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ABSTRACT Upper-limb position is one of the most critical factors that degrade sEMG-based motion
recognition accuracy. Therefore, we propose an upper-limb position-robust motion recognition with
unsupervised domain adaptation. The proposed method finds the feature representation which reduces
the difference between the distributions of labeled and unlabeled data acquired from the specific upper-
limb position and other conditions respectively. It is shown that the proposed method has enhanced the
classification accuracy by up to 13.50% compared to machine learning-based classifiers, convolutional
neural network (CNN), and domain adversarial neural network (DANN). Especially, the lowest classification
accuracy among every pair of training and test upper-limb positions has been improved by up to 19.96%.
The effectiveness of the proposed method is also verified with the visualization of feature representation
and comparison of a learning curve. To see the feasibility and performance in the real-world applications,
we designed the virtual interface to control the ball in accordance with the real-time network estimation and
conducted the following experiment: With the current ball position given, the subject has to reach the goal
position as soon as possible while the error between desired and real trajectory is minimized at the same
time. The proposed method has shown significantly higher reaching speed and tracking accuracy.

INDEX TERMS Deep learning, limb position effect, motion recognition, surface electromyogram (sEMG),
unsupervised domain adaptation.

I. INTRODUCTION
Surface electromyogram (sEMG) is a bioelectric signal which
captures the motor unit action potential. Because sEMG
is generated when muscles contract and is non-invasive,
it is used to estimate the human intention in a variety of
applications including virtual/augmented reality (VR/AR)
[1], teleoperation [2], rehabilitation [3], and prosthesis
control [4]. Especially, hand and wrist motion intentions
are often considered because of their importance in daily
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living [5], [6], [7]. Pattern recognition is one of the most
frequently used schemes to interpret the motion intention
from sEMG and it was shown that several hand and wrist
motions can be classified [8], [9], [10], [11], [12]. The
primary assumption is that the sEMG patterns are stationary
so that the patterns extracted from the training session will
emerge in the later stages [13], [14], [15].

However, this assumption is not guaranteed when there
exist the variations of the angles in arm joints. The
length and shape of muscle are dependent on the joint
angles and the corresponding shift between the muscle and
electrode affects sEMG [16]. Furthermore, muscle activation
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to produce the necessary force becomes different due to
the force-length relationship of the muscle [17]. These joint
angles are determined by the positioning of upper limb
and consequently, changes in upper-limb position negatively
affect pattern recognition.

To achieve upper-limb position-robust pattern recognition,
labeled data are acquired from multiple upper-limb positions
and an additional sensor is utilized. Fougner et al. [16]
reported that if the labeled data are acquired from multiple
upper-limb positions, classification accuracy is increased
compared to the case with a single upper-limb position.
Classification accuracy is even increased when the data
from the accelerometer (ACC) attached to the forearm are
included. Geng et al. [18] proposed the two-stage cascade
classifier where ACC detects the upper-limb position and
the corresponding sEMG classifier is applied to estimate the
motion. The two-stage cascade classifier has shown higher
mean classification accuracy compared to the classifier
trained only with sEMG in five upper-limb positions.
Williams et al. [19] proposed recurrent convolutional neural
network for position-aware myoelectric prosthesis control.
When labeled sEMG and ACC data from four upper-limb
positions are used, classification accuracy was enhanced
compared to the case where only labeled sEMG acquired
from a single upper-limb position is used. However, the
labeling process is time-consuming [20], [21], [22]. Further-
more, the attachment of an additional sensor might cause
inconvenience and lower the usability.

To alleviate the burden of labeled data acquisition and
using additional sensors, motion recognition with only
sEMG from a single upper-limb position is considered.
Khushaba et al. [23] proposed time-dependent spectral sEMG
features which are designed to be invariant to translation,
scaling, and amplification. Betthauser et al. [24] exploited an
extreme learningmachine with adaptive sparse representation
classification (EASRC) which provides additional tolerance
on interspersed data near classification boundaries and
outliers from unexpected effect. However, these researches
did not consider the distribution of data acquired from
different upper-limb positions or propose the sEMG variation
model with respect to upper-limb position. Therefore, it is
hard to provide the generalized solution for upper-limb
position-robust motion recognition.

