+1 = Xi (2I −HXi) . (70)

In [46], it was proved that the magnitudes of all the
eigenvalues of HX0 − I must be less than 1 to ensure the
convergence of the algorithm (70), what can also be noted
as

ρ (HX0 − I ) < 1 , (71)

where operator ρ (·) represents the magnitude of the largest
eigenvalue, the so-called spectral radius.

A. STANDARD CHOICE OF THE INITIAL GUESS
The initial guess X0 in the Schulz method is typically chosen
as [44]

X0 = aHT , (72)

where a∈R.
Substituting (72) into the convergence criterion (71) yields

0 < ρ
(
aHHT

− I
)

< 1 . (73)

At this point, it is crucial that the inequality [47], [48]

ρ (A+ B) ≤ ρ (A)+ ρ (B) (74)

holds for the spectral radius of the sum of two permutable
matrices A, B, i.e. the matrices satisfying AB = BA. Since
the spectral radius of the identity matrix is ρ (I )=1, one can
reshape criterion (73) according to (74) as

0 < a <
2

ρ
(
HHT

) . (75)

However, to determine a that satisfies (75), it is not
necessary to calculate the exact spectral radius ρ

(
HHT

)
in

practice, since the so-called Gershgorin circle theorem can
be assumed instead.

Let A ∈ Rn×n be a square matrix and Ri the sum of the
absolute values of the non-diagonal entries in the i-th row i.e.
Ri =

∑
j̸=i

∣∣Aij
∣∣. Then every eigenvalue of A lies within at

least one of the Gershgorin discs D (Aii,Ri) ∈ C with the
center atAii and the radius Ri [49]. This theorem implies that,
for the spectral radius of A, the following inequality holds

ρ (A) ≤ max


n∑
j=1

∣∣Aij
∣∣ ∀i = 1 . . . n

 . (76)

Considering (76) yields the condition (75) modified as [50]

0 < a <
2

max
{∑n

j=1

∣∣∣(HHT
)
ij

∣∣∣ ∀i = 1 . . . n
} . (77)

B. RECURSIVE CHOICE OF THE INITIAL GUESS
A more effective strategy to choose the initial guess in the
Schulzmethod is to exploit the inverse of the HessianH−1[N ]
obtained from the last sample as

X0 = aH−1[N ] , (78)

while anticipating that the inter-sample perturbation of the
Hessian is not too large.

It has to be ensured that the initial guess (78) satisfies the
convergence criterion (71) as

0 < ρ
(
aH[N+1]H−1[N ]− I

)
< 1 . (79)

As inequality (74) holds, the above criterion reduces to

0 < a <
2

ρ
(
H[N+1]H−1[N ]

) . (80)

Since the Gershgorin circle theorem (76) holds, condi-
tion (80) gets modified as

0 < a <
2

max
{∑n

j=1

∣∣∣(H[N+1]H−1[N ]
)
ij

∣∣∣ ∀i = 1 . . . n
} .

(81)
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FIGURE 1. Input-output diabetic dataset obtained without the influence of parametric variability.

C. ALGORITHM TERMINATION
To trigger the termination of iterative algorithm (70) a stop-
ping criterion is required. Multiplying residual function (69)
by X yields matrix function E (X) as

E (X) = I −HX . (82)

The convergence can be quantified by the scalar quadratic
criterion q

q (Xi) =

n∑
p=1

n∑
r=1

E (Xi)
2
pr . (83)

The stopping condition can be formulated as q (Xi) <(
10−20, 10−10

)
depending on the desired approximation

accuracy.

VII. SIMULATION EXPERIMENT
As outlined in the title, the target application domain of the
proposed online identification algorithm is the parameter-
varying empirical model of glycemia dynamics in patients
with type 1 diabetes. To validate the design and effectiveness
of the proposed robust online identification, in this section,
the virtual patient diabetic data generated by a complex
physiology-based simulation model will be considered.

