
Received 20 February 2024, accepted 26 February 2024, date of publication 4 March 2024, date of current version 8 March 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3372990

MIMD Programs Execution Support on
SIMD Machines: A Holistic Survey
DHEYA MUSTAFA 1, (Member, IEEE), RUBA ALKHASAWNEH 2, (Member, IEEE),
FADI OBEIDAT 3, AND AHMED S. SHATNAWI 4
1Department of Computer Engineering, Faculty of Engineering, The Hashemite University, Zarqa 13133, Jordan
2Department of Communication and Computer Engineering, Faculty of Engineering, Al-Ahliyya Amman University, Amman 19111, Jordan
3Synopsys Inc., Austin, TX 80309, USA
4Department of Software Engineering, Jordan University of Science and Technology, Irbid 21110, Jordan

Corresponding author: Dheya Mustafa (dheya@hu.edu.jo)

ABSTRACT The Single Instruction Multiple Data (SIMD) architecture, supported by various
high-performance computing platforms, efficiently utilizes data-level parallelism. The SIMD model is used
in traditional CPUs, dedicated vector systems, and accelerators such as GPUs, vector extensions, and Xeon
Phi. It provides performance throughput in computation-intensive and data-parallel applications. Despite
the similarity of data-processing principles between these architectures, porting various programming
models between the reviewed platforms is challenging. Furthermore, enhancing the programmability of
these architectures is an important feature for utilizing their emerging computing power and simplifying
programming complexity. This paper reviews the basic principles of optimization techniques to run
asynchronous Multiple Instruction Multiple Data (MIMD) on SIMD accelerators. It also surveys several
GPU programming paradigms and application programming interfaces (APIs) and classifies these
frameworks into different groups based on their criteria. In addition, a review of studies that performed a
comparison of the collaborative execution of GPUs with CPUs and Xeon Phi is presented in this paper. This
study will be beneficial for developers and researchers in the field of computer architecture and parallel
computing of intensive scientific applications, specifically for early-stage high-performance computing
researchers, to obtain a brief overview of performance optimization opportunities as well as the challenges
of existing SIMD platforms.

INDEX TERMS Accelerators, asynchronous applications, GPUs, irregular applications, SIMD.

I. INTRODUCTION
Flynn’s taxonomy categorized parallel computers based
on how concurrently they handle instructions and data
sequences (aka streams). Four classes are produced as
a result: Single instruction single data (SISD), multiple
instruction single data (MISD), single instruction multiple
data (SIMD), and multiple instruction multiple data (MIMD)
[1]. The advent of SIMD architectures with wider lanes
and more applicable programming models is providing new
opportunities along with challenges to improve performance
and energy efficiency.

The associate editor coordinating the review of this manuscript and

approving it for publication was Mario Donato Marino .

Cray-1 [2], created by Cray Research and Seymour Cray,
was the first commercially successful, high-performance
innovation supercomputer with vector instructions. Vector
instructions became an obsolete technology in the 1990s.
With the introduction of the MMX instruction set (1997)
to the x86 architecture and Intel Pentium processors, vector
instructions began to reappear. SIMD accelerators have
been utilized by modern microprocessor designers [3], [4],
[5], [6], [7], [8] to exploit data-level parallelism (DLP),
in which multiple data elements are processed simultane-
ously. Examples of recent commercial SIMD accelerators
include 512-bit SIMD implementations from Intel [7],
[9] and Fujitsu [10]. However, performance is limited by
control\data flow divergence, irregular\sparse data structure,

34354

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0003-1456-7377
https://orcid.org/0000-0001-9535-2612
https://orcid.org/0000-0002-8731-0989
https://orcid.org/0000-0002-6239-3298
https://orcid.org/0000-0001-8336-9150


D. Mustafa et al.: MIMD Programs Execution Support on SIMD Machines: A Holistic Survey

poor cache and memory performance, and low hardware
utilization.

Graphic Processing Units (GPUs), similar to CPUs,
greatly exploit DLP using an enormous multi-threaded,
multi-core architecture that can be executed in a lock-
step model. Modern GPUs exploit explicit thread-level
parallelism in software to increase throughput [11], [12].
However, improving performance is the responsibility of
software developers. Due to their massive computing power
(exceeding the Teraflop scale) and energy efficiency, GPUs
were quickly adopted as general-purpose accelerators for
high-performance computing. Much effort has been made
for this purpose, including more computing engines with
support for control-flow and improved programming models,
exploiting this power for many general-purpose applications.
Furthermore, to reduce data transfer latency between the CPU
and GPU for optimal offloading, they are integrated on the
same die.

Handling control-flow divergence efficiently is one of the
major challenges for modern GPU architectures to exploit
their unbridled power [13]. Computation density can be
improved on modern GPUs by batching threads running the
same program in groups and executing them together in
lock step [14], [15], [16], [17], [18]. Irregular applications
contain data-dependent\indirect memory accesses, which
makes implementing this broad class of applications in SIMD
architectures very challenging [19].

This study presents a pervasive literature survey of the
basics of various methodologies that tackle the aforemen-
tioned issues. Furthermore, it reviews many optimization
schemes that support MIMD program execution on SIMD
(MoS) architectures across various platforms and program-
ming models and categorizes them into different classes
according to many representative attributes.

This survey is much more comprehensive and up-to-
date than prior surveys, which either focused on a specific
application [20], programming model, or platform [21], [22]
or were not much detailed. In addition, it encompasses
a broad spectrum of MIMD execution systems developed
during the last thirty years, spanning several SIMD platforms
and programming paradigms.

The main contributions in this paper are:

• Providing an extensive and an up-to-date survey on ana-
lyzing, categorizing and comparing various approaches
to executing MIMD programs on SIMD architectures.
This can show areas for development and assist the
community in understanding the use cases of various
execution mechanisms.

• Describing contemporary SIMD architectures and high-
lighting their major attributes, especially complex
low-level hardware characteristics that are important for
computation efficiency.

• Analyzing and categorizing applications based on the
opportunities and challenges to accelerate them using
SIMD platforms.

Figure 1 shows the outline of the paper. The organization of
the rest of the paper is as follows: Section II sets the scope of
the survey and provides a brief background on the problem.
Section III briefly describes the main representatives of
modern SIMD architecture platforms. An overview of GPU
programmingmodels is reviewed in Section IV. In Section V,
we classify MIMD on SIMD execution frameworks into
several categories and discuss these categories in detail.
We discuss irregular applications in section VI, followed by
surveying evaluation studies in Section VII. Section VIII
summarizes the main observations. Finally, we conclude the
paper in Section IX.

II. BACKGROUND
SIMD machines have a centralized control structure where
one control unit is shared across the processing elements
(PEs) [23], [24], [25], [26]. This control unit, executed
on a single thread, broadcasts instructions to the PEs
for execution. Examples of SIMD machines include Cray
processors, extensions (Intel SSE and AVX), Connection
Machines, MasPar machines, and modern GPUs. GPUs
implement a group of loosely coupled relatively narrow
SIMD engines and avoid hardware-intensive features (i.e.
memory protection). GPUs utilize the Single Instruction
Multiple Threads (SIMT)model. GPUs warps include groups
of threads executing the same instructions in a SIMD fashion.
Vectorization on classical SIMD is handled at the instruction-
level (vector instructions are generated), whereas in GPUs
(SIMT), vectorization is implicitly hidden but should be taken
into account to generate fast code. The problem of SIMD
is that the result is more scalable than MIMD but more
complex and restrictive, and the execution model is difficult
to program.

Contrariwise, MIMD machines implement a separate
control unit for each PE to make them able to execute a
program segment locally. General parallel applications with
control parallelism [27], [28] do not performwell on classical
SIMD machines. Thus, SIMD machines were avoided as a
platform for general-purpose parallel processing [29], [30].

After surveying a huge amount of related work in the
literature, applications can be classified based on their
structure into synchronous, loosely synchronous, asyn-
chronous/irregular, and stencil applications. Synchronous
applications, such as matrix algebra, naturally fit into SIMD
architecture, while implementing irregular applications for
SIMD is an essential problem. Table 1 summarizes these
categories with their main challenges.

To fully utilize the powerful computation resources that
SIMD architectures provide, an application should increase
on-chip data locality and reduce global memory access,
memory divergence, and execution divergence. Execution
divergence is caused by conditional code blocks, where some
SIMD lanes may execute along different paths (if-path, else-
path) depending on the conditional result of each lane. Code
segments in different execution paths must be partitioned into

VOLUME 12, 2024 34355



D. Mustafa et al.: MIMD Programs Execution Support on SIMD Machines: A Holistic Survey

FIGURE 1. Paper organization.

TABLE 1. Classification of Problem structures and their implementation on MIMD and SIMD machine.

several sub-groups and serialized, leading to low resource
utilization.

The main qualities of a general-purpose approach for
running MIMD on SIMD are reusability, applicability,
scalability, portability, difficulty, utilization, and efficiency.
This problem has been studied for several decades, such as
the early work on combinators [31], [32], the MIMD simula-
tor [33], and the interpretation of Prolog and FLATGHC [34],
[34], [35]. Other studies proposed building hybrid parallel
machines that operate in both Single Program-Multiple Data
(SPMD) and SIMDmodes of parallelism [36], [37]. In SPMD
mode, the same program is independently executed on all
processors using distinct data sets, and each processor may
use a different control path to run the program. Different
parts of a single program might be divided into parts,
which are then mapped more closely to different modes of

parallelism [38], [39]. For example, both PASM [40], [41],
[42], [43], and TRAC [44], [45] are hybrid SIMD\MIMD
machines that support both models. OPSILA [46], [47], [48]
is a hybrid SIMD\SPMD machine, while Whole-Function
Vectorization [49] and Intel’s ISPC compiler [50] are both
examples of SPMD-on-SIMD.

III. MODERN SIMD ARCHITECTURES
This section describes the recent popular platforms that
support SIMD architecture. SIMD architectures include
multiple identical processing units that operate on a vector
of operands. This includes Intel SSE, AVX, Xeon Phi, ARM
Scalable Vector Extension (SVE), NVIDIA, AMD and Intel
GPUs. We highlight their major architectural attributes that
are essential for porting high-performance applications and
challenges as well.

34356 VOLUME 12, 2024



D. Mustafa et al.: MIMD Programs Execution Support on SIMD Machines: A Holistic Survey

A. SIMD EXTENSIONS
Table 2 lists several ISAs for SIMD extensions with their
major attributes. Intel’s Advanced Vector Extension (AVX)
and AVX-512 have been expanded to operate on 256 and
512-bit SIMD registers compared to the 128-bit registers
of the Streaming SIMD extensions (SSEs) [51]. Existing
multimedia extensions, such as MMX/SSE for Intel and
VMX/AltiVec for IBM, Apple, and Motorola, are SIMD
units with fixed-length vectors. SIMD units are also used in
DSP processors, graphics engines, and game consoles. Both
Intel and AMD CPU architectures support vectorization.
The AMD Rome processor, which was used in datacenters,
supports x86 vector instructions up to 256-bit AVX2 [52].
The ARM architecture has extended the aging NEON

SIMD extensions with Scalable Vector Extension (SVE)
vector architecture, which features a contemporary applica-
tion of concepts first presented in the 1970s with the Cray
supercomputers’ vector architecture [51], [53]. ARM SVE
architecture is used in Fujitsu’s ARM A64FX CPU with
512-bit vector length to produce the Fukagu supercomputer
(Top500 list, November 2021).

Due to the open-source RISC-V softcore design flexi-
bility, it is being used in many applications. Researchers
are able to integrate customized SIMD instructions and
optimize micro-architecture to increase the efficiency of
the processor [54], [55]. The RISC-V V-extension (RVV)
is meant for high-performance cores and provides sup-
port for 8-bit, 16-bit, and 32-bit integer SIMD instruc-
tions. The RISC-V P-extension is used in low-power
designs.

The data lane width of SIMD accelerators is extending
with most new generations, with more demands for perfor-
mance. This brings up the compatibility issue for different
generations. For example, Intel Advanced Vector Extensions
(AVX) and AVX2 support 256-bit vectors [6]. whereas AVX-
512 [56] and Many Integrated Core architecture [57] sup-
port 512-bit vector operations. Another example is that Intel
MMX had 64-bit vectors, which increased to 128-bit SSE
extensions [6]. Liquid [58] and Vapor [59] SIMD proposed a
combined compiler translation and runtime support method
to solve compatibility issues. ARM SVE offers a vector
length-agnostic model to support SIMD architectures of dif-
ferent lane lengths. This enables machine code portability on
different hardware generations with varying vector widths as
needed [60].

The memory alignment constraint of SIMD units sig-
nificantly affected the simdization efficiency. A major
obstacle to simdization is the unavailability of alignment
information at compile-time (aka runtime alignment). A large
body of work has considered vectorizing irregular appli-
cations on SSE. Kim and Han [61] proposed a compiler
technique to simidize irregular kernels, primarily intra-
iterations, containing indirection-based memory accesses on
Cell SPU, which has a shorter SIMD lane width compared to
the AVX.

B. GRAPHICAL PROCESSING UNITS (GPUS)
Graphics Processing Units (GPUs) were first created to speed
up the creation of graphical output with the potential for
extremely high parallelism, including digital photos, text,
video games, 2D and 3D geometric models, and digital
images. A GPU Device is organized as a grid of Compute
Units. EachComputeUnit is organized as a grid of Processing
Elements. The semi-modular design of both NVIDIA and
AMD GPUs groups the processing components, or units
that carry out computations, into many computing units. The
processing components inside each computing unit share
some resources, such as schedulers, dispatch units, registers,
caches, fast local storage, load/store units, and texture units.
GPU die contains dozens of compute units, each of which has
dozens of processing elements, for a grand total of thousands
processing elements.

NVIDIA GPUs are based on the SPMD programming
model at the block level (work groups in OpenCL and groups
in ATI GPUs [62]) and the SIMD model at the warp level.
Blocks and threads coordinate their actions and communicate
data. A block’s threads are arranged into 32-thread warps,
which can be interspersed with hardware multi-threading
to withstand stalls within the warp and allow memory
latency overlap with practical processing. A streaming
multiprocessor (SM) operating in SIMD mode processes
the threads within a warp. The thread blocks allotted to
each SM are divided into 32-thread warps, which are
subsequently scheduled to run on streaming processors when
they’re available [63]. Typically, all NVIDIAGPUs attributes
discussed also hold for AMD GPUs except warp size, where
AMD uses 64 instead of 32. Contemporary NVIDIA [18]
and AMD [62] GPUs achieves more than 2.0 GHz rate. The
potential efficiency of GPUs is further increased by avoiding
hardware-intensive features (i.e., interrupt handling, memory
protection, and large caches) that reduce peak arithmetic
performance per unit circuit complexity.

The Intel Arc A770 GPU boasts 512 execution units
(vector engines) and 2.4 GHz clock speeds, ensuring smooth
and responsive graphics rendering. Intel’s Arc A770 enjoys
decent local memory latency, though it is slightly behind
current cards from AMD and NVIDIA. It’s similar to
NVIDIA’s Maxwell based GTX 980 Ti.