Therefore, we propose a motion recognition with unsu-
pervised domain adaptation. Given the labeled data from
specific upper-limb position and unlabeled data from other
positions, it aims to find the feature representation which
aligns these two data distribution [25]. This allows to take
into account the data distribution from various upper-limb
positions and it is a differentiated advantage compared to
the previous approaches which try to find the robust sEMG
features or classifier only with the data from a single upper-
limb position [23], [24]. Furthermore, unlabeled data do
not need the labeling process so that the data acquisition
becomes timely efficient. In this point of view, it can
alleviate the burden of labeled data acquisition which is

required in other previous works [16], [18], [19]. To the
best of our knowledge, this is the first approach to apply
the unsupervised domain adaptation for upper-limb position-
robust motion recognition. The contributions of this study are
as follows:

• We have shown the superiority of proposed method
in classification accuracy over conventional machine
learning-based classifiers, EASRC (adopted in [24]),
convolutional neural network (CNN), and domain adver-
sarial neural network (DANN) [26].

• We verified that the proposed method can align the
distribution of labeled and unlabeled data. In addition,
the effectiveness of the proposed method is clarified by
comparing the learning curve to CNN and DANN.

• We analyzed the classification accuracy of the proposed
method with respect to the amount of unlabeled
data which is the important factor to determine the
performance of unsupervised domain adaptation.

• To see the feasibility and performance in the real-
world applications, we designed and conducted the
real-time experiment where the subject moves the ball
in the computer program according to the network
inference and reach the goal as soon as possible. The
performance of real-time experiment is quantified in
terms of reaching speed and tracking accuracy.

• We analyzed the classification and tracking accuracy
in each motion from the anatomical viewpoint and
corresponding muscle activation.

FIGURE 1. Experimental setup. By leveraging the customized program,
experimenter controls the recording session and saves the acquired data
whenever each session ends. In front of the subject, the monitor provides
the visual cue comprised of target motion images and the remaining time.

This paper is organized as follows. Section II explains data
acquisition, protocol, feature extraction, network structure,
learning procedure, and detail information on implementation
and performance comparison. Section III presents experi-
mental results on classification accuracy and performance
indices from real-time experiment. Section IV provides a
discussion on experimental results with future works and
Section V concludes this paper.
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FIGURE 2. (a) Upper-limb positions to be considered. (b) Target motions
to be classified. (From left to right) Wrist Flexion (WF), Wrist Extension
(WE), Radial Deviation (RD), Ulnar Deviation (UD), Wrist Pronation (WP),
Wrist Supination (WS), Hand Close (HC), and Hand Open (HO).

II. METHODS
In the following sections, we will shorten unsupervised
domain adaptation to domain adaptation. In addition, the set
where labeled data are sampled is denoted as source domain,
and that with the unlabeled data is named target domain [27].
Sec. II-A and Sec. II-B present the experiment setup and
design. Sec. II-C to Sec. II-F explain the detail information
on the proposed algorithm and its implementation. Sec. II-G
introduces how the performance is quantified and compared.

A. DATA ACQUISITION
After disinfecting the skin with alcohol swabs, the first sEMG
sensor (Trigno wireless sEMG system, Delsys, USA) was
attached to the muscle belly of the extensor carpi radialis
while the other six sensors were equidistantly attached around
the circumference of the forearm in a counterclockwise
direction. As shown in Fig. 1, subjects stood and wore noise-
canceling headphones to eliminate the effect of external
sound. In addition, subject side was separated from the
experimenter side so that the subjects can focus on the visual
cues from the monitor in front of them.

Shoulder consists of three degrees of freedom (DoFs):
flexion/extension, abduction/adduction, and internal/external
rotation. In this study, we focused on shoulder flexion and
extension because they are prevalent in the activities of
daily living (ADL) [28] and determine the maximal shoulder
rotation angle [29]. As elbow consists of oneDoFwith flexion
and extension, sEMG was acquired in the following five
upper-limb positions (Refer to Fig. 2. (a)) as follows:

P1) Straight arm hanging by the side.
P2) Straight upper arm and forearm forming an elbow
angle of 90◦ with respect to the trunk.
P3) Straight upper arm and forearm forming an elbow
angle of 135◦ with respect to the trunk.
P4) Straight arm forming an shoulder angle of 90◦ with
respect to the trunk.

P5) Straight arm forming an shoulder angle of 135◦ with
respect to the trunk.

Total eight hand and wrist motions in Fig. 2. (b) are
considered. For wrist motions, wrist flexion (WF), wrist
extension (WE), radial deviation (RD), ulnar deviation
(UD), wrist pronation (WP), and wrist supination (WS) are
included because they are required to modulate the hand
orientation [30]. Additionally, we selected the hand close
(HC) and hand open (HO) as these are frequently used to
grasp and release the objects respectively [31]. The energy
of sEMG is mainly focused below 500 Hz [32]. Therefore,
to meet the Nyquist-Shannon sampling theorem, sEMG was
acquired at a sampling frequency of 1 kHz. To alleviate
the effects of signal distortion and artifacts, band-pass filter
from 20 to 450Hz [33] and notch filter on 60Hzwere applied.