The glycemia response G(t) [mmol/l] for this experiment
was obtained by the in-silico approach, using the nonlinear
simulation model discussed in [51] and [52]. The mean
population parameters available in [51] were adopted, while
some adjustments had to be made in order to simulate
the metabolic specifics of type 1 diabetes [53]. The basal
state of the model was calculated according to the basal
glycemia Gb=6 mmol/l and the corresponding basal insulin
administration rate ub=0.01 U/min.
Data acquisition experiments were designed to mimic the

standard insulin treatment of a type 1 diabetic subject during

the 15-day period with a total number of 90 meals. Virtual
continuous glucose monitoring data were sampled with Ts=
20 min, while the total duration of the experiment can be
determined as 15×60×24 min, which implies the number
of samples N = 1080. The measurements were distorted by
the additive uncorrelated zero-mean noise with the standard
deviation σϵ = 0.1 mmol/l. A typical diabetic dataset
includes information on administered insulin boluses and
carbohydrate intake in the form of a diabetic diary. During
conventional insulin therapy, the insulin dose is determined
according to the so-called bolus calculator rule (see [54] and
the references therein).

The first dataset obtained under the assumption that the
simulation model parameters are fixed to their mean popu-
lation values without the influence of parametric variability
is depicted in Figure 1.
The prediction performance of the identified models will

be quantified by metric

Q =
1

N − P

N∑
k=P

[
ŷ(k) − y(k)

]2
, (84)

where ŷ(k) is the predicted model output and y(k) is the
measured output.

A. MODELING THE INTER-SUBJECT VARIABILITY
To model the inter-subject variability and to estimate the
essential covariance matrix 9̂ and the mean-population
parameter vector ḡ for the sake of regularization and
robustification of the estimate in the terms of section III-C,
a special experiment was designed. The population of virtual
diabetic subjects had to be randomly generated, assuming the
normal distribution of all parameters of the simulation model
with the available mean-population value p̄i and standard
deviation σpi determined according to the uniform coefficient
of variation strategy. The coefficient of variation cv will be
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FIGURE 2. Non-regularized estimates of the impulse response coefficients of the insulin administration effect submodel ĝu(p) and the
carbohydrate intake effect submodel ĝd (p) obtained from np = 300 virtual diabetic subjects.

FIGURE 3. Estimated mean-population impulse responses of the insulin administration effect submodel ḡu and the carbohydrate
intake effect submodel ḡd .

defined as a fixed ratio cv =
σpi
p̄i
= 0.15 for all model

parameters.
For each of np=300 virtual diabetic subjects, the glycemia

response was generated and the nonregularized estimate of
impulse responses assuming α = 0, β = 0 and no forgetting
λ= 1 was carried out, while the results for the final sample
N = 1080 can be seen in Figure 2.
This dataset was consequently used to estimate the mean-

population impulse response ḡ according to (26) and to
determine the covariance matrix 9̂ according to (27). The
obtained ḡ is plotted in Figure 3, whereas the estimated 9̂

is visualized in Figure 4 as a colormap. In Figure 4a, one can
notice that the variance of the insulin administration effect
impulse response is much higher during the peak than during
the rise or decay phase, whereas the submatrix corresponding
to carbohydrate intake in Figure 4b shows higher variances at
the beginning of the response.

B. MODELING THE INTRA-SUBJECT VARIABILITY
To involve the mechanism of intra-subject time variability
into the in-silico experiment, chosen parameters of the
simulation model were considered and implemented as

time-varying. Since there are actually no studies available
that would report on the in-vivo experience or publish
experimental data that describe the parametric variability of
the concerned simulationmodel, the evolution curves of these
parameters will be designed empirically. The list of chosen
physiology-based parameters, which will be considered time-
varying, is summarized in Table 1. For a more comprehensive
description and physiological interpretation of the chosen
parameters, see [51] and the references therein.

The designed curves representing the deviations of the
corresponding parameters pi(t) from the nominal values p̄i
divided by p̄i to obtain dimensionless quantities according to
1pi(t) =

pi(t)−p̄i
p̄i

are summarized in Figure 5.
By simulating the model under the influence of empirically

designed parametric variabilities from Figure 5, another
dataset was obtained as documented in Figure 6. This dataset
will be used to demonstrate and benchmark the adaptive
capabilities of the proposed identification algorithm.

Based on the results obtained by studying np = 300 virtual
diabetic subjects, Figure 7 shows the covariance matrix 8̂ of
the difference between two consecutive parameter estimates
estimated according to (32) representing the inter-sample
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FIGURE 4. Entries of the estimated covariance matrix 9̂.