C. DEDICATED VECTOR ARCHITECTURE MACHINE
The NEC SX-Aurora TSUBASA was reviewed as the latest
representative of the SX vector supercomputer with dedicated
vector processors [64], [65]. The Vector engine processor,
with eight cores, reaches a peak performance of 2.43 TFlop/s
(DP), as each core offers 304 GFlop/s of DP throughput at a
1.584 GHz frequency. The memory subsystem in the vector
processor can deliver 1.22 TB/s memory bandwidth [66].
With such high memory bandwidth, the system can perform
well in memory-bound applications.

A memory subsystem, a vector processing unit (VPU)
for computations, and a scalar processing unit (SPU) that

VOLUME 12, 2024 34357



D. Mustafa et al.: MIMD Programs Execution Support on SIMD Machines: A Holistic Survey

TABLE 2. SIMD instruction set extensions.

functions as a standard CPU are all included in an SX-Aurora
vector core. Since SX-Aurora is an independent processor,
SPUs may do scalar computations with comparatively
high performance. Using a comparatively straightforward
instruction pipeline of its own, the VPU decodes and reorders
vector instructions that arrive from the SPU. Following that,
instructions are carried out on 32 identical vector-parallel
pipelines (VPP), each of which has three FMA (Fused
Multiply-Add) units, two ALUs (Arithmetic and Logic
Units), one unit specifically designated for high-latency
commands (such as sqrt and division) and a memory
subsystem for communication.

D. TENSOR PROCESSING UNIT (TPU)
Tensor-processing unit (TPU) is one of the most promising
new digital hardware accelerators. It speeds up machine
learning (ML) applications by performing parallel computing
through a deeply-pipelined network of processing elements
(PEs), especially systolic arrays [67]. Systolic arrays in
TPUs reduce energy consumption and improve performance
by recycling data fetched from memory and registers and
reducing irregular intermediarymemory visits [68]. However,
because Fully Connected (FC) layers often contain a large
number of weights, TPUs struggle to retain an equivalent
level of performance when executing FC layers. Due to
the restriction on weight reuse and the need for many
execution rounds, this leads to ineffective hardware usage
and significant energy consumption [69]. It should be
mentioned that systolic arrays in practice have symmetrical
sizes to enhance the execution of convolutional layers.
They can, however, speed up FC operations at the expense
of convolutional layer execution performance if they are
constructed with asymmetric dimensions.

According to a recent study [69], TPUs perform better
than GPUs and CPUs while running convolutional layers
because of their spatial reuse properties and capacity to
remove unnecessary features from the neural network. TPUs,
on the other hand, perform worse than GPUs due to reduced
weight reuse and are less popular for running FC layers. High

memory traffic and energy usage result from this, especially
as the model size grows [70].

E. DATA PROCESSING UNITS (DPUS)
The NVIDIA BlueField-3 DPU is a 400 Gbps infrastructure
computation platform featuring line-rate processing for
cybersecurity, software-defined networking, and storage.
BlueField-3 provides hardware-accelerated software-defined
solutions for the most demanding applications by combining
powerful processing, fast networking, and comprehensive
programmability. BlueField-3 redefines the art of the possi-
ble, from accelerated AI to hybrid clouds, high-performance
computing to 5G wireless networks [71].

F. INTEL XEON PHI
Wide vector units and the Intel®Many Integrated Core
(Intel®MIC) architecture served as the foundation for the
Intel®Xeon Phi™processor. It had a lot of small, power-
efficient in-order cores and several instructions without
equivalents in SSE or AVX. It was meant for highly parallel
applications to use the Intel®Xeon Phi™processor [72].
Although the Intel Xeon Phi architecture was officially

discontinued in 2020, studying its huge related work is still
beneficial. It will provide researchers with vital advice on
how the evolution of hardware and software learned from
the mistakes made by its predecessors. The Intel Xe graphics
cards were announced in November 2019 as a result of
Xeon Phi’s evolution [73]. It was stated that the new design
will prevent Xeon Phi’s faults from happening again and
offer a single programming model (oneAPI) with exceptional
performance.

Table 3 summarizes architectural specifications for differ-
ent SIMD platforms.

IV. PROGRAMMING MODELS
GPGPU computing has emerged as a powerful and attractive
heterogeneous platform for general-purpose parallel comput-
ing. The GPU execution model requires balanced computing
resources from both microprocessors and coprocessors to
utilize the system effectively. An overview of the various

34358 VOLUME 12, 2024



D. Mustafa et al.: MIMD Programs Execution Support on SIMD Machines: A Holistic Survey

TABLE 3. Architectural differences among different SIMD platforms.

software ecosystems for accelerator technology is given
in this section. We provide an overview of the most
relevant programming models available for the accelerators,
their interoperability, benefits, and drawbacks, as well as
some helpful tips. Each programming model has specific
documentation that the reader should consult.

A. LEVEL OF ABSTRACTION
GPU programmers prefer high-level languages and libraries
that provide convenient GPGPU abstractions and hide the
complex execution environment using compiler optimization
techniques, debuggers, and profilers, alleviating the program-
mer of the GPU-specific low-level hardware information.

GPU programming models can be classified based on the
level of abstraction into high-level and low-level. CUDA is
the most common low-level approach of NVIDIA GPUs,
whereas OpenACC and OpenMP are high-level approaches.
A low-level approach takes significant effort from the
programmer to use low-level hardware primitives in writing
code, exploring all possible GPU architecture capabilities.
It is often faced with issues of portability, reusability, appli-
cability, or abstraction. On the other hand, OpenACC and
OpenMP programming models require the programmer only
to annotate the parallel blocks of code using pragmas. Using
such high-level, excessively transparent GPU frameworks
can lead to a significant drop in the underlying computational
efficiency.

The choice of proper GPU programming model depends
on the characteristics of the application, the target hardware
architecture, and the level of control and optimization
required. OpenMP is more approachable for general-purpose
parallelism on multi-core CPUs, while CUDA provides finer
control for maximizing performance on NVIDIA GPUs in
highly parallel workloads. Choosing the right tool for the
job often involves considering the specific requirements
and constraints of the given computational task. Although
the GPU developers would prefer high-level languages
for convenience, most GPU programs are still written in
CUDA\OpenCL as the high-level languages typically cannot
provide sufficient performance.

B. BEFORE CUDA
Before the adoption of the CUDA programming model [18],
GPUs were programmed using difficult, low-level graphics
programming interfaces and required broad expertise in the
underlying hardware. Several shading environments, such as
Cg (C for graphics), HLSL (high-level shading language), Sh,
and OpenGL, were proposed to facilitate writing GPU code
in a simpler C\C++-like programming language. However,
all of these languages contain graphics-specific constructs
and are tied to the specialized nature of GPUs. OpenGL and
DirectX are the two major standards of graphics hardware
shading APIs that were designed to program graphics
operations.

Several high-level programming languages were pro-
posed with runtime support to simplify GPU programming.
BrookGPU is an extension to the ANSI C standard that can
be used to program GPUs such as NVIDIA or ATI [74].

C. CUDA
CUDA is themost popular API that provides a general-purpose
programming model for NVIDIA GPUs, exploring all
possible abilities of the SIMT GPU architecture. NVIDIA’s
CUDA provides improved programmability with a familiar
development environment of massively parallel programs
for GPUs using the C programming language, in addition
to CUDA tools [18], [75], [76]. CUDA threads execute on
the streaming processors in the SPMD model. CUDA has
provided a significant boost for the GPGPU efforts.

Performance optimization of CUDA-based GPGPU appli-
cations has been studied extensively. Several studies have
concluded that obtaining high performance with CUDA
programs is not trivial, and the performance of GPU
applications can differ significantly based on how well
optimization strategies were applied [77], [78], [79], [80],
[81]. Petrovic et al. [82] described a dynamic auto-tuning
framework for CUDA.

D. OPENACC AND OPENMP
OpenMP [83] and OpenACC [84] frameworks provide
high-level declarative parallel programming models for

VOLUME 12, 2024 34359



D. Mustafa et al.: MIMD Programs Execution Support on SIMD Machines: A Holistic Survey

GPUs. They used compiler pragmas to simplify the code
parallelization. The programmer only has to annotate the code
segments to be parallelized using pragmas, and compilers
effectively generate parallel code for the GPU, which is
not always a doable task. For this reason, to get maximum
performance on OpenACC and OpenMP, a programmer
intervention will often be required to write code that
conceptually repeats CUDA or OpenCL code when creating
a program.

The primary benefit of OpenACC is that it usually
eliminates the need to change legacy code. Sometimes,
in addition to adding a few pragmas, code needs to be
significantly altered to improve performance. This feature
makes it possible to parallelize complicated tasks at a lower
cost than with alternative programming methods.The low
implementation cost targeting NVIDIA/AMD devices makes
it beneficial to employ in most situations.

A further advantage of OpenACC over the most widely
used programming models is its portability. The majority
of the time, moving an application from one architecture
to another just requires modifying the compiler flag. For
example, to force the NVIDIA compiler to parallelize code
on the CPU rather than the NVIDIA GPU, change nvc
-acc=gpu to nvc -acc=multicore. You can specify
-acc=host to generate an executable that will run serially
on the host CPU. It is possible to adjust additional flags,
such as -gpu=cc70 to exclusively target a Volta GPU, and
enhance performance on that desired architecture. This will
parallelize code on the GPU and focus on the particular
GPU microarchitecture, in this example, Volta. The majority
of compilers that support AMD or NVIDIA GPUs also
support CPUs. Code must be ported from the NVIDIA GPU
to the AMD GPU by altering the compiler’s settings and
compilation flags (i.e., from nvc to gcc).

OpenMP has been working on extending its support
for GPU offloading. The ‘‘target’’ directive, introduced in
OpenMP 4.0, allows developers to offload computations
to accelerators like NVIDIA GPUs. With OpenMP’s target
offload model, developers can specify code sections to run on
the GPU, taking advantage of the GPU’s parallel processing
power to speed up certain computations. This provides a
convenient way to harness GPU parallelism for specific tasks,
such as data-parallel operations.

E. OPENCL (OPEN COMPUTING LANGUAGE)
OpenCL is an open standard API for managing parallel
computations and resources. It supports a heterogeneous
device programming environment through uniform abstrac-
tion of widely divergent hardware architectures (high-
performance computing servers, multi-core CPUs, GPUs,
handheld devices, FPGAs, etc.) as computational units [85].
The OpenCL standard allocates different levels of memory.
It also supports cross-vendor software portability.

A key issue is performance portability across different
architectures, because performance may be sensitive to input

size, structure, or application settings; a code optimized
for some input may run suboptimally when the input is
changed [86], [87]. Examples of optimization knobs include
the workgroup size, tile sizes, loop unrolling factors, and
vector data types [88].

F. HETEROGENEOUS-COMPUTE INTERFACE FOR
PORTABILITY (HIP)
AMD created the open-source C++ runtime API and kernel
language known as Heterogeneous-Computing Interface
for Portability (HIP) [89]. With just one source code,
developers can use it to construct portable apps for GPUs
made by AMD and NVIDIA [90]. Its goal is to expose
more low-level hardware functionality while maintaining
near-native performance on CUDAmachines [91]. Functions
like hipMalloc, hipMemcpy, and hipFree are part of the HIP
API. Programmers who are already familiar with CUDA will
find it easy to pick up the HIP API [90] and begin writing
code right away. The ’hipLaunchKernel’s macro call is used
to launch compute kernels. The source-to-source conversion
from CUDA to HIP is automated by the HIPify tools. HIP
code can be executed on AMD or NVIDIA hardware using
the HCC or NVCC compilers, respectively.

G. SYCL
An open standard parallel programming model called
SYCL [92] is based on the contemporary object-oriented
programming language C++11 and enables the writing
of codes that may be executed on heterogeneous systems
made up of hardware from many vendors. This means
that significant sections of the application will operate in
parallel on the host CPU or on accelerator devices using a
single source code base. The Intel open source compiler for
SYCL-based programs, DPC++, is derived from ISO C++,
Khronos SYCL, and community extensions [93].
Any device in the system can be programmed using a single

programming model thanks to SYCL. This is a compelling
proposal for the performance portability initiative [94].
In heterogeneous systems, where a computer node may
be made up of multicore CPUs, GPUs, FPGAs, and other
problem-oriented devices like ASICs (Application-Specific
Integrated Circuits), it adds the data parallel programming
model to C++ programs.

H. ONEAPI PROGRAMMING ENVIRONMENTS
Recently, Intel released OneAPI, a programming paradigm
that uses DPC++ based on SYCL2020 to provide such a
solution on a single language platform. With teroperabil-
ity, it facilitates data transfer and operation control over
numerous devices with multiple accelerators under a single
programming framework. Code in the oneAPI framework is
written in DPC++ using SYCL 2020 for applicability to
different accelerating devices, such as a GPU or an FPGA.

Intel’s framework and unified, open programming
paradigm, OneAPI [95], is used to create applications

34360 VOLUME 12, 2024



D. Mustafa et al.: MIMD Programs Execution Support on SIMD Machines: A Holistic Survey

for heterogeneous systems, such as CPUs, GPUs, FPGAs,
and other devices. The platform, execution, and memory
models of SYCL serve as the foundation for these models.
The DPC++ compiler, libraries, debuggers, and other
tools are all combined into one package by the OneAPI
framework.

I. MORE ENVIRONMENTS FROM ACADEMIC RESEARCH
The following subsections describe several programming
models from academic research groups.

1) OPENMP-TO-CUDA TRANSLATION FRAMEWORK
Lee & Eigenmann described an automatic OpenMP-to-
CUDA translation framework [96], [97], [98], [99], to facil-
itate writing parallel applications for GPGPU architectures
easily with OpenMP. Their approach supports special
annotations added by a programmer, which are used for
fine-tuning along with automatically extracted information
from the OpenMP directives. It supports several optimization
techniques that handle the architectural differences between
GPUs and traditional shared memory systems, served by
OpenMP [99], [100], [101].

2) HYBRID MPI-CUDA
This framework [102] is proposed for computing many pair-
wise alignments for large sequence datasets on heterogeneous
CPU-GPU clusters. Work is distributed to the compute nodes
through a cluster-level dispatcher, which also aggregates the
results. MPI-CUDA applications are really very common.
Probably most of the applications exploiting GPUs in HPC
clusters are of this kind.

3) GEMTC (GPU ENABLED MANY-TASK COMPUTING)
The GeMTC framework is a combined execution model and
runtime system that supports programming accelerators with
many concurrent and independent tasks of potentially short
or variable duration [103].

4) FASTFLOW
FastFlow provides a simplified high-level abstraction model
to program heterogeneous parallel platforms using general-
purpose C++ programming. This framework facilitates writ-
ing portable parallel applications and exploiting performance
on a wide range of platforms [104].

5) GPU RUNTIME CODE GENERATION TECHNIQUES
Several techniques use high-level programming languages
for GPUs, along with source-to-source code generation
support. PyCUDA and PyOpenCL connected Python [105]
with CUDA and OpenCL compute abstractions [18], [106].
CorePy [107], jCUDA [108] provided a source-to-source
translation. hiCUDA [109] used OpenMP for GPU program-
ming. The bulk-synchronous parallel model [110] was ported
to the GPU architecture [111].

V. CLASSIFICATION OF MIMD EXECUTION ON SIMD
(MOS) APPROACHES
Methodologies that implement a MIMD program on SIMD
(MoS) can be classified into several categories based on
different important factors. This includes, but is not limited to,
the target architecture programming model, the application
scope, and the time at which optimization takes place. This
section provides a detailed discussion of the proposed novel
classification taxonomy, which is based on five criteria:
code generation method, optimization scope, tuning stage,
programming model, and methods that require hardware
modification. It should be emphasized that this taxonomy is
not mutually exclusive, and one MoS framework can belong
to more than one class. All classes are summarized in the
taxonomy diagram depicted in Figure 2.