B. PROTOCOL
To compare the classification accuracy with other methods
and analyze the effectiveness of domain adaptation with
various conditions, offline experiment was held. Also, not
only to verify the performance in a real-world application
where the users dynamically take various actions according
to visual feedback but also to show the feasibility of
online neural network inference, a real-time experiment was
conducted. Eleven subjects (all healthy and intact males,
23.6 ± 1.3 years old, 174.0± 4.0 cm, 68.7± 10.1 kg) and ten
subjects (all healthy and intact males, 24.9 ± 2.6 years old,
173.8 ± 5.7 cm, 67.5 ± 9.2 kg) participated in the offline and
real-time experiment respectively. The following protocols
were explained to the subjects in advance and they provided
their informed consent to participate. Whenever the subject
reports muscle fatigue, the experiment was resumed after a
sufficient break. The whole experiment is approved by the
Institutional Review Board of Pohang University of Science
and Technology (PIRB-2023-E012).

1) OFFLINE EXPERIMENT
For every upper-limb position, the subjects maintained each
motion for 5 seconds in the following order: WF, WE,
RD, UD, WP, WS, HC, and HO. Before the subsequent
contraction, 3 seconds were given for muscle relaxation. This
was repeated for five times and between each repetition, the
subject took a rest for 10 seconds. To minimize the muscle
fatigue, the subjects were instructed to conduct the motion
with moderate force. Contraction and relaxation timing were
guided by visual cues from the monitor.

2) REAL-TIME EXPERIMENT
The real-time experiment consists of three steps: 1) data
acquisition, 2) network training, and 3) ball control session.
Data acquisition was conducted in the same way as explained
in Sec. II-B1, except that every motions were repeated four
times for each upper-limb position. After the post-processing
on acquired data, network training was held and the trained
networks were utilized in ball control session. The goal of
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FIGURE 3. (a) Motions to be classified and corresponding ball movement.
(b) Target trajectories in the ball control session.

ball control session is to reach the goal position by moving
the ball according to the network inference. Before the
experiment, subjects took a practice session to familiarize
themselves with the control interface. Movement direction
of the ball emulates that of hand and wrist so that subjects
can be easily accustomed to the control interface (Refer to
Fig. 3. (a)). Indeed, all subjects became familiar to the control
interface within two trials of the practice session. After the
practice session, each subject conducted the experiment in
two trajectories for five upper-limb positions. As shown
in Fig. 3. (b), each trajectory includes translation in all
directions, while counterclockwise rotation and expansion
are required in the first trajectory and clockwise rotation and
shrinkage are to be held in the second trajectory. Each trial
has a time limit of 75 seconds and the subjects can check the
remaining time from right-upper corner of the window. If the
time is over, then the program automatically stops. Between
each trial, 30 seconds are given for muscle relaxation.

C. FEATURE EXTRACTION
sEMG is a summation of stochastic motor unit action
potentials [34] and various kinds of noises from envi-
ronmental factors. Therefore, a sliding window is widely
applied in various studies to extract useful features from
multiple sEMG samples [35], [36], [37]. In this study,
the length of a sliding window was set to 150 ms which
corresponds to half of the maximal value for acceptable
delay in system performance [38]. From the sliding window,
we take advantage of following four time-domain features
(TDF): mean absolute value (MAV), waveform length (WL),
slope sign change (SSC), and zero crossing (ZC). While SSC
and ZC include the frequency information, MAV and WL
contain the energy and complexity information of sEMG
respectively [39]. These features are distinctive [32] and
requires simple calculation [40]. Especially, the simplicity of
calculation is essential for the real-time implementation being
within the scope of this study. The definition of each time
domain feature is as follows:

• Mean absolute value (MAV) at time t is given as follows:

MAV i(t) =
1
Nw

t∑
j=t−Nw+1

|xi(j)| (1)

where i is the sEMG sensor index and Nw is the size of
a sliding window.