TABLE 1. Chosen time-varying parameters of the simulation model.

FIGURE 5. Scale-invariant relative representation of evolution of the
chosen time-varying parameters of the simulation model.

parametric variability. This figure shows that the variability
of insulin action is more prominent than the carbohydrate
intake response, while it affects primarily the peak time and
the amplitude.

The entries of the inverse of the covariance matrixQ−1[N ]
corresponding to the final sample of the dataset from
Figure 1, which was obtained recursively according to (64),
are visualized as a colormap in Figure 8. One can notice a

quasi-diagonal structure of Q−1[N ], different scales of its
submatrices, and also the presence of slightly lower values
of diagonal entries with an increasing index.

C. MAIN RESULTS
Finally, the estimated impulse responses under various
configurations will be presented and discussed.

Concerning the tuning of the proposed identification
algorithm, the number of lags was chosen as P = 100 and
the lengths of the identified impulse responses were adjusted
as Mu= 49, Md = 49. The forgetting factor for the first non-
adaptive scenario was set to λ=1 and for the second scenario
that assumed the effect of parametric variability and online
adaptation of impulse responses, it was chosen as λ=0.995.
The not regularized scenario with α = 0, β = 0 and

λ = 1 is visualized in Figure 9, while it was obtained by
processing the parameter-invariant dataset from Figure 1.
It was demonstrated that if no regularization is applied, the
coefficients of impulse response are disorganized, hence less
valid, and definitely not physiology compliant.

By applying the first regularization term with α=5× 102

and omitting the second regularization term as β = 0, the
sequence of impulse responses documented in Figure 10 was
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FIGURE 6. Input-output diabetic dataset obtained under the assumption of time-varying parameters.

FIGURE 7. Entries of the estimated covariance matrix 8̂.

FIGURE 8. The elements of the inverse of the covariance matrix Q−1[N].

obtained by processing the parameter-invariant dataset from
Figure 1.

Assuming both regularization strategies by setting α =

5 × 102, β = 1 × 10−3 in order to obtain a more robust and
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FIGURE 9. Not regularized estimates of the impulse response coefficients of the insulin administration effect submodel ĝu[N] and the carbohydrate
intake effect submodel ĝd [N] as the functions of number of processed samples N , obtained by processing the parameter-invariant dataset.

FIGURE 10. Regularized α ̸= 0, β = 0 estimates of the impulse response coefficients of the insulin administration effect submodel ĝu[N] and
the carbohydrate intake effect submodel ĝd [N] as the functions of number of processed samples N , obtained by processing the
parameter-invariant dataset.

physiology-compliant estimate, satisfying results could be
obtained by processing the parametric-invariant dataset from
Figure 1 as summarized in Figure 11. It can be observed that
there was almost no drift of parameters, yet small fluctuations
were caused by the nonlinearity of the simulation model and
the related adaptation with respect to the change of operating
point.

The presented results show that the impulse responses
represent a stable systemwith aperiodic nature. The estimated
coefficients keep their sign uniform, which implies that the
estimate is physiology compliant. Additionally, a slower and
longer lasting effect of insulin administration can be observed
with a peak at approximately 300 minutes compared to a
faster and shorter lasting effect of carbohydrate intake, which
peaked roughly at 200 minutes.

The next experiment concerns the online identification
performed to adapt the estimated impulse responses due to the
influence of intra-subject parametric variability. Assuming
both regularization strategies with the corresponding weights
chosen as α = 5 × 102, β = 1 × 10−3 and the forgetting

factor λ = 0.995, by processing the parameter-varying
dataset from Figure 6 we obtained the results summarized
in Figure 12. Significant drift and adaptation of estimated
impulse responses can be observed, as the chosen physiology-
based parameters of the simulationmodel (see Table 1) varied
according to Figure 5.

The identification was repeated considering a smaller
forgetting factor λ = 0.95, which implies that the forgetting
effect will be stronger in this case. Figure 13 then documents
that both impulse responses evolve very rapidly with a low
consistency, hence their overall validity cannot be considered
satisfactory.

To validate the performance of the proposed identification
algorithm with respect to the presence of outliers in the
input data, the glycemia measurements from Figure 6 will be
distorted by considering multiple randomly scattered outliers
(invalid measurements) as can be seen in Figure 14.