A. CLASSIFYING MOS APPROACHES BASED ON CODE
GENERATION METHOD
The code generation method implemented in MoS frame-
works was used as an important factor in classification.
There are efforts to support code portability between
CPUs and GPUs and simplify GPU programming using
convenient traditional parallel programming languages. Sev-
eral sophisticated code generation strategies were investi-
gated in previous studies, such as source-to-source transla-
tion [98], [112], developing non-GPU front-ends [113] and
machine-independent optimizing compilers (LLVM) [114].
Ren et al. [115] introduced a SIMD code generation and
optimization engine for irregular data-traversal applications.
The main classes of MIMD execution frameworks on SIMD
based on code generation methods are source-to-source
translation, assembly, tuned libraries, emulators, instruction-
level, and binary translation.

1) SOURCE-TO-SOURCE TRANSLATORS
A large number of automatic CPU-to-GPU source paralleliza-
tion translation tools have been developed for academic and
commercial use [84], [98], [109], [116], [117], [118], [119],
[120], [121], [122], [123], [124]. This includes directive-
based models [84], [98], [98], [109], [117], [120], [125],
[126], or polyhedral-based [119], [124].

Kapasi et al. [127] introduced conditional streams, a code
transformation that separates a single kernel with conditional
code into multiple kernels and connects them via inter-kernel
buffers to increase the utilization of a SIMD pipeline, such as
the stream register file in Imagine [128] and Merrimac [129].
The CUDA-lite [116] translator relies on annotations

provided by a programmer to perform optimal tiling of
global memory data transformations. On the other side,
MCUDA [130] translates the CUDA data-parallel appli-
cations into conventional shared memory, multi-core sys-
tems. Polyhedral [131] and IR-to-IR (intermediate repre-
sentation) [132] transformations belong to this category.
OpenMPC [96] translates OpenMP to Cuda. hiCUDA [109],

VOLUME 12, 2024 34361



D. Mustafa et al.: MIMD Programs Execution Support on SIMD Machines: A Holistic Survey

FIGURE 2. Schematic view of MIMD execution on SMD schemes, categorized based on programming model, code generation method, scope, time, and
architecture enhancement method.

PPCG [121], and MINT [120] translate C to CUDA. These
are directive-based source translators, which only require
the programmer to annotate code with basic pragmas about
exploiting parallelism and data transfer. PGI [117] translates
Fortran, C, and C++ to CUDA.

2) ASSEMBLY CODE APPROACH
Dietz and Roberts [133] used GCC to compile a MIMD
application program into a standard assembly language
(MIPSEL). Then, a series of transformations is applied
to convert this assembly code into a new instruction
set that manages GPU local memory as registers. From
this code, an optimizing assembler generates a cus-
tomized interpreter in either NVIDIA CUDA or portable
OpenCL.

3) TUNED LIBRARIES APPROACH
With this approach, tuning is done for specific applications on
specific platforms. Then, tuned libraries can be used to accel-
erate other applications. For example, the basic linear algebra
subroutines (BLAS) were implemented and tuned on GPUs
to form the cuBLAS Library, which is then used to accelerate
several applications using GPUs [134]. Several libraries were
implemented in CUDA to accelerate a wide range of appli-
cations, such as the Fourier transform library (cuFFT), 2D
and batched 1D finite-difference/stencil programs (cuSten),
and sparse matrices solution methods (cuS-PARSE) [135],
[136]. The ARM Compute Library or the ARM Performance
Libraries are tuned libraries for the ARM SIMD extension,
Neon, which can be imported to accelerate your program.
Tuned Libraries as any optimized code can be sensitive to
any innocent change in the target architecture, and require
retuning.

FIGURE 3. MIMD SIMD-izing loop.

4) EMULATORS APPROACH
MIMD-like software can be executed on SIMD hardware
using a runtime support system implemented as an emulator.
Emulating (aka SIMD-izing) an algorithm is very straightfor-
ward. EveryMIMD program can be transformed into a SIMD
program using a loop iterating over all instructions [137],
[138]. Figure 3 illustrates the SIMD-ing loop.
Dietz and Cohen used microcode to emulate MIMD on a

SIMD microengine [139]. One important detrimental perfor-
mance issue is control divergence, which can be mitigated
with various optimizations utilizing the static nature of the
SIMDmachine.MIMDmultiprocessor simulator that runs on
the CRAY-1 is another example of this approach [140].

5) INTERPRETER APPROACH
The implementation of a MIMD program interpreter is
simply a SIMD program that interpretively executes a
sequence of MIMD instructions on the SIMD platform [26].
Blank presented a MIMD interpreter on a SIMD MasPar
MP-1A machine [141]. Nilson and Tanaka [142] presented
a MIMD interpreter on a SIMD machine with an adaptive

34362 VOLUME 12, 2024



D. Mustafa et al.: MIMD Programs Execution Support on SIMD Machines: A Holistic Survey

algorithm. It dynamically optimizes the interpreter loop. Abu-
Ghazaleh et al. [143] derived an interpreter with near-optimal
variable issue control loops using three heuristic algorithms.

The graphinators execution model [144] simulates a
MIMD on SIMD machines by repetitively cycling over the
entire instructions set by each SIMD processor. It is dedicated
merely to the functional language. Shu andWu [33] proposed
a general method for vectorization and parallelization across
multiple application classes, including different irregular
application subsets, with a systematic method of detecting
their data access patterns.

6) INSTRUCTION-LEVEL APPROACH
Several researchers have studied the instruction-level
approach [139], [142], [145], [146], [147], [148]. This
approach treats a program as data interpreted by a SIMD
machine in parallel across all of the processors. Similar
to the interpreter, the SIMD control unit iterates through
all instruction sets for each instruction execution to
handle all diverging paths. Furthermore, programs with
communication require adequate synchronization to verify
execution correctness.

To support control divergence and data-dependent
branches in a SIMD machine, most approaches used guarded
instructions [149]. A SIMD-guarded instruction is executed
only if the conditional mask is set to true. The mask is
controlled by another instruction. This can reduce potential
branch divergences in existing GPU architectures [18], [150].

7) BINARY TRANSLATION
This general approach transforms loops containing short-
SIMD instructions tomachine-independent IR, applies SIMD
optimization techniques at the IR level, and then generates
long-SIMD instructions. This dynamic technique enables
short-SIMD binaries portability across newer, wider SIMD
generations [151]. Spill-aware superword level parallelism
(saSLP) [152] exploits the x86 AVX2 host’s parallelism,
gathers instructions, and registers capacity. To support that,
it combines short ARMv8 instructions and registers in the
guest binaries.

Levinthal and Porter [153] proposed a dynamicmechanism
to handle SIMD branch divergence. When a diverging
branch occurs, threads are rescheduled on the fly into new
warps. This mechanism uses a stack of execution masks
to handle branch divergence on GPUs efficiently. Moy and
Lindholm [16] proposed a hazard avoidance technique in a
SIMD pipeline through thread serialization at divergence.

B. CLASSIFYING MOS BASED ON TIME
MoS tools can be classified based on the time when a
technique is applied. This important factor influences the
implementation of optimizations to improve programmability
and enable the adaptive execution of programs in SIMD
architectures [100]. It may take place at compile-time,
runtime, or in any combination. Therefore, we classified

MoS tools into static compile-time, runtime, and adaptive
techniques.

1) STATIC COMPILE-TIME APPROACH
The compile-time transformations for different SIMD archi-
tectures in different studies are fundamentally similar;
vector systems and GPUs use similar transformations [98],
[154], [155], [156], [157]. Nevertheless, the underlying
architectural differences between SIMD platforms raise
different challenges as well as approaches to applying these
techniques. For example, stride-one memory accesses are
enabled by parallel loop transformations such as loop swap
and loop collapsing. As a result, the GPU threads can utilize
coalesced memory access, optimizing the off-chip memory
performance. In contrast, vectorizing compilers use loop
interchange to vectorize loops within a single thread.

Min et al. described compiler techniques to enable
OpenMP program portability on a software distributed
shared memory system [158], [159], and distributed memory
systems using MPI message-passing [160]. Other studies
proposedmapping OpenMP to cell architectures [161], [162].

A polyhedral model has implemented compile-time
transformations that automatically optimize CUDA pro-
grams [81]. Main transformations include efficient global
memory access and affine loop nest optimizations [131].
ElTantawy and Aamodt [163] implemented static analysis

and transformation techniques as an LLVM compiler passes.
The scheme examines the program control-flow graph (CFG)
to detect and avoid SIMT deadlocks, where the execution
of threads in a SIMT architecture becomes stalled or
blocked, waiting for each other to release resources and
preventing forward progress [164], [165]. Revec [166] is
a transparent compiler optimization pass happening at the
compiler IR level to rewrite old vectorized code using new
vector instructions. It enables the performance portability of
hand-vectorized code and execution portability across newer
SIMD extension generations.

2) DYNAMIC RUNTIME APPROACH
Dietz and Cohen [139] exploited SIMD parallelism in reduc-
tions and stencil computations using an API and a runtime
system. The system utilizes knowledge about underlying
communication patterns for scheduling the computation and
reorganizing the data to improve SIMD parallelism.

Several research studies proposed parallelization tech-
niques utilizing internal kernel launches, where a GPU thread
can call another GPU kernel [167]. One example is dynamic
thread block launch [168], where the child threads are
dynamic instances of the original kernel launched by the CPU
(i.e., the parallelism occurs within recursive code). Nested
parallelism in CUDA [169] and lazy nested parallelism [167]
exploit nested parallelism, where the child threads belong to
parallel loops nested within the original kernel launched by
the CPU.

VOLUME 12, 2024 34363



D. Mustafa et al.: MIMD Programs Execution Support on SIMD Machines: A Holistic Survey

Dynamic warp formation is a hardware method to execute
SIMD branches on GPUs efficiently without data move-
ment between register lanes [165], [170]. Ren et al. [115]
developed a runtime scheduler and an intermediate lan-
guage to generate a SIMD code for irregular data-traversal
applications.

3) ADAPTIVE HARDWARE RECONVERGENCE APPROACH
An adaptive hardware reconvergence scheme maintains
MIMD synchronization without changing the program CFG.
It eliminates most restrictions inherent in a compiler-only
approach. For example, AWARE is an adaptive hardware
reconvergence technique that extends the Multi-Path (MP)
execution model [171] and improves performance by impos-
ing fewer scheduling constraints.

To enable compiler-driven, adaptive execution of standard
OpenMP programs on the underlying GPGPU architectures,
Lee [172] proposed a new API called OpenMPC. OpenMPC
implements a tuning framework that helps users generate
CUDA programs in several optimization variants without
deep knowledge of the CUDA programming and memory
models.

Irregular applications are not amenable to compile-time
optimizations because memory access patterns cannot be
analyzed at compile-time. Dynamic performance optimiza-
tions are preferred for this situation. Other key issues in
parallel applications are computational load balancing and
communication cost reduction. To address these issues,
Lee [172] has developed an adaptive load-mapping and
communication-algorithm-selection system. In [58] and [59],
a combined compiler translation and runtime support were
proposed to utilize SIMD extension performance.

C. CLASSIFYING MOS BASED ON THE SCOPE/DOMAIN
We classified MoS techniques into four categories based
on the scope of applications under optimization: general-
purpose, application-specific, stencil applications, or irregu-
lar applications.

1) GENERAL PURPOSE APPROACH
Most applications pursue similar patterns [173]. Many SIMD
(and SIMT) parallelization efforts have concentrated on
specific patterns, such as stencil computations [174], [175],
[176] or irregular reductions [61], [177], [178]. Suitable
data reorganization approaches for efficient execution can be
selected based on the knowledge of individual patterns.

Instead of studying individual problems, Shu and Wu
proposed an approach that handles general asynchronous
and loosely synchronous problems [33]. Chen et al. [19]
proposed a general optimization framework that views
irregular applications with indirect memory accesses as
sparse matrix computations and effectively optimizes them
using tiling to enhance locality, identifying data access
patterns, and removing write conflict at both SIMD and
MIMD levels. Lee et al. [98] proposed a translator with

effective compile-time optimizations for both regular and
irregular applications.

2) APPLICATION-SPECIFIC APPROACH
Application-oriented schemes for porting loosely syn-
chronous and asynchronous on SIMD machines are pop-
ular [179], [180], [181], [182]. Pennycook et al. imple-
mented a single application (Moldyn) on the Xeon Phi,
using both MIMD and SIMD parallelism [72]. Other
studies have described domain-specific techniques to exe-
cute irregular applications on GPUs. Such techniques
include N-body simulation [183], graph algorithms [184],
[185], [186], [187], graphics rendering [188], and data-
flow analysis [189]. To fill the abstraction gap between
application-specific algorithms and the CUDA programming
model, Sundaram et al. [190] proposed a method for the
scalable execution of domain-specific templates on GPUs.

3) STENCIL APPLICATIONS
Acceleration of stencil computations using SIMD vector-
ization and GPUs is a popular approach [7], [15], [17].
Eichenberger et al. [191] and Nuzman et al. [192] addressed
memory alignment for vectorizing stencils using data
reorganization methods. A stencil is memory-bounded if
its computations have a low arithmetic density over the
neighbors (the ratio of total FLOPs divided by the number
of total bytes transferred to or from memory). One major
issue with stencils is the high cache miss rate, which degrades
performance significantly when input sizes get greater than
the cache size.

Henretty et al. [175] proposed a system that utilizes
short-vector SIMD optimizations and improves data locality.
Yuan et al. [193] proposed temporal vectorization for the
stencil computation in the iteration space of a loop nest. The
scheme gathers data accesses with different time coordinates
in one vector. Imperfectly nested loop transformation,
optimization, and vectorization were implemented in a
polyhedral compiler [194]. Armejach et al. [60] optimized
stencil applications for SVE. Habich et al. [195] proposed
a block-striped data access pattern heavily depending on
the Gather operation on GPUs to optimize the overhead of
accessing non-consecutive memory locations. Parallelizing
stencil applications on GPUs is strongly correlated to SIMD
extensions [136], [174], [196], [197], [198], [199].Mint [120]
translates stencil applications implemented in C to Cuda.

4) IRREGULAR APPLICATIONS
The key issue with irregular code is that both control-flow
and memory access patterns may be data-dependent, where
the program’s runtime behavior is controlled by the input
values and cannot be statically predicted. Lee studied
compiler-driven runtime tuning systems for the dynamic
adaptation of applications onto the underlying execution plat-
form [172]. The proposed runtime tuning system emphasizes
parallel, irregular applications. The coalesced memory access

34364 VOLUME 12, 2024



D. Mustafa et al.: MIMD Programs Execution Support on SIMD Machines: A Holistic Survey

optimization has been discussed for irregular applications on
GPU [178], [200], and on Xeon Phi [57], [201], [202], [203],
[204], [205].

D. CLASSIFYING MOS BASED ON THE PROGRAMMING
MODEL
There are huge efforts to support code portability between
CPUs and GPUs by using traditional parallel program-
ming languages for GPU programming. We categorized
programing models into four classes: industrial [206], [207],
user-defined/research programming models [50], [208],
[209], combinedMIMD-SIMD, and multi-GPUs programing
models.