• Waveform length (WL) quantifies the waveform com-
plexity of the sEMG segment in a sliding window.WL at
time t is given as follows:

WL i(t) =

t∑
j=t−Nw+2

|xi(j) − xi(j− 1)| (2)

• Slope sign change (SSC) provides a kind of frequency
measure. It is calculated as follows:

SSC i(t) =

t−1∑
j=t−Nw+2

gij (3)

where the function gij is given as follows:

gij =


1, if 1xi(j) · 1xi(j+ 1) < 0

0, otherwise

(4)

• Zero crossing (ZC) provides another kind of frequency
measure. It is calculated as follows:

ZC i(t) =

t∑
j=t−Nw+2

hij (5)

where the function hij is given as follows:

hij =


1, if xi(j) · xi(j− 1) < 0

0, otherwise

(6)

Englehart and Hudgins [41] argue that for SSC and ZC,
gij and hij should include the threshold ε to reduce the noise
effect. However, Waris et al. [42] found that setting ε to
0 provides a good trade-off between system performance and
generalization. Therefore, ε was not considered in this study.
To alleviate the scale effect, each feature was normalized
in the following way: MAV and WL were divided by the
maximal value calculated from the acquired data while SSC
and ZC were divided by the sliding window size. Since these
four features are computed for each of the seven sEMG
channels, the shape of the network input is (4, 7, 1).

FIGURE 4. Overall network structure. Classifier and critic are connected to
the flattened output of generator in parallel. Note that the numbers above
the input and convolution layers denote the size of input and kernel. For
the fully connected layers (FCLs), they denote the number of nodes.
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D. NETWORK STRUCTURE
The proposed method adopted Wasserstein-distance-guided
representation learning (WDGRL) which is robust to gradient
vanishing [43] and the network structure was modified to
be optimal for our application. The network consists of 1)
generator fg (·), 2) classifier fc (·), and 3) critic fcr (·).
The goal of generator is to find the domain-independent

representation from the input. It is comprised of ten
convolution blocks where a 2D convolution layer with the
stride of 1, batch normalization (BatchNorm), and rectified
linear unit (ReLU) activation layer are connected in series.
Here, max pooling is not adopted since the width of input is
an odd number of 7. As shown in Fig. 4, first to fourth block
use a (2, 2) size filter whereas the others use a (3, 3) size filter.
This allows the network to focus on the relationship between
adjacent elements in the earlier stage, and then explore global
and representative characteristics of corresponding output.
Inspired by the structure of VGG-16 [44], the number of
convolution filters is doubled for every two blocks. Output of
generator is flattened and becomes the input to the classifier.

Classifier consists of two fully connected layers (FCLs)
with 25 and 8 (the number of motions to be classified)
neurons. BatchNorm and ReLU follow each FCL and
softmax activation is applied at the last layer to convert the
output into probability.

Critic works as the estimator of Wasserstein distance
between the probability distribution of source domain Ps and
target domain Pt which is defined as follows [45]:

W (Ps, Pt ) = inf
γ∈5(Ps,Pt )

E(xs,xt )∽γ [∥xs − xt∥] (7)

Like the classifier, critic takes the flattened output of
the generator as an input. It comprises two FCLs with
500 neurons and a single neuron, while the rest of the
configuration is the same as that of the classifier. The number
of nodes of the first FCL is set to be much larger than that of
the classifier, allowing the network to be 1-Lipschitz among
various alternatives.

E. LEARNING PROCEDURE
It is intractable to calculate the infimum in (7) [45].
Therefore, from Kantorovich-Rubenstein duality, Wasser-
stein distance is alternatively calculated with a following
equation [46]:

W (Ps, Pt ) = sup
∥fcr∥L≤1

Ex∽Ps [fcr
(
fg (x)

)
] − Ex∽Pt [fcr

(
fg (x)

)
]

(8)

To restrict the critic to be 1-Lipschitz, gradient penalty term
is added to the original cost function as follows [47]:

Lcr = Ex∽Pt [fcr (fg (x))] − Ex∽Ps [fcr
(
fg (x)

)
]

+ Ex̂∽Px̂ [
(
∥∇x̂ fcr

(
fg

(
x̂
))

∥ − 1
)2] (9)

where x̂ = βxs + (1 − β) xt is an interpolation between
source and target domain data with 0 < β < 1 and λ is a

Lagrangian multiplier. To enforce the unit gradient norm on
critic, this is repeated for five times with random β in each
case. Next, generator and classifier are updated by categorical
cross-entropy loss from the one-hot encoded label. This step
is the same as conventional CNN learning. Lastly, generator is
updated to minimize the estimatedWasserstein distance from
critic with a following loss function:

Lg = Ex∽Ps [fcr (fg (x))] − Ex∽Pt [fcr
(
fg (x)

)
] (10)

The overall procedure is illustrated in Fig. 5.