Assuming both regularization strategies with the corre-
sponding weights chosen as α=5×102, β=1×10−3 and the
forgetting factor λ = 0.995, by processing the dataset from
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FIGURE 11. Fully regularized α ̸= 0, β ̸= 0 estimates of the impulse response coefficients of the insulin administration effect submodel
ĝu[N] and the carbohydrate intake effect submodel ĝd [N] as the functions of number of processed samples N , obtained by processing the
parameter-invariant dataset.

FIGURE 12. Online adaptive estimates of the impulse response coefficients of the insulin administration effect submodel ĝu[N] and the
carbohydrate intake effect submodel ĝd [N] as the functions of number of processed samples N , obtained by processing the
parameter-varying dataset while considering λ = 0.995.

FIGURE 13. Online adaptive estimates of the impulse response coefficients of the insulin administration effect submodel ĝu[N] and the
carbohydrate intake effect submodel ĝd [N] as the functions of number of processed samples N , obtained by processing the
parameter-varying dataset while considering λ = 0.95.

Figure 14, the impulse responses were identified as visualized
in Figure 15.

It can be concluded that the outliers affected the esti-
mated model, but due to the applied regularization, larger
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FIGURE 14. Input-output diabetic dataset distorted by the outliers.

FIGURE 15. Online adaptive estimates of the impulse response coefficients of the insulin administration effect submodel ĝu[N] and the carbohydrate
intake effect submodel ĝd [N] as the functions of number of processed samples N , obtained by processing the dataset distorted by the outliers.

perturbations of the estimated impulse responses were
suppressed, and the model remained relatively valid.

To assess how the proposed identificationmethod performs
across a broad demographic spectrum of type 1 diabetic
patients in terms of intersubject variability, another exper-
iment is designed and evaluated. To properly model the
inter-subject variability, a new population of virtual diabetic
subjects was randomly generated assuming the normal
distribution of all parameters of the simulation model while
considering known mean-population value p̄i and standard
deviation σpi following the uniform coefficient of variation
cv =

σpi
p̄i
= 0.15 for each of the model parameters.

For each of np=100 virtual diabetic subjects, the glycemia
response was generated and the estimation of impulse
responses assuming both regularizations with weights α =

5×102, β=1×10−3 and the forgetting factor λ = 0.995 was

performed. Considering the final sample N = 1080,
we obtained the impulse responses as visualized in Figure 16.
These impulse responses show significant variations of the
magnitudes and times of the peaks across the population,
while the majority of responses can be considered compliant
with physiology.

Besides the basic assessment of impulse responses, the
estimated models were validated by predicting glycemia
individually for each subject of the dataset, while the
average value of performance criterion (84) resulted in
Q̄ = 0.1097 and its variance was σ 2

Q = 0.0354,
which can be considered satisfactory. Unfortunately, further
visualization of the evolution of impulse responses with
respect to number of samples N and the corresponding
prediction of glycemia for each subject of the set is
unfeasible.
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FIGURE 16. Estimates of the impulse response coefficients of the insulin administration effect submodel ĝu(p) and the carbohydrate intake effect
submodel ĝd (p) obtained from np = 100 virtual subjects across broad demographic spectrum of type 1 diabetic patients generated in terms of
intersubject variability.

FIGURE 17. Convergence of cost function f
(
xi

)
obtained through the

iterations i of the conjugate gradient method taken relatively to the
explicit analytical solution x∗.

The results presented above confirm that the proposed
identification method can provide valid and accurate models
for a whole spectrum of physiological variations in diabetic
subjects.

Concerning the performance of the conjugate gradient
method, the convergence of the cost function f (xk) taken
relative to the exact analytical solution f (x∗) is plotted in
Figure 17. Notice that the actual convergence practically
stops after reaching Mu +Md + 2 = 100 iterations, while
the approximation can be considered equal to the exact
analytical solution, as this is typical characteristics of the
conjugate gradient method applied to quadratic forms. Small
fluctuations of the magnitude < 10−10, which can be
observed after the 100th iteration are caused just by rounding
errors, hence this effect has a purely numerical nature.