1) STANDARD INDUSTRIAL PROGRAMMING MODELS
OpenMP [206] is a well-established, convenient industry-
standard model widely used for parallel programming on
multicore shared memory systems. The OpenMP API has
been ported to different computational systems. The motiva-
tion is to simplify GPU programming using OpenMP, which
is an easier model compared to the CUDA programming
model. One major challenge of using high-level OpenMP is
that hidden architectural differences among the underlying
platforms require different optimization schemes.

In [207], the authors surveyed works that concentrated
on making GPUs able to efficiently run parallel programs
that were developed targeting MIMD systems. They used
either shared memory or message-passing communication
with MPI [210]. An automatic OpenMP to GPGPU frame-
work [98] presented a source-to-source translator and related
compile-time optimization techniques. In this approach, work
is partitioned among participating threads using parallel
constructs and data environment directives, annotated with
OpenMP pragmas. They are also utilized to map data into
underlying memory systems.

2) RESEARCH/USER-DEFINED PROGRAMMING MODELS
Several research studies have proposed new programming
models for SIMD architecture. For example, C-For-Metal
(CM) [208] is a programming language targeting Intel GPUs
with an explicit interface to explore the underlying hardware
characteristics, such as SIMD size control, fine-grained
register management, and cross-lane data sharing. The CM
compiler is responsible for generating appropriate vector
instructions from the high-level explicit constructs.While it is
harder to program, this model provides higher throughput for
programs with mixed serial/parallel execution and irregular
memory accesses [211]. Tian et al. [209] supported function
calls by an extension to the directive vectorization methods.
The ISPC compiler [50] provided a compiler-based scheme
supporting control-flow, data structure, and function calls.

3) COMBINED MIMD-SIMD PARALLELISM
This approach considered the parallelism of nested loop
structures, in which a parallel outer loop may include

irregular data access with control divergence and inner loops
have regular data access. Gerzhoy et al. [212] parallelized the
outer loop and scheduled it on a multicore CPU, while the
inner regular loop(s) can be scheduled on the GPU cores,
increasing its utilization.

In most recent accelerators [213], [214], [215], [216],
which generally target standard convolution operation, PEs
mainly operate in a SIMDmode. The convolution windows in
convolution operations follow a regular pattern, and the num-
ber of operations for each of these windows stays constant.
GANAX [217] is a unified SIMD-MIMD architecture that
operates on convolution windows with varying computation
patterns in a MIMD mode and works in a SIMD mode on
convolution windows with a regular pattern.

4) MULTI-GPU PROGRAMMING MODEL
To decrease the programming effort, Domonkos and Jakab
proposed a scalable multi-GPU programming model that
enables architectural optimizations and virtualization of
hardware resources [218].

GPU-SM [219] proposed programming multi-GPU sys-
tems similar to NUMA shared memory systems, main-
taining minimal performance overheads. GPU-STM (soft-
ware transactional memory) [220] is a novel system that
accelerates programs with dynamic data sharing on GPU
architecture. Scalability over the massive multithreading of
GPUs and preventing livelocks are two major challenges.
PyTorch-Direct, [221] enables GPU-centric data accessing
paradigm directly without CPU intervention. Groute, [222]
is an asynchronous multi-GPU programming model and
runtime environment implemented over CUDA for NVIDIA-
based multi-GPU nodes. To reduce communication time
and further increase GPU utilization, Choi et al. [223] sup-
ported computation-communication overlap and integrated
GPU-aware communication into asynchronous tasks.

E. MOS CLASSIFICATION BASED ON ARCHITECTURE
ENHANCEMENT METHOD
Some studies proposed a slight modification to the current
SIMD architecture to enhance MMD execution performance.
Others used software layers, leaving hardware intact, or a mix
of both.

1) HARDWARE SUPPORTED MODIFICATIONS (HARDWARE
SOLUTION)
Several studies have recognized the performance implica-
tions of branch divergence in GPUs [165], [171], [224],
[225], [226], [227], [228], [229]. However, less work
has investigated the functional implications. Eltantawy and
Aamodt [230] proposed a hardware warp scheduling policy
that temporarily deprioritizes warps executing busy wait
codes. Furthermore, they proposed a hardware mechanism
that detects busy-wait synchronization on GPUs.

Temporal-SIMT [231], [232], proposed a flexible
hardware-supported placement of barriers that minimizes the

VOLUME 12, 2024 34365



D. Mustafa et al.: MIMD Programs Execution Support on SIMD Machines: A Holistic Survey

TABLE 4. Sources classification.
TABLE 4. (Continued.) Sources classification.

divergence effect on the SIMD units utilization. However,
SIMT deadlocks can still happen when using explicit
reconvergence points in Temporal-SIMT. Dynamic Warp
Formation [165] avoids SIMT deadlocks through flexible
thread scheduling, at the cost of higher hardware complexity.

To eliminate branch divergence, Krashinsky et al. [233]
proposed vector-fetch and thread-fetch instructions mech-
anisms in the vector-thread architecture. With Vectorfetch,
all processors get the same instruction block for execution.
At execution divergence, a single processor can issue a thread
fetch to get an atomic instruction block. If each processor
is fetching a different atomic instruction block, instruction
bandwidth can significantly degrade performance.

Fung et al. [170] added a stack to execute distinct program
paths on different SIMD PEs after a diverging branch, which
can become a bottleneck in this approach. Levinthal and
Porter [153] used a stack of execution masks to handle SIMD
branch execution efficiently on GPUs. When a diverging
branch occurs, the mechanism reschedules threads into new

34366 VOLUME 12, 2024



D. Mustafa et al.: MIMD Programs Execution Support on SIMD Machines: A Holistic Survey

warps on the fly. Ramamurthy [164] described hardware
to avoid possible deadlocks that modify the behavior of
the reconvergence stack when executing lock or unlock
instructions. This approach supports very restricted cases
and fails if the locking happens in diverged code. Multiple
SIMDMultiple Data (MSMD) [234] proposed flexible SIMD
datapaths to handle divergence through repartitioning those
datapaths among multiple control-flow paths.

To support synchronization on GPUs smoothly, both
hardware and software transactional memory approaches
have been proposed [220], [235]. In [236], the authors
described hardware support with synchronization APIs for a
blocking synchronization scheme on GPGPU. This scheme
could mitigate SIMT deadlocks in restricted cases [164].
Li et al. proposed a fine-grained inter-thread synchronization
mechanism using GPUs’ shared memory [237]. Avoiding
SIMT-induced deadlocks must be handled by programmers.

Thuerck [238] proposed a hardware and compiler-
supported extension to CUDA’s programming that handles
data and control-flow irregularities. Major architectural
enhancements were implemented and tested in a simula-
tion environment. Libra [239] is a customizable, dynamic
configurable SIMD accelerator that can adapt its execution
scheme to the running program.With shared control architec-
ture [240], the control unit is shared across all PEs executing
the same operation.

2) SOFTWARE-SUPPORTED ENHANCEMENTS
To easily adapt MIMD code to a SIMT platform, the software
lock stealing and virtualization approach is proposed [241].
It changes the SIMT execution model to be effectively com-
patible with the MIMD execution model. Their techniques
reduced the memory cost of fine-grain locks and avoided
circular locking among GPU threads [241]. Locks can’t be
obtained in a loop due to SIMT deadlocks.

Several studies improved SIMD systems for irregular
applications to adapt to varying resource requirements by
offering a convenient way to set the SIMD vector length
at runtime, using both software [58], [59] and hardware
approaches [60]. Other studies in-vestigated hand-optimizing
irregular applications on SSE and other vector units [25],
[175]. Ren et al. [242] designed a virtual machine as well as a
domain-specific bytecode mechanism to SIMD-ize programs
that traverse irregular data structures.

Several GPU verification tools focus on finding data
races and divergence freedom in GPU kernels [243],
[244], [245], [246]. However, they did not consider SIMT
deadlock issues due to conditional loops. Habermaier and
Knapp [247] provided formal semantics for NVIDIA’s stack-
based reconvergence mechanism and a definition for the
scheduling unfairness issue without providing ways to detect
or prevent it.

F. CLASSIFYING SOURCES
Sources classification according to several criteria discussed
in previous sections is summarized in Table 4. Categories

FIGURE 4. Distribution of surveyed publications over the years.

are overlapped, and techniques used in each category are
highlighted. This table serves as an index of topics for readers
to easily retrieve articles related to a specific topic.

Figure 4 shows the distribution of the selected publications
over the years. While publications were carefully selected
based on relevance, time distribution provides a good indi-
cator of the progress of SIMD hardware and the associated
programming model. For example, you can see two peaks
in Figure 4 that reflect the rising attention this subject has
received. The first one started in 2008 (CUDA toolkit release
date) and continued through 2010 (Xeon Phi architecture
release date) until it reached its peak in 2012. It is important
to notice that around the 1990s, the subject received a decent
amount of interest (the advent of connection machines and
multimedia extensions).

VI. REVISITING IRREGULAR APPLICATIONS: CASE STUDY
SIMD accelerators favor classical scientific computing, such
as regular structure, large trip count loops, and few data
dependencies. However, a high percentage of applications
are irregular with indirect memory accesses and sparse data
structures, such as a graph, an unstructured mesh, or a sparse
matrix. Several studies have described domain-specific tech-
niques to address irregular dataflow on GPUs [183], [184],
[185], [186], [187], [188], [189]. The following subsections
provide a detailed review of irregular applications.

A. SOURCES OF IRREGULARITIES
Irregular applications stem from both scientific fields
(molecular simulations, climate modeling, rational materials
design, and bioinformatics) and problem-solving approaches
(i.e., simulated annealing, parameter sweeps, uncertainty
quantification, and branch-and-bound optimizations). Exten-
sive work has studied improving data locality in irregular
applications using both compiler and dynamic schemes [262],
[263], [264], [265], [266], [267].
With iteratively irregular applications, several iterations

follow the same access pattern. The vital challenge in
parallelizing these applications is that thememory data access
pattern can’t be analyzed at compile-time and can only be
known at runtime. Inspecting irregular accesses at runtime
resolves them accurately and analyzes the precise mapping

VOLUME 12, 2024 34367



D. Mustafa et al.: MIMD Programs Execution Support on SIMD Machines: A Holistic Survey

of accesses to iterations. Hence, irregular loop iterations can
be partitioned depending on the position of the shared data
accessed, optimizing memory performance.

B. CLASSES OF IRREGULAR APPLICATIONS
Irregular applications can be classified into three important
subclasses: irregular reductions (MOLDYN kernel from
CHARMM [273]), graph algorithms (depth-first tree search),
and sparse matrix-vector multiplication (Equake [273] and
CG [274]). Two NAS benchmarks, CG and IS, have irregular
accesses. Complex instances of inherently asynchronous
problems can be observed in non-numeric applications, such
as the highly irregular N-Queen problem, which does not suit
SIMD implementation. This classification is not exclusive.
the following subsections discuss the three classes.

1) IRREGULAR REDUCTIONS
Unstructured grids or molecular dynamics cause irregular
reductions. The connectivity of nodes in unstructured grids
cannot be determined by node positions (coordinates). Hence,
nodes are connected by edges explicitly [275]. Molecular
interactions follow a similar pattern [276].
MolDyn is a molecular dynamics kernel that computes

the interaction between particles to influence their positions,
forces, and velocities. The force acting on each particle is
calculated from the sum of each of the forces the other
particles impart on it. It involves irregular accesses and is
limited by the significant computational complexity of the
algorithm. The other time-consuming part is computing the
neighbors’ graph of interacting particles [72], [273].

2) IRREGULAR DATA STRUCTURES: GRAPHS AND TREES
Graph mining has seen a surge in interest, especially in the
context of machine learning and social network graphs [12],
[36], [178], [242]. Graphs are an essential data structure for
representing dependencies among entities. Random forests,
regular expression matching, and B+ trees are popular
algorithms that work on irregular data structures [115]. Graph
applications include breadth-first search, single-source short-
est path computation, Delaunay mesh refinement, pointer
analysis, and survey propagation.

Many irregular graph applications make unpredictable,
data-dependent accesses to complex data structures (graphs
and trees) [184], [185], [186], [187], [272]. The memory-
access patterns are usually not analyzable at compile-time,
which leads to uncoalesced memory accesses that drastically
reduce performance [277]. Similar to irregular reductions,
a graph can be viewed as a sparse adjacency matrix
because graphs are usually sparse. Therefore, several graph
algorithms can be summarized as a computation of sparse
matrix-vector multiplication (SpMV) [175].

3) SPARSE MATRIX-VECTOR MULTIPLICATION (SPMV)
The SMVP is the most time-consuming subroutine of
the Equake (earthquake simulation) application, which is

called at every timestep to compute the product of the
grid coordinates and displacements in time. While this
computation accesses the displacement vector irregularly, the
memory access pattern stays the same through all iterations.
All threads in the previous timestep read the vector blockwise
for the next step.

The most time-consuming part of CG (conjugate gradient)
is the conjgrad subroutine, which spends most of its
time computing the product of a sparse matrix A (accessed
blockwise) and a vector p (irregularly read).

Some studies optimized SpMV for non-SIMD architec-
tures. Strout et al. [278], [279] used rows/columns permuta-
tion and tiling to optimize the data locality for irregular
kernels like Gauss-Seidel on traditional CPU architectures.
Other studies used a blocked coloring method to optimize
the ICCG (Incomplete cholesky Conjugate Gradient) solver
formulti-threaded execution [280], vectorize the computation
of CG [281], or vectorize unstructured 3D mesh computa-
tions [282]. Such techniques can be used on SIMD platforms.

VII. EVALUATION OF MOS: METRICS AND BENCHMARKS
A key component of common parallelization paradigms
like MPI and OpenMP is performance analysis. Given the
large number of threads involved and the variations in data
movement and storage, it plays a vital role whenworkingwith
mixed traditional paradigms and CUDA. In these situations,
profile analysis tools (OpenMP, MPI, and CUDA) that can
track thread behavior at various levels are crucial.

The majority of surveyed MoS studies used execution time
as a primitive performance metric for empirically evaluating
their proposed methodologies. Other quantitative, derived
metrics include speedup, scalability, and efficiency (ratio
of achieved throughput to peak performance). Furthermore,
some evaluations used bandwidth and cache-related perfor-
mance counters, especially for memory-bounded applica-
tions. Few studies implemented and evaluated its methods in
a simulation environment with a performance model [212].
Table 5 lists the most popular SIMD platforms covered in the
surveyed studies.

Burtscher et al. [293] quantified memory-access (MA) and
control-flow (CF) irregularities in GPUs. They found that
applications demonstrate a variable but consistent degree of
irregularity. The degree of control-flow and memory-access
irregularities is defined based on the performance counter
metrics as follows:

irregularityCF =
divergent branches
executed instructions

(1)

irregularityMA =
replayed instructions
issued instructions

(2)

where: irregularityCF is the percentage of divergent branches
in the executed instructions. irregularityMA is the percentage
of the issued instructions that are replayed. A higher
percentage value infers more irregularity. Performance
scaling is bottlenecked by low arithmetic intensity (AI),

34368 VOLUME 12, 2024



D. Mustafa et al.: MIMD Programs Execution Support on SIMD Machines: A Holistic Survey

TABLE 5. Indexing sources based on the SIMD platforms covered in
surveyed studies.

calculated as:

AI =
Flops

Bytes read from DRAM
(3)

The ratio of active warps to the maximum number of warps
that the specified NVIDIA architecture can support is known
as CUDAoccupancy. Too low occupancy typicallymeans low
performance, as the memory latency masking is limited.