F. IMPLEMENTATION
1) OFFLINE EXPERIMENT
Conventional machine learning-based classifiers and EASRC
were implemented with MATLAB R2020b and the computer
equipped with Intel(R) Core(TM) i7-10700K CPU and 48GB
of RAM was utilized. For EASRC, we used the difference
tolerance of the two largest entries α of 0.1, regularization
parameter λ of 0.0005, and the number of hidden nodes L of
1000 respectively [48].

CNN, DANN, and the proposedmethodwere implemented
with Tensorflow and Keras API while the training was
conducted on a computer equipped with 2 × NVIDIA
GeForce RTX3090GPU and 128GB of RAM.CNN structure
was set to the concatenation of generator and classifier of
the proposed method. The generator of DANN had the same
structure with the proposed method while the classifier and
discriminator were comprised of 3 FCLs with the size of
(250, 50, 8) and (500, 100, 2) respectively. This was because
this structure had shown the highest classification accuracy
among various candidates. Every network was trained for
350 epochs with ADAM optimizer, batch size of 2048, and
learning rate of 0.00001. For the loss function, categorical
accuracy was used in classifier (for every network) and
discriminator (only in DANN) while Lcr in (9) was used in
critic (only in the proposed method).

2) REAL-TIME EXPERIMENT
Data acquisition and ball control session were held on
the computer equipped with Intel(R) Core(TM) i5-12600K
CPU, 16GB of RAM, and NVIDIA GeForce GTX 1080 Ti
GPU while network training was conducted on the same
equipment as the offline experiment. The structure and
training configuration of each network were the same as
described in II-F1, except that the epoch and learning rate
were set to 100 and 0.00003 respectively. This is to reduce
the time difference between data acquisition and ball control
session so that the subjects maintain same physiological
state. For the ball control session, the program including data
processing and neural network inference was implemented
with the framework illustrated in Fig. 6. First, to guarantee
that data processing which involves data acquisition and
feature extraction is held within 1 millisecond (ms), Beckhoff
TwinCAT was utilized as a real-time operating system
(RTOS). Second, for high-speed neural network inference,
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FIGURE 5. Schematic illustration of the learning procedure. (First step) Critic is updated to estimate the Wasserstein distance. (Second step) Generator
and classifier are updated to minimize the categorical cross-entropy loss. This step aims to maximize the classification accuracy of labeled data used
for training. (Third step) Generator is updated to minimize the Wasserstein distance estimated from the critic. These three steps are all held within an
iteration. In each step, the components to be updated are shaded in gray and the loss function to be calculated is presented.

FIGURE 6. Framework for ball control session.

NVIDIA TensorRT SDK was applied. Inference was held
every Tinf which was set to 15 ms in this study, and that
result was used to move the ball accordingly. Data processing
and network inference were implemented as asynchronous
threads so that they run in parallel and do not interfere with
each operation.

G. PERFORMANCE COMPARISON
1) OFFLINE EXPERIMENT
The performance is quantified by classification accuracy and
that of the proposed method is compared to 1) conventional
machine learning-based classifiers, 2) EASRC, 3) CNN, and
4) DANN. Conventional machine learning-based classifiers
include linear discriminant analysis (LDA) [49], [50], [51],
k-nearest neighbors (k-NN) [52], [53], and support vector
machine (SVM) [54], [55], [56] which are widely applied
in the sEMG-based intention recognition. EASRC [24] is
compared because it is adopted in the related works and
CNN [57], [58], [59] works as a baseline of the proposed
method because it is trained without the unlabeled data.
Lastly, from DANN [60], [61], the effectiveness of using
Wasserstein distance in domain adaptation can be evaluated
because it utilizes the discriminator to figure out whether the
data come from source or target domain instead of critic.
For intra-position cases, 5-fold cross validation is applied

because each contraction is repeated for five times. The total
data except one specific trial are used for training while
the remainder is kept for validation. This is held for every
repetition and the mean classification accuracy is adopted.
For inter-position cases, whole labeled data from the source
domain are used for training while unlabeled data from the
target domain are additionally employed for DANN and the
proposed method.

2) REAL-TIME EXPERIMENT
Three kinds of neural networks are compared: CNN, DANN,
and the proposed network. There are two reasons why these
networks are selected. First, the effect of domain adaptation
can be seen by comparing CNNwhich does not require target
domain data while other networks do. Second, the effect of
using Wasserstein distance can be seen from the comparison
to DANN. DANN and the proposed network was trained by
using the labeled data from P1 and the unlabeled data from
other upper-limb positionswhereas only the labeled data from
P1 are necessary for CNN. This is because P1 is the least
affected by the gravitational effect.