Studying the Schulz method for approximating the inverse
of the Hessian matrix while terminating iterative algorithm
(70) after satisfying condition q < 10−15, convergence
of scalar metric q (83) is depicted in Figure 18 for the

FIGURE 18. Convergence of scalar metric q obtained through the
iterations i of the Schulz method for approximating the inverse of the
Hessian matrix, while the initial guess was chosen as aHT.

FIGURE 19. Convergence of scalar metric q obtained through the
iterations i of the Schulz method for approximating the inverse of the
Hessian matrix that was terminated after satisfying condition q < 10−15,
while the initial guess was chosen as aH−1[N].

standard choice of the initial guess and in Figure 19 for the
recursive choice of the initial guess. In Figure 19, relatively
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FIGURE 20. Online adaptive estimates of the impulse response coefficients of the insulin administration effect submodel ĝu[N] and the
carbohydrate intake effect submodel ĝd [N] as the functions of number of processed samples N , obtained in the terms of recursive least squares
method applied to ARX model by processing the parameter-varying dataset.

FIGURE 21. Comparison of the output long-term prediction using the time-invariant model and the time-varying model.

fast convergence is observed due to the recursive choice of the
initial guess according to (78), while Figure 18 shows much
slower convergence caused by the less effective choice of the
initial guess according to (72).

The proposed correlation method will be compared with
the recursive least squares algorithm (abbr. RLS) applied to
minimize the prediction error of the two-input parameter-
varying ARX, ARMAX and Box-Jenkins models.

The parameter-varying ARX model is defined in the z-
domain as

A(z)[k]y(k) = Bu(z)[k]u(k) + Bd (z)[k]d(k) + ϵ(k) , (85)

where the polynomials are of the degrees nA for A(z), nB for
Bu(z) and Bd (z).

Furthermore, the comparison will consider the parameter-
varying ARMAX model defined as

A(z)[k]y(k) = Bu(z)[k]u(k) + Bd (z)[k]d(k) + C(z)[k]ϵ(k) ,

(86)

where the polynomial C(z) is of degree nC .
We will also estimate the parameter-varying Box-Jenkins

model

y(k) =
Bu(z)[k]
Au(z)[k]

u(k) +
Bd (z)[k]
Ad (z)[k]

d(k) +
C(z)[k]
D(z)[k]

ϵ(k) , (87)

where the polynomials are of degrees nA for Au(z) and Ad (z),
nB for Bu(z) and Bd (z), nC for C(z), nD for D(z).
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FIGURE 22. Long-term prediction of glycemia using the time-varying ARX model.

FIGURE 23. Long-term prediction of glycemia using the time-varying ARMAX model.

Equations of the RLS algorithm with the exponential
forgetting will be adopted as [11]

Y [k] =
P[k − 1]h[k]

λ+ hT[k]P[k − 1]h[k]
, (88a)

P[k] =
1
λ

(
I − Y [k]hT[k]

)
P[k − 1] , (88b)

θ̂ [k] = θ̂ [k − 1]+ Y [k]
(
y(k) − hT[k]θ̂ [k − 1]

)
, (88c)

where y is the output measurement, Y is the correction vector,
P is the covariance matrix of the parameter estimate, θ̂ is
the vector of estimated parameters, λ is the forgetting factor,

while the regression vector h is defined by the corresponding
model structure (ARX, ARMAX, Box-Jenkins).

By application of the RLS algorithm (88) to estimate the
ARX model (85) based on the input-output dataset from
Figure 6 while considering nA = nB = 3, we obtained a
time-varying model with evolution of the impulse response
coefficients visualized in Figure 20. The figure also doc-
uments that this approach is not suitable for estimating
models from diabetic data, as the obtained impulse responses
are not compliant with the basic physiology of diabetes
(particularly the insulin administration response is very
defective compared to the standard shape in Figure 3),
and hence its general validity is poor. This insufficient
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FIGURE 24. Long-term prediction of glycemia using the time-varying Box-Jenkins model.

FIGURE 25. Online adaptive estimates of the impulse response coefficients of the insulin administration effect submodel ĝu[N] and the
carbohydrate intake effect submodel ĝd [N] as the functions of number of processed samples N , obtained by processing the parameter-varying
dataset while considering λ = 0.995 and input uncertainties.

performance of the RLS algorithm can be explained by the
poor excitation properties of the input signals u(k), d(k), which
are impulsive in nature and are highly correlated as they occur
simultaneously (see Figure 6).