Power efficiency metrics include the energy-delay product
(EDP) and energy-delay2 product (EDP2) that emphasize
performance [289]. If the EDP for a given program exe-
cution is broken up into a series of distinct instruction
intervals, then the overall EDP can be computed by the
formula:

EDP =

(
n∑
i=1

Ei

)(
n∑
i=1

ti

)
(4)

where Ei and ti represent the energy and time spent for the ith
interval. The lower the EDP, the better the power efficiency.

The performance achieved per consumed watt of a
particular architecture is measured by the metric MFlops per
watt ratio, which combines throughput and power efficiency
by the formula:

MFLOPs/Watt =
Throughput

Power consumption
(5)

Benchmarking is the de facto standard for evaluating
hardware architectures in academia and industry. Table 6 lists
popular benchmarks that contain varying degrees of vector
parallelism and irregularities and were used in the evaluation
of the surveyed methodologies.

Daga et al. [297] and Spafford et al. [298] have measured
the performance benefits of heterogeneous microproces-
sors, mainly AMD’s Fusion architecture using traditional
GPU benchmarks [299], [300]. They investigated how the

TABLE 6. Benchmarks used in the surveyed methodologies evaluation
with varying degrees of vector parallelism and irregularities.

communication bottlenecks were addressed in CPU-GPU
integration [301].

Some studies reported a qualitative evaluation of factors
such as ease of use, applicability, scope of use, and usability.
Applicability is related to the spectrum of applications that
are amenable to the methodology. Usability is related to the
source code programming languages. For example, directive-
based tools provide more flexibility in adding annotations to
the CPU source code, which makes them more applicable
in handling complex CPU algorithms. Nevertheless, the user
must annotate the parallelization block and maintain the
complicated memory hierarchy by themselves.

Lee and Vetter [285] conducted a comprehensive evalua-
tion of existing directive-based GPU programming models
(PGI Accelerator [117], HMPP [118], OpenMPC [96], R-
Stream, OpenACC [84]) from both industry and academia.
Khalilov & Timoveev [302] evaluated CUDA, OpenACC,
and OpenMP programming models.

VIII. SUMMARY OF OBSERVATIONS AND FUTURE
DIRECTIONS
This section summarizes our key observations based on
our survey of many different MIMD on SIMD execution
approaches:

• Several MoS optimization techniques that were imple-
mented in the earlier work and were found beneficial
are the most important today. However, the performance
sensitivity to micro-architectural details of modern
SIMD platforms requires precise attention by a software
engineer implementing an MoS technique.

• While SIMD platforms are omnipresent, their unbridled
computation power is still not fully utilized in main-
stream program performance.

VOLUME 12, 2024 34369



D. Mustafa et al.: MIMD Programs Execution Support on SIMD Machines: A Holistic Survey

• GPGPU offers a low-cost, power-efficient, massively
parallel platform to software developers. However,
programmers struggle with its challenging, complex
programming model.

• While GPU architecture provides more scalable per-
formance, it is more complex and restrictive, and the
execution model is difficult to program.

• To decrease the programming efforts, compiler exten-
sions or metaprogramming techniques can be used to
abstract the complex execution environment from the
programmer.

• Compiler-based systems use a high-level (OpenMP)
interface with automatic translation to simplify creating
CUDA programs. They also implement many compiler
transformations and optimization techniques to fill
the performance gap between hand-optimized CUDA
programs and auto-generated codes.

• A significant performance gap is observed between
high-level (OpenMP, OpenACC) and low-level (CUDA)
programming models, especially with the growing
complexity of code.

• Source-to-source vectorization reforms the applicability
of auto-vectorization and the difficulty of manual
vectorization with comparable performance.

• Runtime analysis is required for irregular applications
to resolve the challenging memory access patterns.
Such patterns cannot be analyzed accurately at the
compile-time, and conservatively overestimates data
consumption.

• GPGPU performance can be significantly impaired
(degraded) by control divergence, memory bandwidth,
and limited parallelism. They are critical factors that
may significantly bottleneck the performance of vector-
ized code.

• Handling divergence mechanism can be imple-
mented with a sequence of hardware actions per-
formed inside SIMD processing in any computational
platform.

• For a more comprehensive evaluation, Researchers
should investigate new and potentially more com-
plex applications that can be enabled by nested
parallelism using CPU-GPU integration and
multi-GPUs.

• Dedicated accelerators for AI applications are increas-
ingly gaining wide interests. Many software techniques
discussed in this survey might need to be implemented
in hardware for maximized performance.

• Future accelerators are expected to feature more special-
ized hardware designs tailored specifically for natural
language processing tasks. This could involve custom
architectures optimized for the unique requirements of
LLMs, allowing for faster and more energy-efficient
processing. As the field continues to advance, innova-
tions in hardware will play a crucial role in supporting
the next generation of large and complex language
models.

IX. CONCLUSION
This research presented a comprehensive survey of parallel
programming models and execution frameworks to facilitate
executing parallel programs on a SIMD architecture (MoS).
The rapid evolvement of SIMD architectures, as well as
the huge amount of literature regarding this hot topic for
more than three decades, made the survey challenging and
necessitated. A comparative survey of various MoS tools,
benchmarks, and SIMD platforms was conducted. Several
GPU programming paradigms and API were surveyed and
classified into different groups based on their criteria. This
study aims to provide a comprehensive reference for new
researchers and developers in the field of computer architec-
ture and parallel computing-intensive scientific applications.

ACKNOWLEDGMENT
The authors acknowledge anonymous reviewers for their
valuable suggestions.

REFERENCES
[1] M. J. Flynn and K. W. Rudd, ‘‘Parallel architectures,’’ ACM Comput.

Surv., vol. 28, no. 1, pp. 67–70, 1996.
[2] R. M. Russell, ‘‘The CRAY-1 computer system,’’Commun. ACM, vol. 21,

no. 1, pp. 63–72, Jan. 1978.
[3] AMD. (2000). 3DNOW! Technology Manual. Motorola, Chicago, IL,

USA. Accessed: Sep. 2022.
[4] ARM. Neon Programmers’ Guide. Accessed: 2023. [Online]. Available:

https://documentation-service.arm.com/static/63299276e68c6809a6b
41308

[5] S. Fuller, ‘‘Motorola’s AltiVe technology,’’ White Paper, vol. 6, p. 998,
May 1998.

[6] Intel® 64 and IA-32 Architectures Software Developer’s Manual Volume
1: Basic Architecture, Intel Corp., Santa Clara, CA, USA, 2016.

[7] Intel® 64 and IA-32 Architectures Software Developer Manuals Volume
2A: Instruction Set Reference, Intel Corp., Santa Clara, CA, USA, 2016.

[8] N. Stephens, S. Biles, M. Boettcher, J. Eapen, M. Eyole, G. Gabrielli,
M. Horsnell, G. Magklis, A. Martinez, N. Premillieu, A. Reid, A. Rico,
and P. Walker, ‘‘The ARM scalable vector extension,’’ IEEE Micro,
vol. 37, no. 2, pp. 26–39, Mar. 2017.

[9] A. Sodani, ‘‘Knights landing (KNL): 2nd generation Intel® Xeon Phi
processor,’’ in Proc. IEEE Hot Chips 27 Symp. (HCS), Aug. 2015,
pp. 1–24.

[10] T. Yoshida, ‘‘Introduction of Fujitsu’s HPC processor for the post-K
computer,’’ in Proc. Hot Chips 28th Symp., Aug. 2016, pp. 1–5.

[11] T. J. Purcell, I. Buck, W. R. Mark, and P. Hanrahan, ‘‘Ray tracing on
programmable graphics hardware,’’ in Proc. 29th Annu. Conf. Comput.
Graph. Interact. Techn., Jul. 2002, pp. 703–712.

[12] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston,
and P. Hanrahan, ‘‘Brook for GPUs: Stream computing on graphics
hardware,’’ in Proc. ACM SIGGRAPH Papers, Aug. 2004, pp. 777–786.

[13] M. Shebanow, Programming Massively Parallel Processors Lecture 12,
document ECE 498 Al, 2007.

[14] R. A. Lorie and H. R. Strong, ‘‘Method for conditional branch execution
in SIMD vector processors,’’ U.S. Patent 4 758 435, Mar. 6, 1984.

[15] J. Montrym and H. Moreton, ‘‘The GeForce 6800,’’ IEEE Micro, vol. 25,
no. 2, pp. 41–51, Mar. 2005.

[16] S. Moy and E. Lindholm, ‘‘Method and system for programmable
pipelined graphics processing with branching instructions,’’
U.S. Patent 6 047 947, Sep. 20, 2005.

[17] D. Luebke and G. Humphreys, ‘‘How GPUs work,’’ Computer, vol. 40,
no. 2, pp. 96–100, Feb. 2007.

[18] NVIDIA CUDA (Compute Unified Device Architecture) Programming
Guide 3.1, NVIDIA Corp., Santa Clara, CA, USA, 2010.

[19] L. Chen, P. Jiang, and G. Agrawal, ‘‘Exploiting recent SIMD architectural
advances for irregular applications,’’ in Proc. IEEE/ACM Int. Symp. Code
Gener. Optim. (CGO), Mar. 2016, pp. 47–58.

[20] Y. Chen, Y. Xie, L. Song, F. Chen, and T. Tang, ‘‘A survey of accelerator
architectures for deep neural networks,’’ Engineering, vol. 6, no. 3,
pp. 264–274, Mar. 2020.

34370 VOLUME 12, 2024



D. Mustafa et al.: MIMD Programs Execution Support on SIMD Machines: A Holistic Survey

[21] M. Khairy, A. G. Wassal, and M. Zahran, ‘‘A survey of architectural
approaches for improving GPGPU performance, programmability and
heterogeneity,’’ J. Parallel Distrib. Comput., vol. 127, pp. 65–88,
May 2019.

[22] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger,
A. E. Lefohn, and T. J. Purcell, ‘‘A survey of general-purpose compu-
tation on graphics hardware,’’ Comput. Graph. Forum, vol. 26, no. 1,
pp. 80–113, Mar. 2007.

[23] W. D. Hillis, The Connection Machine. Cambridge, MA, USA: MIT
Press, 1989.

[24] J. Nickolls, ‘‘The design of the MasPar MP-1: A cost effective
massively parallel computer,’’ in Proc. 35th IEEE Comput. Soc. Int. Conf.
Intellectual Leverage, Mar. 1990, pp. 25–28.

[25] T. Bridges, ‘‘The GPA machine: A generally partitionable MSIMD
architecture,’’ in Proc. 3rd Symp. Frontiers Massively Parallel Comput.,
Jan. 1990, pp. 196–203.

[26] C. C. Weems, E. M. Riseman, and A. R. Hanson, ‘‘Image understanding
architecture: Exploiting potential parallelism in machine vision,’’ Com-
puter, vol. 25, no. 2, pp. 65–68, Feb. 1992.

[27] J. D. Allen and D. E. Schimmel, ‘‘The impact of pipelining on SIMD
architectures,’’ in Proc. 9th Int. Parallel Process. Symp., Apr. 1995,
pp. 380–387.

[28] G. Fox, ‘‘What have we learnt from using real parallel machines to solve
real problems?’’ Caltech Concurrent Comput. Program, California Inst.
Technol., Pasadena, CA, USA, Tech. Rep. C3P-522, 1989.

[29] J. L. Hennesy and D. A. Patterson, Computer Architecture a Quantitative
Approach, 6th ed. San Mateo, CA, USA: Morgan Kaufmann, 2017.

[30] B. Parhami, ‘‘SIMD machines: Do they have a significant future?’’ ACM
SIGARCH Comput. Archit. News, vol. 23, no. 4, pp. 19–22, Sep. 1995.

[31] B. C. Kuszmaul, ‘‘Simulating applicative architectures on the connection
machine,’’ M.S. thesis, MIT, Cambridge, MA, USA, 1986.

[32] W. D. Hillis and G. L. Steele, ‘‘Data parallel algorithms,’’Commun. ACM,
vol. 29, no. 12, pp. 170–183, 1986.

[33] W. Shu and M.-Y. Wu, ‘‘Asynchronous problems on SIMD parallel com-
puters,’’ IEEE Trans. Parallel Distrib. Syst., vol. 6, no. 7, pp. 704–713,
Jul. 1995.

[34] P. Kacsuk and A. Bale, ‘‘DAP Prolog: A set-oriented approach to prolog,’’
Comput. J., vol. 30, no. 5, pp. 393–403, Oct. 1987.

[35] M. Nilsson and H. Tanaka, ‘‘Massively parallel implementation of flat
GHC on the connection machine,’’ in Proc. Int. Conf. 5th Generat.
Comput. Syst., 1988, pp. 1031–1039.

[36] F. Darema-Rodgers, D. A. George, V. A. Norton, and G. F. Pfister,
‘‘Environment and system interface for VM/EPEX,’’ IBM Thomas
J. Watson Res. Center, New York, NY, USA, Tech. Rep. RCLL381, 1985.

[37] F. Darema, D. A. George, V. A. Norton, and G. F. Pfister, ‘‘A single-
program-multiple-data computational model for EPEX/FORTRAN,’’
Parallel Comput., vol. 7, no. 1, pp. 11–24, Apr. 1988.

[38] L. H. Jamieson, ‘‘Characterizing parallel algorithms,’’ in The Char-
acteristics of Parallel Algorithms, L. H. Jamieson, D. B. Gannon,
and R. J. Douglass, Eds. Cambridge, MA, USA: MIT Press, 1987,
pp. 65–100.

[39] R. F. Freund, ‘‘Optimal selection theory for superconcurrency,’’ in Proc.
ACM/IEEE Conf. Supercomputing, Nov. 1989, pp. 699–703.

[40] E. C. Bronson, T. L. Casavant, and L. H. Jamieson, ‘‘Experimental
application-driven architecture analysis of an SIMD/MIMD parallel
processing system,’’ IEEE Trans. Parallel Distrib. Syst., vol. 1, no. 2,
pp. 195–205, Apr. 1990.

[41] S. A. Fineberg, T. L. Casavant, and H. J. Siegel, ‘‘Experimental analysis
of a mixed-mode parallel architecture using bitonic sequence sorting,’’
J. Parallel Distrib. Comput., vol. 11, no. 3, pp. 239–251, Mar. 1991.

[42] H. J. Siegel, L. J. Siegel, F. C. Kemmerer, P. T. Mueller, H. E. Smalley,
and S. D. Smith, ‘‘PASM: A partitionable SIMD/MIMD system for image
processing and pattern recognition,’’ IEEE Trans. Comput., vol. C-30,
no. 12, pp. 934–947, Dec. 1981.

[43] H. J. Siegel, T. Schwederski, J. T. Kuehn, and N. J. Davis, ‘‘An
overview of the PASM parallel processing system,’’ in Computer
Architecture, D. D. Gajski, V. M. Milutinovic, H. J. Siegel, and
B. P. Furht, Eds. Washington, DC, USA: IEEE Computer Society Press,
1987, pp. 387–407.

[44] G. J. Lipovski and M. Malek, Parallel Computing: Theory and
Comparisons. New York, NY, USA: Wiley, 1987.