To quantify the performance of a ball control session, two
metrics are calculated: One is throughput (TP) and the other
is path efficiency (PE). First, TP quantifies the speed of
reaching the goal position and is defined as follows [62]:

TP =
ID
MT

=

log2
(∑

m∈{X ,Y ,Rotation,Scale}
Lm
Wm

+ 1
)

MT
(11)

where ID is the index of difficulty,MT is the movement time,
Lm and Wm are the length and tolerance of the mth direction
respectively. On the other hand, PE quantifies how well the
desired trajectory is followed to reach the goal position and
is defined as follows [63]:

PE =
1∑

m∈{X ,Y ,Rotation,Scale}|
Lrealm
Ldesm

− 1|
(12)
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FIGURE 7. Classification accuracy (in %) from every pair of training and test upper-limb positions averaged across all subjects
and motions. Each row and column represents training and test upper-limb position respectively. Lighter color indicates higher
accuracy. For visual explicitness, accuracy under 80% is represented with white letters while others are represented with black.

FIGURE 8. (a) Target domain classification accuracy with respect to
upper-limb position averaged across all subjects and motions. (b) Target
domain classification accuracy with respect to motion averaged across all
subjects and upper-limb positions.

where Lrealm and Ldesm are the length in the mth direction
of the desired and real trajectory respectively. To make the
value larger when the real trajectory is closer to the desired
trajectory, the reciprocal is taken instead of the original
definition. In order to check howwell the intention is captured
for each DoF in ball control session, we also define the path
efficiency of each direction m ∈ {X ,Y ,Rotation, Scale} as
follows:

PEm =
1

|
Lrealm
Ldesm

− 1|
(13)

III. EXPERIMENTAL RESULTS
A. OFFLINE EXPERIMENT
1) CLASSIFICATION ACCURACY
The performance of the proposed method is validated on
every pair of upper-limb positions as presented in Fig. 7.
The lowest mean classification accuracy of the proposed
method is 87.55% (when it is trained in P5 and tested in
P3), which is 19.96%, 17.44%, 17.93%, 17.01%, 14.83%,
and 11.99% higher than those of LDA, k-NN, SVM, EASRC,
CNN, and DANN respectively. It is notable that regardless of
the classifier, the classification accuracy is relatively higher
when the same joint movement is involved in the training and
test data. For example, the classifier trained with P2 shows
relatively high classification accuracy on P3 and vice versa.
From these results, it can argued that the upper-limb joint
configuration determines the variations on sEMG.

In addition, the proposed method achieves the highest
mean classification accuracy in every training upper-limb
position as shown in Fig. 8. (a). There is a significant
enhancement on the total classification accuracy (p <

0.001) with an amount of 13.50%, 13.36%, 11.86%, 11.78%,
11.01%, and 8.65% compared to LDA, k-NN, SVM, EASRC,
CNN, and DANN respectively. In addition, the proposed
method has shown the highest mean classification accuracy
for every class as presented in Fig. 8. (b). Especially, among
eight classes, it shows the largest enhancement inWP andWS
with an amount of 16.87% and 12.22% compared to DANN.

2) FEATURE REPRESENTATION
Feature representations from CNN, DANN, and the proposed
method are visualized using t-SNE and the results are shown
in Fig. 9. In the case of CNN, the distributions from the
source and target domain are not aligned and especially, data
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FIGURE 9. Visualization of features extracted from the generator of each
network. (Top row) As the network does not know the label, all target
domain data are grayed out. (Bottom row) Features from source and
target domain are represented as circles with thicker color and triangles
with lighter color respectively.

FIGURE 10. Learning curves of CNN, DANN, and the proposed method
averaged across all subjects and motions in target domain. Shaded area
and dashed line represent standard deviation and the converging
classification accuracy respectively.

distributions of WF, UD, WP, and WS differ the most. This
is because the target domain data were not considered in the
learning process. On the other hand, with DANN, most of
the distributions from WF and UD are aligned and the effect
of domain adaptation is clearly shown in this comparison.
However, some of the target domain data, such as WP and
WS, are not aligned yet.

In the case of the proposed method, two distributions
are aligned in every region so that the classifier which is
optimized for the source domain can be also utilized in the
target domain. This result shows that the proposed method
is the most effective way to learn how to extract domain-
invariant features.

3) LEARNING CURVE
Fig. 10 shows the learning curve of CNN, DANN, and the
proposed method averaged across every subject and upper-
limb position with respect to target domain data. Because
CNN does not consider the target domain data, it achieves
the final classification accuracy of 79.48% which is the
lowest among three networks. DANN achieves the final
classification accuracy of 83.76% which is 4.28% higher
than CNN. Interestingly, classification accuracy of DANN
is lower than that of CNN before 70 iterations. Therefore,

FIGURE 11. Target domain classification accuracy with respect to the
normalized unlabeled data size. The convergence value of the target
domain classification accuracy is represented with a dashed line.

we speculate that domain-invariant and class-distinguishable
feature extraction in DANN are adversarial to each other in
the earlier stage.