Another evaluation of the results is aimed at long-
term predicting (simulating) glycemia using the identified
models. The output prediction of the nonparametric model
can be calculated directly from the definition (1) for the
time-invariant model and according to (2) in the case of time-
varying model parameters. In Figure 21 there is the long-term
prediction of glycemia performed on the parameter-varying
dataset from Figure 6 assuming the offline identification
strategy with parameters estimated as fixed, compared to
the adaptation-based prediction of glycemia using the online

estimation of time-varying impulse responses that were
presented in Figure 12.
It can be concluded that the online identification yielded a

time-varying model with better prediction performance than
was obtained using the fixed offline-identified parameters,
hence the model adapted better due to the intra-subject
variability.

The predictions for the time-varying ARX model (85)
of various orders are plotted in Figure 22, while the
predictions for the time-varying ARMAX model (86) can
be seen in Figure 23. It is apparent that the second-order
ARX and ARMAX models performed insufficiently. The
next comparison considers the time-varying Box-Jenkins
model (87) with the corresponding predictions visualized
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FIGURE 26. Long-term prediction of glycemia with input uncertainties using the time-varying model.

TABLE 2. Prediction performance metric.

in Figure 24. It can be claimed that the Box-Jenkins
model generally provided more accurate predictions than
the ARX and ARMAX models, while its performance
is comparable to the nonparametric model obtained by
the proposed correlation method. However, in Figure 24,
there can be seen a tendency of the fourth-order Box-
Jenkins model to instability, which is a highly undesired
phenomenon.

In addition to standard experimentation with deterministic
inputs and their effects, signals u(k), d(k) will be considered to
be affected by random processes. The stochastic component
of d(k) can be seen as the uncertainty in the magnitude of
carbohydrate intake, which is typically not known precisely
in real-life conditions. On the other hand, the stochastic
component of u(k) represents the uncertain nature of insulin
action, which can be affected by various factors, such as the
site of administration.

To model the stochastic nature of inputs, signals u(k), d(k)
entering the identification algorithm will be distorted as

u(k) · χu(k) , (89)

d(k) · χd (k) , (90)

where χu(k) ∼ N (1, 0.1) and χd (k) ∼ N (1, 0.1) follow the
normal distributions.

The estimates of impulse responses obtained considering
α = 5 × 102, β = 1 × 10−3, λ = 0.995 by processing
the parameter-varying dataset from Figure 6 with uncertain
inputs in terms of (89), (90) are documented in Figure 25.
As expected, the impulse responses reacted to mismatch in
input signals by significant perturbations, yet they still can
be considered acceptable and usable in practice.

Then, in Figure 26 there is the corresponding long-
term prediction of glycemia performed on the parameter-
varying dataset from Figure 6 using the online estimation
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of time-varying impulse responses that were presented in
Figure 25. It can be concluded that the prediction accuracy is
slightly deteriorated compared to Figure 21, yet satisfactory.

Evaluating metric (84) for the considered scenarios gives
the results summarized in Table 2.

VIII. CONCLUSION
The paper presented an extension and a new theoretical
framework for the correlation-based method to estimate
impulse responses in the case of a two-input single-output
nonparametric empirical model of type 1 diabetes. The
augmentedmethod now allows for effective online estimation
and adaptation of the model parameters in real time by
processing new available samples of the input-output signals
and recursively updating correlation functions. To this
end, the exponentially weighted estimate of the correlation
function was introduced to implement the forgetting of
older samples, while the recursive formula for updating this
estimate was derived. The crucial Wiener-Hopf equation
generalized for systems with two inputs was presented
together with the corresponding linear regression system.
Compared to the traditional correlation-based identification
framework, we studied the statistical properties of the sample
correlation function, which resulted in the estimation based
on the generalized least squares method while minimizing
the variance of the estimate. The cost function of the
estimation problem was modified by considering two novel
optimal regularization strategies. The first regularization term
was designed to robustify the identification with respect to
a priori known distribution of the true parameter vector. The
second regularization termwas designed to penalize the inter-
sample change of the parameter estimate, i.e., drift of the
parameter vector in time, and thus to suppress excessive
and unlikely changes throughout the iterations. Following
these regularization strategies, the overall robustness of the
estimate was improved with respect to random disturbance
factors, the presence of outliers, and the poor quality of the
input-output data supplied.