[45] M. C. Sejnowski, E. T. Upchurch, R. N. Kapur, D. P. S. Charlu,
and G. J. Lipovski, ‘‘An overview of the Texas reconfigurable array
computer,’’ in Proc. Nat. Comput. Conf., May 1980, pp. 631–641.

[46] M.Auguin and F. Boeri, ‘‘TheOPSILA computer,’’ inParallel Languages
and Architectures, M. Consard, Ed. Holland, U.K.: Elsevier, 1986,
pp. 143–153.

[47] M. Auguin, F. Boeri, J. P. Dalban, and A. Vincent-Carrefour, ‘‘Experi-
ence using a SIMD/SPMD multiprocessor architecture,’’ Microprocess.
Microprogram., vol. 21, nos. 1–5, pp. 171–177, Aug. 1987.

[48] P. Duclos, F. Boeri, M. Auguin, and G. Giraudon, ‘‘Image processing on
a SIMD/SPMD architecture: OPSILA,’’ in Proc. 9th Int. Conf. Pattern
Recognit., Jan. 1988, pp. 430–433.

[49] R. Karrenberg and S. Hack, ‘‘Whole-function vectorization,’’ in Proc. Int.
Symp. Code Gener. Optim. (CGO), Apr. 2011, pp. 141–150.

[50] M. Pharr and W. R. Mark, ‘‘ISPC: A SPMD compiler for high-
performance CPU programming,’’ in Proc. Innov. Parallel Comput.
(InPar), May 2012, pp. 1–13.

[51] M. Cavalcante, F. Schuiki, F. Zaruba, M. Schaffner, and L. Benini,
‘‘Ara: A 1-GHz+ scalable and energy-efficient RISC-V vector processor
with multiprecision floating-point support in 22-nm FD-SOI,’’ IEEE
Trans. Very Large Scale Integr. (VLSI) Syst., vol. 28, no. 2, pp. 530–543,
Feb. 2020.

[52] A. Poenaru, ‘‘Modern vector architectures for high-performance comput-
ing,’’ M.S. thesis, Dept. Comput. Sci., Univ. Bristol, Bristol, U.K., 2022.

[53] ARM C Language Extensions for SVE, ARM Ltd., Cambridge, U.K.,
2020.

[54] P. Papaphilippou, K. Paul H. J., and W. Luk, ‘‘Simodense: A RISC-V
softcore optimised for exploring custom SIMD instructions,’’ in Proc.
31st Int. Conf. Field-Program. Log. Appl. (FPL), Aug. 2021, pp. 391–397.

[55] M. Gautschi, P. D. Schiavone, A. Traber, I. Loi, A. Pullini, D. Rossi,
E. Flamand, F. K. Gürkaynak, and L. Benini, ‘‘Near-threshold RISC-V
corewithDSP extensions for scalable IoT endpoint devices,’’ IEEETrans.
Very Large Scale Integr. (VLSI) Syst., vol. 25, no. 10, pp. 2700–2713,
Oct. 2017.

[56] J. Reinders. (2017). Intel AVX-512 Instructions. [Online]. Available:
https://www.intel.com/content/www/us/en/developer/articles/technical/
intel-avx-512-instructions.html

[57] D. Mustafa, ‘‘Performance evaluation of massively parallel systems using
SPEC OMP suite,’’ Computers, vol. 11, no. 5, p. 75, May 2022.

[58] N. Clark, A. Hormati, S. Yehia, S. Mahlke, and K. Flautner, ‘‘Liquid
SIMD: Abstracting SIMD hardware using lightweight dynamic map-
ping,’’ in Proc. IEEE 13th Int. Symp. High Perform. Comput. Archit.,
Feb. 2007, pp. 216–227.

[59] D. Nuzman, S. Dyshel, E. Rohou, I. Rosen, K. Williams, D. Yuste,
A. Cohen, and A. Zaks, ‘‘Vapor SIMD: Auto-vectorize once, run
everywhere,’’ in Proc. Int. Symp. Code Gener. Optim. (CGO), Apr. 2011,
pp. 151–160.

[60] A. Armejach, H. Caminal, J. M. Cebrian, R. González-Alberquilla,
C. Adeniyi-Jones, M. Valero, M. Casas, and M. Moretó, ‘‘Stencil codes
on a vector length agnostic architecture,’’ in Proc. 27th Int. Conf. Parallel
Architectures Compilation Techn. New York, NY, USA: Association for
Computing Machinery, Nov. 2018, pp. 1–12.

[61] S. Kim and H. Han, ‘‘Efficient SIMD code generation for irregular
kernels,’’ ACM SIGPLAN Notices, vol. 47, no. 8, pp. 55–64, Sep. 2012.

[62] ATI. (2008). ATI Stream Computing SDK User Guide V1.3-Beta.
[Online]. Available: http://developer.amd.com/gpu-assets/Stream-
Computing-Overview.pdf

[63] S. S. Baghsorkhi, M. Delahaye, S. J. Patel, W. D. Gropp, and
W.-M.-W. Hwu, ‘‘An adaptive performance modeling tool for GPU
architectures,’’ ACM SIGPLAN Notices, vol. 45, no. 5, pp. 105–114,
May 2010.

[64] Y. Yamada and S. Momose, ‘‘Vector engine processor of NEC’s brand-
new supercomputer SX-Aurora TSUBASA,’’ in Proc. Int. Symp. High
Perform. Chips, Aug. 2018, pp. 1–25.

[65] K. Komatsu, S. Momose, Y. Isobe, O. Watanabe, A. Musa, M. Yokokawa,
T. Aoyama, M. Sato, and H. Kobayashi, ‘‘Performance evaluation of a
vector supercomputer SX-aurora TSUBASA,’’ in Proc. Int. Conf. High
Perform. Comput., Netw., Storage Anal., vol. 54, Nov. 2018, pp. 685–696.

[66] R. Egawa, K. Komatsu, S. Momose, Y. Isobe, A. Musa, H. Takizawa, and
H. Kobayashi, ‘‘Potential of a modern vector supercomputer for practical
applications: Performance evaluation of SX-ACE,’’ J. Supercomput.,
vol. 73, no. 9, pp. 3948–3976, Sep. 2017.

[67] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers, and R. Boyle, ‘‘In-datacenter
performance analysis of a tensor processing unit,’’ in Proc. 44th Annu.
Int. Symp. Comput. Archit., Jun. 2017, pp. 1–12.

VOLUME 12, 2024 34371



D. Mustafa et al.: MIMD Programs Execution Support on SIMD Machines: A Holistic Survey

[68] N. Jouppi, C. Young, N. Patil, and D. Patterson, ‘‘Motivation for and
evaluation of the first tensor processing unit,’’ IEEE Micro, vol. 38, no. 3,
pp. 10–19, May 2018.

[69] A. Ravikumar, H. Sriraman, P. M. S. Saketh, S. Lokesh, and A. Karanam,
‘‘Effect of neural network structure in accelerating performance and
accuracy of a convolutional neural network with GPU/TPU for image
analytics,’’ PeerJ Comput. Sci., vol. 8, p. e909, Mar. 2022.

[70] N. P. Jouppi, D. H. Yoon, G. Kurian, S. Li, N. Patil, J. Laudon, C. Young,
and D. Patterson, ‘‘A domain-specific supercomputer for training deep
neural networks,’’ Commun. ACM, vol. 63, no. 7, pp. 67–78, Jun. 2020.

[71] I. Burstein, ‘‘Nvidia data center processing unit (DPU) architecture,’’ in
Proc. IEEE Hot Chips 33th Symp. (HCS), Aug. 2021, pp. 1–20.

[72] S. J. Pennycook, C. J. Hughes, M. Smelyanskiy, and S. A. Jarvis,
‘‘Exploring SIMD for molecular dynamics, using Intel® Xeon®

processors and Intel® Xeon Phi coprocessors,’’ in Proc. IEEE 27th Int.
Symp. Parallel Distrib. Process., May 2013, pp. 1085–1097.

[73] D. Blythe, ‘‘The Xe GPU architecture,’’ in Proc. IEEE Hot Chips 32th
Symp. (HCS), Aug. 2020, pp. 1–27.

[74] (2023). BrookGPU Home Page. [Online]. Available: http://graphics.
stanford.edu/projects/brookgpu/

[75] D. Luebke, ‘‘CUDA: Scalable parallel programming for high-
performance scientific computing,’’ in Proc. 5th IEEE Int. Symp. Biomed.
Imag., Nano Macro, May 2008, pp. 836–838.

[76] M. Gerndt, ‘‘Automatic performance analysis tools for the Grid,’’
Concurrency Comput., Pract. Exper., vol. 17, no. 24, p. 99115, 2005.

[77] S. Ryoo, C. I. Rodrigues, S. S. Stone, S. S. Baghsorkhi, S.-Z. Ueng,
J. A. Stratton, andW.-M.-W. Hwu, ‘‘Program optimization space pruning
for a multithreaded GPU,’’ in Proc. 6th Annu. IEEE/ACM Int. Symp. Code
Gener. Optim., Apr. 2008, pp. 195–204.

[78] Y. Liu, E. Z. Zhang, and X. Shen, ‘‘A cross-input adaptive framework for
GPU program optimizations,’’ in Proc. IEEE Int. Symp. Parallel Distrib.
Process., May 2009, pp. 1–10.

[79] J. Guerreiro, A. Ilic, N. Roma, and P. Tomás, ‘‘Multi-kernel auto-
tuning on GPUs: Performance and energy-aware optimization,’’ in Proc.
23rd Euromicro Int. Conf. Parallel, Distrib., Network-Based Process.,
Mar. 2015, pp. 438–445.

[80] S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone, D. B. Kirk, and
W.-M.-W. Hwu, ‘‘Optimization principles and application performance
evaluation of a multithreaded GPU using CUDA,’’ in Proc. 13th ACM
SIGPLAN Symp. Princ. Pract. Parallel Program., Feb. 2008, pp. 73–82.

[81] M. M. Baskaran, U. Bondhugula, S. Krishnamoorthy, J. Ramanujam,
A. Rountev, and P. Sadayappan, ‘‘A compiler framework for optimization
of affine loop nests for GPGPUs,’’ in Proc. 22nd Annu. Int. Conf.
Supercomputing, Jun. 2008, pp. 225–234.

[82] F. Petrovic, D. Strelák, J. Hozzová, J. Ol’ha, R. Trembecký, S. Benkner,
and J. Filipovic, ‘‘A benchmark set of highly-efficient CUDA and
OpenCL kernels and its dynamic autotuning with kernel tuning toolkit,’’
Future Gener. Comput. Syst., vol. 108, pp. 161–177, Jul. 2020.

[83] The OpenMP Application Programming Interface, OpenMP Archit. Rev.
Board, Beaverton, OR, USA, 2018, p. 666.

[84] The OpenACC Application Programming Interface, OpenACC, Bend,
OR, USA, 2020.

[85] A. Munshi. (2012). The OpenCL Specification Version 1.2.
Khronos OpenCL Working Group. [Online]. Available: https://www.
khronos.org/files/opencl-spir-12-provisional.pdf

[86] S. G. Gonzalo, S. D. Hammond, C. R. Trott, andW. M. Hwu, ‘‘Revisiting
online autotuning for sparse-matrix vector multiplication kernels on next-
generation architectures,’’ in Proc. IEEE 19th Int. Conf. High Perform.
Comput. Commun., IEEE 15th Int. Conf. Smart City, IEEE 3rd Int. Conf.
Data Sci. Syst. (HPCC/SmartCity/DSS), Dec. 2017, pp. 72–80.

[87] D. Strelák, C. Ó. S. Sorzano, J. M. Carazo, and J. Filipovic, ‘‘A GPU
acceleration of 3-D Fourier reconstruction in cryo-EM,’’ Int. J. High
Perform. Comput. Appl., vol. 33, no. 5, p. 948, 2019, Art. no. 959.

[88] C. Nugteren and V. Codreanu, ‘‘CLTune: A generic auto-tuner
for OpenCL kernels,’’ in Proc. IEEE 9th Int. Symp. Embedded
Multicore/Many-Core Syst.-Chip, Sep. 2015, pp. 195–202.

[89] AMD. (2023). HIP. [Online]. Available: https://rocm.docs.amd.
com/projects/HIP/en/latest/

[90] AMD. (2022). Hip Programming Guide. Accessed: Mar. 31, 2023.
[Online]. Available: https://docs.amd.com/projects/HIP/en/docs-5.3.0/
user_guide/programming_manual.html

[91] Y. M. Tsai, T. Cojean, T. Ribizel, and H. Anzt, ‘‘Preparing GINKGO for
amd GPUs—A testimonial on porting CUDA code to HIP,’’ in Euro-Par
2020: Parallel Processing Workshops, B. Balis, Ed. Cham, Switzerland:
Springer, 2021, pp. 109–121.

[92] SYCLTM 2020 Specification (Revision 7), Khronos Group, Beaverton,
OR, USA, 2020.

[93] B. Ashbaugh, J. Brodman, M. Kinsner, J. Pennycook, X. Tian, and
J. Reinders, Data Parallel C++ Mastering DPC++ for Programming
of Heterogeneous Systems Using C++ and SYCL. New York, NY, USA:
Apress, 2020.

[94] R. Reyes, G. Brown, R. Burns, and M. Wong, ‘‘SYCL 2020: More than
meets the eye,’’ in Proc. Int. Workshop OpenCL, vol. 4, Apr. 2020,
pp. 1–14.

[95] Intel® OneAPI Toolkits, Intel Corp., Santa Clara, CA, USA, 2023.
[96] S. Lee and R. Eigenmann, ‘‘OpenMPC: Extended OpenMP programming

and tuning for GPUs,’’ in Proc. ACM/IEEE Int. Conf. High Perform.
Comput., Netw., Storage Anal., Nov. 2010, pp. 1–11.

[97] A. Sabne, P. Sakdhnagool, and R. Eigenmann, ‘‘Effects of compiler
optimizations in OpenMP to CUDA translation,’’ in Proc. Int. Workshop
OpenMP. Berlin, Germany: Springer, 2012, pp. 169–181.

[98] S. Lee, S.-J. Min, and R. Eigenmann, ‘‘OpenMP to GPGPU: A compiler
framework for automatic translation and optimization,’’ in Proc. ACM
Symp. PPoPP, 2009, pp. 101–110.

[99] S. Lee and R. Eigenmann, ‘‘OpenMPC: Extended OpenMP for efficient
programming and tuning on GPUs,’’ Int. J. Comput. Sci. Eng., vol. 8,
no. 1, pp. 4–20, 2013.

[100] D. Mustafa, ‘‘A survey of performance tuning techniques and tools for
parallel applications,’’ IEEE Access, vol. 10, pp. 15036–15055, 2022.

[101] C. Iwainsky, S. Shudler, A. Calotoiu, A. Strube,M. Knobloch, C. Bischof,
and F. Wolf, ‘‘How many threads will be too many? On the scalability
of OpenMP implementations,’’ in Euro-Par 2015: Parallel Processing.
Berlin, Germany: Springer, 2015, pp. 451–463.

[102] D. Li, K. Sajjapongse, H. Truong, G. Conant, and M. Becchi,
‘‘A distributed CPU-GPU framework for pairwise alignments on large-
scale sequence datasets,’’ in Proc. IEEE 24th Int. Conf. Appl.-Specific
Syst., Architectures Processors, Jun. 2013, pp. 329–338.