On the other hand, the proposed method has shown more
complicated aspect and it is divided into three phases:
1) exploration, 2) adaptation, and 3) convergence. In the
exploration phase, target domain classification accuracy is
maintained or slightly increasing, meaning that the network
tries to explore various conditions to find the optimal param-
eters. In the adaptation phase, target domain classification
accuracy is increasing so that network begins to converge
to the optimal parameters which has been explored in the
previous phase. It is notable that the classification accuracy
accuracy is enhanced with an amount of 10.40% in this phase.
Finally, in the convergence phase, it reaches the plateau and
achieves the final classification accuracy of 92.43% which is
higher than CNN and DANN with an amount of 12.95% and
8.67% respectively.

4) THE EFFECT OF TARGET DOMAIN DATA SIZE
Fig. 11 shows the target domain classification accuracy with
respect to the size of unlabeled target domain data, which is
normalized to the total length of 189,840. The normalized
data size ranges from 0.1 to 1 and is incremented by 0.1.
In the case of DANN, it reaches a plateau at the normalized
data size of 0.7 and converges to 80.76%. On the other hand,
the proposed method reaches a plateau at the normalized
data size of 0.8 and converges to 87.86%. Therefore, the
certain amount of target domain data, which ranges from
about 132,900 to 151,900 data points, is necessary for the
convergence given that the network structure to be utilized is
comparable to that in this study. In addition, it is notable that
regardless of the data size, the classification accuracy of the
proposed method was higher than DANN. From this result,
it can be inferred that the proposed method is more effective
than DANN even when the sufficient data acquisition is not
available.

B. REAL-TIME EXPERIMENT
1) ITERATION TIME
As shown in Fig. 12. (a), iteration time for data processing
does not exceed the acceptable time of 1 ms with the
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FIGURE 12. Iteration time for (a) data processing and (b) neural network
inference.

FIGURE 13. (a) Total throughput and (b) total path efficiency averaged
across all subjects and upper-limb positions. (c) Throughput and (d) path
efficiency from source and target domain averaged across all subjects.
(e) Path efficiency of each direction (X, Y, Rotation, Scale). Note that ∗, ∗∗,
and ∗ ∗ ∗ represent p < 0.05, p < 0.01, and p < 0.001 respectively.

average value of 0.0728 ms. This result shows that the
system guarantees the sampling rate of 1 kHz and satisfies
the Nyquist criterion to reconstruct the sEMG within the
frequency range of 500 Hz. Furthermore, Fig. 12. (b) shows
that the iteration time for neural network inference is less than
15 ms and no delay or runtime error does not occur during
the ball control session. The mean iteration time for neural
network inference is 2.25 ms which is much lower than the
optimal controller delay threshold of 100 ms [64]. Based on
this result, it can be argued that the proposed method can
also be applied in real-time operation without delay-related
performance degradation.

2) PERFORMANCE INDICES
Fig. 13. (a) shows the TP and PE of CNN, DANN, and
the proposed method. First, proposed method has shown
significantly higher TP than other networks. It means that the
goal position was reached faster in a certain trajectory and

the user controlled the interface with minimal effort. Also,
in Fig. 13. (b), proposed method has shown significantly
higher PE than other networks and it indicates that the
intention was accurately recognized.

The aspects of each PI in source and target domain
are also analyzed. In Fig. 13. (c), it can be shown that
WDGRL has the highest TP regardless of the domain.
It indicates that if robustness on the target domain is not
secured, the performance in the source domain might also
be low. Interestingly, there is no significant difference on TP
between CNN and DANN. Based on the results of III-A2,
we can speculate that if some distributions are not aligned
from the domain adaptation, then performance enhancement
cannot be guaranteed. In Fig. 13. (d), it is shown that the
proposedmethod has the highest PE regardless of the domain.
Although it has a p-value of 0.0628 against DANN for the
source domain, the other cases show significant differences
(p < 0.05). Furthermore, given that the PE of proposed
method in the target domain is higher than that of the
source domain from other networks, it can be argued that
the performance in the source domain may also be lower if
robustness on the target domain is not secured.