One of the important findings to highlight is the recursive
formula for updating the covariance matrix of the uncertainty
of the correlation function estimate, but more importantly, the
recursive formula for updating its inverse, which is actually
essential to evaluate the generalized least squares method
estimate.

Since we wanted to fully avoid calculating all the matrix
inverses, the quadratic form corresponding to the cost
function of the parameter estimation problem was, instead
of solving the closed analytical form, numerically minimized
using the conjugate gradientmethod that ensures convergence
to the analytical solution in a finite number of iterations.
Alternatively, the inverse Hessian matrix was proposed to
be approximated using the Schulz method. Due to the
derived criterion to ensure the method convergence using
the Gershgorin circle theorem, the recursive choice of the
initial approximation provided very fast convergence in
practice.

The sequence of operations required to update the param-
eter estimate per sample was optimized with respect to the
computational complexity as follows:

1) Performing recursive update of the sample correlation
functions according to new input-output data instead of
evaluating the full summation.

2) Performing recursive update of the inverse of the
covariance matrix of the noise vector instead of its
direct inversion.

3) Application of the conjugate gradient method or the
Schulzmethod to obtain the parameter estimatewithout
calculating the matrix inverse.

Because the number of iterations in the case of conjugate
gradient algorithm is fixed and the complexity of other
subroutines is independent of the character of arriving data,
the number of arithmetic operations per sample is invariant
and deterministic. This can be seen as an important factor
when implementing periodic tasks in real-time operating
systems. It can be claimed that the overall computational
complexity depends only on the considered lengths of
the impulse responses Mu, Md (the number of estimated
parameters) and the number of lags P, since these affect
the dimensions of all concerned vectors and matrices. Due
to the recursive formulation of the algorithm, the number
of processed samples does not affect the computational
complexity, which is a significant advantage in the case of
real-time implementation. Concerning the target software
implementation in an object-oriented programming language,
all steps of the proposed estimation algorithm require a
framework for basic operations with vectors and matrices,
yet these exclude advanced and computationally demanding
techniques such as matrix decompositions or the matrix
inverse.

The results of simulation-based experiments confirmed
that a properly tuned identification algorithm can produce
satisfactory and valid estimates of the impulse functions
even under demanding conditions caused by noisy glycemia
measurements and highly correlated input signals typical
of conventional insulin therapy. The proposed regulariza-
tion strategies provided physiology-compliant estimates of
impulse functions. Both alternative methods to solve the
estimation problem showed good convergence properties and
could replace the traditional explicit formula that involves
the Hessian matrix inverse. Concerning the intra-subject
variability, the online estimation strategywas able to adapt the
identified impulse responses with respect to the time-varying
parameters of the simulation model.

The presented comparison with the recursive least squares
method for the estimation of the time-varyingARX,ARMAX
and Box-Jenkins models showed that this conservative
approach is not suitable for adaptive modeling of glycemia,
despite the fact that it can provide sufficient prediction
performance under specific circumstances.

An eventual implementation of the proposed online iden-
tification method and the adaptive model in some augmented
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form of continuous glucose monitoring system would be
appropriate and very likely to be the subject of future
interest. This would benefit from an efficient combination of
the glycemia monitoring device and the adaptive modeling
approach while providing real-time updated information on
the dynamic responses of glycemia to insulin administration
and carbohydrate intake under the influence of time-varying
physiological characteristics. These factors play pivotal roles
in the design of techniques for maximizing the performance
and safety of insulin treatment in diabetic subjects. Therefore,
this form of model with adaptive capabilities is virtually
mandatory for the implementation of an efficient artificial
pancreas for automated continuous insulin dosing or for an
advanced advisory system in the form of optimal model-
based bolus calculator, which provides advice on the time
and size of the insulin bolus to be administered. Emerging
challenges in practical implementation of these solutions
are of various nature, such as dealing with sensor failures,
detecting mismatches in meal announcing, or managing the
effects of random unmeasurable disturbances.
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