[103] S. J. Krieder, J. M. Wozniak, T. Armstrong, M. Wilde, D. S. Katz,
B. Grimmer, I. T. Foster, and I. Raicu, ‘‘Design and evaluation of the
gemtc framework for GPU-enabled many-task computing,’’ in Proc.
23rd Int. Symp. High-Perform. Parallel Distrib. Comput., Jun. 2014,
pp. 153–164.

[104] M. Aldinucci, M. Danelutto, P. Kilpatrick, and M. Torquati, ‘‘FastFlow:
High-level and efficient streaming on multi-core,’’ in Programming
Multi-Core and Many-Core Computing Systems (Parallel and Distributed
Computing). Hoboken, NJ, USA: Wiley, Mar. 2014, pp. 1–3.

[105] G. Rossum. (1994). The Python Programming Language. [Online].
Available: https://www.python.org/

[106] A. Klöckner, N. Pinto, Y. Lee, B. Catanzaro, P. Ivanov, and A. Fasih,
‘‘PyCUDA and PyOpenCL: A scripting-based approach to GPU run-
time code generation,’’ Parallel Comput., vol. 38, no. 3, pp. 157–174,
Mar. 2012.

[107] C. Mueller, B. Martin, and A. Lumsdaine, ‘‘CorePy: High-productivity
Cell/BE programming,’’ in Proc. 1st STI/Georgia Tech Workshop Softw.
Appl. Cell/BE Processor, 2007.

[108] Y. Yan, M. Grossman, and V. Sarkar, ‘‘JCUDA: A programmer-friendly
interface for accelerating Java programs with CUDA,’’ in Euro-Par 2009
Parallel Processing. Cham, Switzerland: Springer, 2009, pp. 887–899.

[109] T. D. Han and T. S. Abdelrahman, ‘‘Hi CUDA: A high-level directive-
based language for GPU programming,’’ in Proc. 2nd Workshop
Gen. Purpose Process. Graph. Process. Units, New York, NY, USA,
Mar. 2009, pp. 52–61.

[110] L. G. Valiant, ‘‘A bridging model for parallel computation,’’ Commun.
ACM, vol. 33, no. 8, pp. 103–111, Aug. 1990.

[111] Q. Hou, K. Zhou, and B. Guo, ‘‘BSGP: Bulk-synchronous GPU
programming,’’ in Proc. ACM SIGGRAPH Papers, Aug. 2008, pp. 1–12.

[112] G. Noaje, C. Jaillet, and M. Krajecki, ‘‘Source-to-source code translator:
OpenMP C to CUDA,’’ in Proc. IEEE Int. Conf. High Perform. Comput.
Commun., Sep. 2011, pp. 512–519.

[113] C. Bertolli, S. F. Antao, A. E. Eichenberger, K. O. Z. Sura, A. C. Jacob,
T. Chen, and O. Sallenave, ‘‘Coordinating GPU threads for OpenMP 4.0
in LLVM,’’ in Proc. LLVM Compiler Infrastructure HPC, Nov. 2014,
pp. 12–21.

[114] C. Lattner and V. Adve, ‘‘LLVM: A compilation framework for lifelong
program analysis & transformation,’’ in Proc. Int. Symp. Code Gener.
Optim., Mar. 2004, pp. 75–86.

[115] B. Ren, T. Mytkowicz, and G. Agrawal, ‘‘A portable optimization
engine for accelerating irregular data-traversal applications on SIMD
architectures,’’ ACM Trans. Archit. Code Optim., vol. 11, no. 2, pp. 1–31,
Jun. 2014.

34372 VOLUME 12, 2024



D. Mustafa et al.: MIMD Programs Execution Support on SIMD Machines: A Holistic Survey

[116] S. Ueng, M. Lathara, S. S. Baghsorkhi, and W. W. Hwu, ‘‘CUDA-Lite:
Reducing GPU programming complexity,’’ in Proc. Int. Workshop Lang.
Compil. Parallel Comput. (LCPC), 2008, pp. 1–15.

[117] PGI Accelerator. (2009). The Portland Group, PGI Fortran
and C Accelarator Programming Model. [Online]. Available:
https://docs.nvidia.com/hpc-sdk/pgi-compilers/2013/pgirn133.pdf

[118] HMPP. (2009). HMPP Workbench, a Directive-Based Compiler for
Hybrid Computing. Accessed: Apr. 2, 2012. [Online]. Available: https://
www.caps-entreprise.com/hmpp.html

[119] A. Leung, N. Vasilache, B. Meister, M. Baskaran, D. Wohlford,
C. Bastoul, and R. Lethin, ‘‘A mapping path for multi-GPGPU acceler-
ated computers from a portable high level programming abstraction,’’ in
Proc. 3rd Workshop General-Purpose Comput. Graph. Process. Units,
New York, NY, USA, Mar. 2010, pp. 51–61.

[120] D. Unat, X. Cai, and S. B. Baden, ‘‘Mint: Realizing CUDA performance
in 3D stencil methods with annotated C,’’ in Proc. Int. Conf. Supercom-
puting, New York, NY, USA, May 2011, pp. 214–224.

[121] S. Verdoolaege, J. C. Juega, A. Cohen, J. I. Gómez, C. Tenllado, and
F. Catthoor, ‘‘Polyhedral parallel code generation for CUDA,’’ ACM
Trans. Archit. Code Optim., vol. 9, no. 4, pp. 1–23, Jan. 2013.

[122] P. Yang, F. Dong, V. Codreanu, D.Williams, J. B. T. M. Roerdink, B. Liu,
A. Anvari-Moghaddam, and G. Min, ‘‘Improving utility of GPU in
accelerating industrial applications with user-centered automatic code
translation,’’ IEEE Trans. Ind. Informat., vol. 14, no. 4, pp. 1347–1360,
Apr. 2018.

[123] J. C. Linford, J. Michalakes, M. Vachharajani, and A. Sandu, ‘‘Automatic
generation of multicore chemical kernels,’’ IEEE Trans. Parallel Distrib.
Syst., vol. 22, no. 1, pp. 119–131, Jan. 2011.

[124] M. Amini, B. Creusillet, S. Even, R. Keryell, O. Goubier, S. Guelton,
and P. Villalon, ‘‘Par4All: From convex array regions to heterogeneous
computing,’’ in Proc. 2nd Int. Workshop Polyhedral Compilation Techn.,
Impact, Dec. 2012, pp. 1–21.

[125] P. H. Lin, C. Liao, D. J. Quinlan, and S. Guzik, ‘‘Experiences of using the
OpenMP accelerator model to port DOE stencil applications,’’ in Proc.
Int. Workshop OpenMP. Cham, Switzerland: Springer, 2015, pp. 45–59.

[126] L. Wan, X. Cui, Y. Li, W. Zheng, and X. Yuan, ‘‘HeteroPP: A directive-
based heterogeneous cooperative parallel programming framework,’’
Concurrency Comput., Pract. Exper., vol. 5, p. e8014, Jan. 2024.

[127] U. J. Kapasi, W. J. Dally, S. Rixner, P. R. MAttson, J. D. Owens, and
B. Khailany, ‘‘Efficient conditional operations for data-parallel architec-
tures,’’ in Proc. 33rd Annu. IEEE/ACM Int. Symp. Microarchitecture,
Dec. 2000, pp. 159–170.

[128] S. Rixner, W. J. Dally, U. J. Kapasi, B. Khailany, A. Lopez-Lagunas,
P. R. Mattson, and J. D. Owens, ‘‘A bandwidth-efficient architecture for
media processing,’’ in Proc. 31st Annu. ACM/IEEE Int. Symp. Microar-
chitecture, Dec. 1998, pp. 3–13.

[129] W. J. Dally, F. Labonte, A. Das, P. Hanrahan, J.-H. Ahn, J. Gummaraju,
M. Erez, N. Jayasena, I. Buck, T. J. Knight, and U. J. Kapasi,
‘‘Merrimac: Supercomputing with streams,’’ in Proc. ACM/IEEE Conf.
Supercomputing, Nov. 2003, p. 35.

[130] J. A. Stratton, S. S. Stone, and W.-M.-W. Hwu, ‘‘MCUDA: An efficient
implementation of CUDA kernels for multi-core CPUs,’’ in Languages
and Compilers for Parallel Computing. Berlin, Germany: Springer, 2008,
pp. 16–30.

[131] J. Zhao, B. Li, W. Nie, Z. Geng, R. Zhang, X. Gao, B. Cheng, C. Wu,
Y. Cheng, Z. Li, P. Di, K. Zhang, and X. Jin, ‘‘AKG: Automatic kernel
generation for neural processing units using polyhedral transformations,’’
in Proc. 42nd ACM SIGPLAN Int. Conf. Program. Lang. Design
Implement., Jun. 2021, pp. 1233–1248.

[132] J. Wang, X. Deng, K.-T.-A. Wang, and Z. Ye, ‘‘Adapting SYCL’s SIMT
programming paradigm for accelerators via program reconstruction,’’ in
Proc. 50th Int. Conf. Parallel Process. Workshop, Lemont, IL, USA,
Aug. 2021, p. 6.

[133] H. G. Dietz and F. Roberts. (2012). Execution Of MIMD MIPSEL
Assembly Programs Within CUDA/OpenCL GPUs. [Online]. Available:
http://aggregate.ece.engr.uky.edu/MOG/icpp12.pdf

[134] NVIDIA. (Nov. 2015). CuBLAS User Guide. Accessed: Jan. 2016.
[Online]. Available: https://docs.nvidia.com/cuda/cublas/index.html

[135] CUDA Toolkit Documentation. NVIDIA Developer Zone, NVIDIA Corp.,
Santa Clara, CA, USA, 2019.

[136] A. Gloster and L. Ó. Náraigh, ‘‘CuSten—CUDA finite difference and
stencil library,’’ SoftwareX, vol. 10, Jul. 2019, Art. no. 100337.

[137] P. Sanders, ‘‘Emulating MIMD behavior on SIMD machines,’’ in Proc.
EUROSIM, 1994, pp. 313–320.

[138] P. Sanders, ‘‘Optimizing the emulation of MIMD behavior on SIMD
machines,’’Math. Res., vol. 96, pp. 320–321, Oct. 1996.

[139] H. G. Dietz and W. E. Cohen, ‘‘A massively parallel MIMD implemented
by SIMD hardware,’’ Dept. School Elect. Eng., Purdue Univ., West
Lafayette, IN, USA, Tech. Rep. TR-EE 92-4, 1992.

[140] T. Axelrod, P. Dubois, and P. Eltgroth, ‘‘A simulator for MIMD
performance prediction: Application to the S-1 MkIIa multiprocessor,’’
Parallel Comput., vol. 1, nos. 3–4, pp. 237–274, Dec. 1984.

[141] T. Blank, ‘‘The MasPar MP-1 architecture,’’ in Proc. 35th IEEE Comput.
Soc. Int. Conf. Intellectual Leverage, Feb. 1990, pp. 20–24.

[142] M. Nilsson and H. Tanaka, ‘‘MIMD execution by SIMD computers,’’
J. Inf. Process., vol. 13, no. 1, pp. 58–61, 1990.

[143] N. Abu-Ghazaleh, P. A. Wilsey, X. Fan, and D. Hensgen, ‘‘Variable
instruction issue for efficient MIMD interpretation on SIMD machines,’’
in Proc. 8th Int. Parallel Process. Symp., Apr. 1994, pp. 304–310.

[144] P. Hudak and E. Hohr, ‘‘Graphinators and the duality of SIMD and
MIMD,’’ in Proc. ACM Conf. LISP Funct. Program., New York, NY,
USA, Jan. 1988, pp. 224–234.

[145] R. J. Collins, ‘‘Multiple instruction multiple data emulation on the
connection machine,’’ Dept. Comput. Sci., Univ. California, Oakland,
CA, USA, Tech. Rep. CSD-910004, 1991.

[146] M. S. Littmari and C. D. Metcalf, ‘‘An exploration of asynchronous data-
parallelism,’’ Dept. Comput. Sci., Yale Univ., New Haven, CT, USA,
Tech. Rep. YALEU/DCS/TR-684, 1988.

[147] P. A. Wilsey and D. A. Hensgen, ‘‘Exploiting SIMD computers for
general purpose computation,’’ in Proc. 6th Int. Parallel Process. Symp.,
Mar. 1992, pp. 675–679.

[148] P. A. Wilsey, D. A. Hensgen, N. B. Abu-Ghazaleh, C. E. Slusher,
and D. Y. Hollinden, ‘‘The concurrent execution of non-communicating
programs on SIMD processors,’’ in Proc. 4th Symp. Frontiers Massively
Parallel Comput., Jan. 1992, pp. 29–30.

[149] W. J. Bouknight, S. A. Denenberg, D. E. McIntyre, J. M. Randall,
A. H. Sameh, and D. L. Slotnick, ‘‘The illiac IV system,’’ Proc. IEEE,
vol. 60, no. 4, pp. 369–388, Apr. 1972.

[150] ATI CTM Guide, AMD Inc, Santa Clara, CA, USA, 2006.
[151] D.-Y. Hong, Y.-P. Liu, S.-Y. Fu, J.-J. Wu, and W.-C. Hsu, ‘‘Improving

SIMD parallelism via dynamic binary translation,’’ ACM Trans. Embed-
ded Comput. Syst., vol. 17, no. 3, pp. 1–27, May 2018.

[152] Y.-P. Liu, D.-Y. Hong, J.-J. Wu, S.-Y. Fu, and W.-C. Hsu, ‘‘Exploiting
SIMD asymmetry in ARM-to-x86 dynamic binary translation,’’ ACM
Trans. Archit. Code Optim., vol. 16, no. 1, pp. 1–24, Mar. 2019.

[153] A. Levinthal and T. Porter, ‘‘Chap—A SIMD graphics processor,’’ ACM
SIGGRAPH Comput. Graph., vol. 18, no. 3, pp. 77–82, 1984.

[154] R. Allen and K. Kennedy, ‘‘Automatic translation of FORTRAN
programs to vector form,’’ACMTrans. Program. Lang. Syst., vol. 9, no. 4,
pp. 491–542, Oct. 1987.

[155] D. Levine, D. Callahan, and J. Dongarra, ‘‘A comparative study of
automatic vectorizing compilers,’’ Parallel Comput., vol. 17, nos. 10–11,
pp. 1223–1244, Dec. 1991.

[156] P. Wu, A. E. Eichenberger, A. Wang, and P. Zhao, ‘‘An integrated
simdization framework using virtual vectors,’’ in Proc. 19th Annu. Int.
Conf. Supercomputing, Jun. 2005, pp. 169–178.

[157] A. E. Eichenbergert, K. O’Brien, K. O’Brien, P. Wu, T. Chen, P. H. Oden,
D. A. Prener, J. C. Shepherd, B. So, Z. Sura, A. Wang, T. Zhang, P. Zhao,
and M. Gschwind, ‘‘Optimizing compiler for the CELL processor,’’ in
Proc. 14th Int. Conf. Parallel Architectures Compilation Techn. (PACT),
Sep. 2005, pp. 161–172.

[158] S. Min, A. Basumallik, and R. Eigenmann, ‘‘Optimizing OpenMP
programs on software distributed shared memory systems,’’ Int. J.
Parallel Program., vol. 31, pp. 225–249, Jun. 2003.