In case of the PE of each direction, the proposed method
has outperformed CNN and DANN in every movement
direction except rotation as shown in Fig. 13. (e). It is
remarkable that the PE of rotation is much lower than those of
X, Y, and scaling. The reason why this phenomenon happens
is analyzed in Sec. IV.

3) TRAJECTORY COMPARISON
To support the PI results in Sec. III-B2, some examples of
desired and real trajectory are also visualized in Fig. 14.
Since the ball control interface has four degrees-of-freedoms
(DoFs), the movement in X and Y direction is plotted in one
graphwhile rotation and scaling are plotted in the other graph.
The tolerance to determine whether the goal position was
reached is also displayed in a dashed line. For the source
domain, it is shown that the goal position is reached the
fastest with the proposed method. For the target domain, the
real trajectory from other networks deviates from the desired
trajectory. On the other hand, with the proposed method,
desired trajectory is followed more accurately and the ball
arrives at the goal position within the time limit.

IV. DISCUSSION
From Sec. III-A1, it is shown that the classification accuracy
from WP and WS are the lowest among eight motions.
In addition, as presented in Sec. III-B2, rotation has a
significantly lower PE compared to translation in the X,
Y direction or scaling. To understand why it is more difficult
to recognize WP and WS than others, we need to consider
the characteristics of the forearm muscles involved in these
motions. For movements involved in translation and scaling,
the agonist (e.g., flexor carpi radialis for wrist flexion) is
not only a superficial muscle but also relatively large so that
the signal amplitude becomes high. However, the situation
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FIGURE 14. Desired and real trajectory in source (P1) and target domain (P2, P3, P4, P5). The symbols for start position, goal
position, tolerance, desired trajectory, and real trajectory are given at the top. For each case, two figures are presented: Left figure
shows the movement in X and Y direction while the movement in rotation and scaling is drawn in the right figure. The time elapsed
for the ball to travel from the start position to the goal position is denoted under the graph.

FIGURE 15. An example of sEMG mean absolute value (MAV).

becomes different when it comes to the WP or WS. WP has
two agonists: One is a pronator quadratus and the other is
a pronator teres. The pronator quadratus is a deep muscle
which is difficult to obtain a strong signal. Even though the
pronator teres is a superficial muscle, it is relatively smaller
than adjacent muscles so that the signal is hard to be acquired.
A supinator, which is involved inWS, is also a deepmuscle so
that it is difficult to get a strong signal. As shown in Fig. 15,
MAV amplitudes from WP and WS are lower than others.
Hence, contrary to other motions, the effects of upper-limb
position change on sEMGbecome significant. In other words,
it indicates that the classificationmargin betweenWP andWS
is relatively small and the sEMG deviation from these effects
becomes larger. As a result, classifiers are likely to confuse
these two motions and this is supported by the fact that WS
possesses the highest portion among the wrong estimation of
WP, and vice versa.

This study will be further extended by the following
considerations. First, we dealt with five static upper-limb
positions from the flexion and extension of shoulder and
elbow. However, other upper-limb positions with abduction,
adduction, internal rotation, and external rotation of shoulder
may also affect the sEMG patterns. Furthermore, the sEMG
patterns are likely to be influenced by dynamic upper-limb
movement and gravitational effect. In the future works,
robustness on these conditions will be considered. Second,
as well as HC and HO, various grasping motions will be
considered. For example, lateral and tripod grip are necessary
to grasp thin and small objects. As the grasping motions
require the coordination of fingers, sEMG patterns from
each finger movement should be distinguishable. However,
fingers are controlled by the multi-tendoned muscles such
as flexor digitorum superficialis [65] or extensor digitorum
communis [66] so that the corresponding sEMG patterns
are largely overlapped. Therefore, we will think over the
usage of high-density electrode array to enhance the spatial
resolution of sEMG. Lastly, the experiment was only held on
healthy and intact subjects. Therefore, we will also verify the
effectiveness of the proposedmethod for patients with muscle
weakness or transradial amputees.

V. CONCLUSION
This study proposes the sEMG-based motion recognition
robust to upper-limb position change with unsupervised
domain adaptation. The target domain classification accuracy
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is significantly improved because the proposed method can
align the source and target domain as shown from the
visualization of feature representation. Also, the proposed
method has shown significantly higher TP and PE than CNN
and DANN (p < 0.05) in the real-time experiment. It means
that the goal position is reached faster and more accurately
on a given trajectory so that the user can control the interface
with minimal effort. Especially, it is remarkable that TP
and PE of the proposed method in the target domain are
higher than those of other networks in the source domain.
Therefore, we expect that this studymay reduce the rejections
in various applications due to frequent misclassifications
from the upper-limb position change.
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