[159] S.-J. Min and R. Eigenmann, ‘‘Optimizing irregular shared-memory
applications for clusters,’’ inProc. 22nd Annu. Int. Conf. Supercomputing,
Jun. 2008, pp. 256–265.

[160] A. Basumallik and R. Eigenmann, ‘‘Towards automatic translation of
OpenMP to MPI,’’ in Proc. 19th Annu. Int. Conf. Supercomputing,
Jun. 2005, pp. 189–198.

[161] K. O’Brien, K. O’Brien, Z. Sura, T. Chen, and T. Zhang, ‘‘Supporting
OpenMP on cell,’’ Int. J. Parallel Program., vol. 36, no. 3, pp. 289–311,
Jun. 2008.

[162] H. Wei and J. Yu, ‘‘Loading OpenMP to cell: An effective compiler
framework for heterogeneous multi-core chip,’’ in Proc. Int. Workshop
OpenMP (IWOMP), 2007, pp. 129–133.

[163] A. ElTantawy and T. M. Aamodt, ‘‘MIMD synchronization on SIMT
architectures,’’ in Proc. 49th Annu. IEEE/ACM Int. Symp. Microarchi-
tecture (MICRO), Oct. 2016, pp. 1–14.

VOLUME 12, 2024 34373



D. Mustafa et al.: MIMD Programs Execution Support on SIMD Machines: A Holistic Survey

[164] A. Ramamurthy, ‘‘Towards scalar synchronization in SIMT architec-
tures,’’ Dept. Elect. Comput. Eng., Univ. British Columbia, Vancouver,
BC, Canada, Tech. Rep., 2011, doi: 10.14288/1.0072253.

[165] W. W. L. Fung, I. Sham, G. Yuan, and T. M. Aamodt, ‘‘Dynamic warp
formation and scheduling for efficient GPU control flow,’’ in Proc. 40th
Annu. IEEE/ACM Int. Symp. Microarchitecture (MICRO), Dec. 2007,
pp. 407–420.

[166] C. Mendis, A. Jain, P. Jain, and S. Amarasinghe, ‘‘Revec: Program
rejuvenation through revectorization,’’ in Proc. 28th Int. Conf. Compiler
Construct., Feb. 2019, pp. 29–41.

[167] G. Ozen, ‘‘Compiler and runtime based parallelization & optimization
for GPUs,’’ Ph.D. dissertation, Dept. Comput. Archit., Universitat
Politècnica Catalunya, Barcelona, Spain, 2017.

[168] J. Wang, N. Rubin, A. Sidelnik, and S. Yalamanchili, ‘‘Dynamic thread
block launch: A lightweight execution mechanism to support irregular
applications on GPUs,’’ in Proc. ACM/IEEE 42nd Annu. Int. Symp.
Comput. Archit. (ISCA), Jun. 2015, pp. 528–540.

[169] Y. Yang and H. Zhou, ‘‘CUDA-NP: Realizing nested thread-level
parallelism in GPGPU applications,’’ in Proc. 19th ACM SIGPLAN
Symp. Princ. Pract. Parallel Program., 2014, pp. 93–106.

[170] W. W. L. Fung, I. Sham, G. Yuan, and T. M. Aamodt, ‘‘Dynamic warp
formation: Efficient MIMD control flow on SIMD graphics hardware,’’
ACM Trans. Archit. Code Optim., vol. 6, no. 2, pp. 1–37, Jun. 2009.

[171] A. ElTantawy, J. W. Ma, M. O’Connor, and T. M. Aamodt, ‘‘A scalable
multi-path microarchitecture for efficient GPU control flow,’’ in Proc.
IEEE 20th Int. Symp. High Perform. Comput. Archit. (HPCA), Feb. 2014,
pp. 248–259.

[172] S. Lee, ‘‘Toward compiler-driven adaptive execution and its application
to GPU architectures,’’ Ph.D. dissertation, Dept. Elect. Comput. Eng.,
Purdue Univ., West Lafayette, IN, USA, 2011.

[173] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands,
K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf, and S. W. Williams,
‘‘The landscape of parallel computing research: A view from
Berkeley,’’ Dept. EECS Dept., Univ. California, Berkeley, CA, USA,
Tech. Rep. EECS-2006-183, 2006.

[174] K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter, L. Oliker,
D. Patterson, J. Shalf, and K. Yelick, ‘‘Stencil computation optimization
and auto-tuning on state-of-the-art multicore architectures,’’ in Proc.
ACM/IEEE Conf. Supercomputing, Nov. 2008, pp. 1–12.

[175] T. Henretty, K. Stock, L.-N. Pouchet, F. Franchetti, J. Ramanujam, and
P. Sadayappan, ‘‘Data layout transformation for stencil computations on
short-vector SIMD architectures,’’ in Proc. CC/ETAPS. Berlin, Germany:
Springer-Verlag, 2011, pp. 225–245.

[176] T. Henretty, R. Veras, F. Franchetti, L.-N. Pouchet, J. Ramanujam, and
P. Sadayappan, ‘‘A stencil compiler for short-vector SIMD architectures,’’
in Proc. 27th Int. ACM Conf. Int. Conf. supercomputing, Jun. 2013,
pp. 13–24.

[177] X. Huo, V. Ravi, W. Ma, and G. Agrawal, ‘‘An execution strategy
and optimized runtime support for parallelizing irregular reductions on
modern GPUs,’’ in Proc. Int. Conf. Supercomputing, May 2011, pp. 2–11.

[178] E. Z. Zhang, Y. Jiang, Z. Guo, K. Tian, and X. Shen, ‘‘On-the-fly
elimination of dynamic irregularities for GPU computing,’’ in Proc.
16th Int. Conf. Architectural Support Program. Lang. Operating Syst.,
Mar. 2011, pp. 369–380.

[179] T. W. Clark, R. V. Hanxleden, K. Kennedy, C. Koelbel, and L. R. Scott,
‘‘Evaluating parallel languages for molecular dynamics computations,’’
in Proc. Scalable High Perform. Comput. Conf., Williamsburg, VA, USA,
Apr. 1992, pp. 1–9.

[180] S. Tomboulian and M. Pappas, ‘‘Indirect addressing and load balancing
for faster solution toMandelbrot set on SIMD architectures,’’ in Proc. 3rd
Symp. Frontiers Massively Parallel Comput., Oct. 1990, pp. 443–450.

[181] R. V. Hanxleden and K. Kennedy, ‘‘Relaxing SIMD control flow
constraints using loop transformations,’’ Center Res. Parallel Comput.,
Houston, TX, USA, Tech. Rep. CRPC-TR92207, 1992.

[182] M. Willebeek-Lemair and A. P. Reeves, ‘‘Solving nonuniform problems
on SIMD computers: Case study on region growing,’’ J. Parallel Distrib.
Comput., vol. 8, no. 2, pp. 135–149, Feb. 1990.

[183] M. Burtscher and K. Pingali, ‘‘An efficient CUDA implementation
of the tree-based Barnes Hut n-body algorithm,’’ in GPU Computing
Gems Emerald Edition. San Mateo, CA, USA: Morgan Kaufmann, 2011,
pp. 75–92.

[184] P. Harish and P. J. Narayanan, ‘‘Accelerating large graph algorithms on
the GPU using CUDA,’’ in Proc. 14th Int. Conf. High Perform. Comput.,
2007, pp. 197–208.

[185] L. Luo, M. Wong, and W.-M. Hwu, ‘‘An effective GPU implementation
of breadth-first search,’’ in Proc. 47th Design Autom. Conf., Jun. 2010,
pp. 52–55.

[186] D. Merrill, M. Garland, and A. Grimshaw, ‘‘Scalable GPU graph
traversal,’’ in Proc. 17th ACM SIGPLAN Symp. Princ. Pract. Parallel
Program., Feb. 2012, pp. 117–127.

[187] R. Nasre, M. Burtscher, and K. Pingali, ‘‘Morph algorithms on GPUs,’’
in Proc. 18th ACM SIGPLAN Symp. Princ. Pract. parallel Program.,
Feb. 2013, pp. 147–156.

[188] S. Tzeng, A. Patney, and J. D. Owens, ‘‘Task management for irregular-
parallel workloads on the GPU,’’ in Proc. Conf. High Perform. Graph.,
2010, pp. 29–37.

[189] M. Mendez-Lojo, M. Burtscher, and K. Pingali, ‘‘A GPU implementation
of inclusion-based points-to analysis,’’ in Proc. 17th ACM SIGPLAN
Symp. Princ. Pract. Parallel Program., 2012, pp. 107–116.

[190] N. Sundaram, A. Raghunathan, and S. T. Chakradhar, ‘‘A framework for
efficient and scalable execution of domain-specific templates on GPUs,’’
in Proc. IEEE Int. Symp. Parallel Distrib. Process., May 2009, pp. 1–12.

[191] A. E. Eichenberger, P. Wu, and K. O’Brien, ‘‘Vectorization for SIMD
architectures with alignment constraints,’’ in Proc. ACM SIGPLAN Conf.
Program. Lang. Design Implement., Jun. 2004, pp. 82–93.

[192] D. Nuzman, I. Rosen, and A. Zaks, ‘‘Auto-vectorization of interleaved
data for SIMD,’’ in Proc. 27th ACM SIGPLAN Conf. Program. Lang.
Design Implement., Jun. 2006, pp. 132–143.

[193] L. Yuan, H. Cao, Y. Zhang, K. Li, P. Lu, and Y. Yue, ‘‘Temporal
vectorization for stencils,’’ in Proc. Int. Conf. High Perform. Comput.,
Netw., Storage Anal., Louis, MO, USA, Nov. 2021, pp. 01–14.

[194] M. Kong, R. Veras, K. Stock, F. Franchetti, L.-N. Pouchet, and
P. Sadayappan, ‘‘When polyhedral transformations meet SIMD code
generation,’’ in Proc. 34th ACM SIGPLAN Conf. Program. Lang. Design
Implement., Jun. 2013, pp. 127–138.

[195] D. Habich, J. Pietrzyk, A. Krause, J. Hildebrandt, andW. Lehner, ‘‘To use
or not to use the SIMD gather instruction?’’ in Proc. 18th Int. Workshop
Data Manag. New Hardw., Jun. 2022, pp. 1–5.

[196] L. Chen, X. Huo, and G. Agrawal, ‘‘Scheduling methods for accelerating
applications on architectures with heterogeneous cores,’’ in Proc. IEEE
Int. Parallel Distrib. Process. Symp. Workshops, May 2014, pp. 48–57.

[197] J. Holewinski, L.-N. Pouchet, and P. Sadayappan, ‘‘High-performance
code generation for stencil computations on GPU architectures,’’ in Proc.
26th ACM Int. Conf. Supercomputing, Jun. 2012, pp. 311–320.

[198] J. Meng and K. Skadron, ‘‘A performance study for iterative stencil
loops on GPUs with ghost zone optimizations,’’ Int. J. Parallel Program.,
vol. 39, no. 1, pp. 115–142, Feb. 2011.

[199] A. Nguyen, N. Satish, J. Chhugani, C. Kim, and P. Dubey, ‘‘3.5-D
blocking optimization for stencil computations on modern CPUs and
GPUs,’’ in SC : Proc. ACM/IEEE Int. Conf. High Perform. Comput.,
Netw., Storage Anal., Nov. 2010, pp. 1–13.

[200] B.Wu, Z. Zhao, E. Z. Zhang, Y. Jiang, and X. Shen, ‘‘Complexity analysis
and algorithm design for reorganizing data to minimize non-coalesced
memory accesses on GPU,’’ in Proc. 18th ACM SIGPLAN Symp. Princ.
Pract. Parallel Program., Feb. 2013, pp. 57–68.

[201] P. Jiang and G. Agrawal, ‘‘Conflict-free vectorization of associative
irregular applications with recent SIMD architectural advances,’’ in Proc.
Int. Symp. Code Gener. Optim., Feb. 2018, pp. 175–187.

[202] G. Teodoro, T. Kurc, J. Kong, L. Cooper, and J. Saltz, ‘‘Comparative
performance analysis of Intel Xeon Phi, GPU, and CPU,’’ 2013,
arXiv:1311.0378.

[203] A. Ramachandran, J. Vienne, R. V. D. Wijngaart, L. Koesterke, and
I. Sharapov, ‘‘Performance evaluation of NAS parallel benchmarks on
Intel Xeon Phi,’’ in Proc. 42nd Int. Conf. Parallel Process., Oct. 2013,
pp. 736–743.

[204] S. Jha, ‘‘Improvingmainmemory hash joins on Intel Xeon Phi processors:
An experimental approach,’’ in Proc. PVLDB, 2015, pp. 642–653.

[205] J. Fang, H. Sips, L. Zhang, C. Xu, Y. Che, and A. L. Varbanescu, ‘‘Test-
driving Intel Xeon Phi,’’ inProc. 5th ACM/SPEC Int. Conf. Perform. Eng.,
Mar. 2014, pp. 137–148.

[206] OpenMP Architecture Review Board. (2021). The OpenMP API
Specification for Parallel Programming. [Online]. Available:
https://www.openmp.org/specifications/

[207] H. G. Dietz and B. D. Young, ‘‘MIMD interpretation on a GPU,’’ in
Languages and Compilers for Parallel Computing (Lecture Notes in
Computer Science), vol. 5898, G. R. Gao, L. L. Pollock, J. Cavazos, and
X. Li, Eds. Berlin, Germany: Springer, 2010.

34374 VOLUME 12, 2024

http://dx.doi.org/10.14288/1.0072253


D. Mustafa et al.: MIMD Programs Execution Support on SIMD Machines: A Holistic Survey

[208] G.-Y. Lueh, K. Chen, G. Chen, J. Fuentes, W.-Y. Chen, F. Fu, H. Jiang,
H. Li, and D. Rhee, ‘‘C-For-Metal: High performance simd programming
on Intel GPUs,’’ in Proc. IEEE/ACM Int. Symp. Code Gener. Optim.
(CGO), Feb. 2021, pp. 289–300.

[209] X. Tian, H. Saito, M. Girkar, S. V. Preis, S. S. Kozhukhov,
A. G. Cherkasov, C. Nelson, N. Panchenko, and R. Geva, ‘‘Compiling
C/C++ SIMD extensions for function and loop vectorizaion on
multicore-SIMD processors,’’ in Proc. IEEE 26th Int. Parallel Distrib.
Process. Symp. Workshops PhD Forum, May 2012, pp. 2349–2358.

[210] MPI Forum, ‘‘MPI: A message passing interface,’’ in Proc. Supercomput-
ing, Dec. 1993, pp. 878–883.

[211] W.-M. Hwu, D. Kiirk, S. Ryoo, C. Rodriigues, J. Stratton, and K. Huang,
‘‘Performance insights on executing non-graphics applications on CUDA
on the NVIDIA GeForce 8800 GTX,’’ in Proc. IEEE Hot Chips 19th
Symp. (HCS), Aug. 2007, pp. 1–11.

[212] D. Gerzhoy, X. Sun, M. Zuzak, and D. Yeung, ‘‘Nested MIMD-SIMD
parallelization for heterogeneous microprocessors,’’ ACM Trans. Archit.
Code Optim., vol. 16, no. 4, pp. 1–27, Dec. 2019.

[213] H. Sharma, J. Park, D.Mahajan, E. Amaro, J. K. Kim, C. Shao, A. Mishra,
and H. Esmaeilzadeh, ‘‘From high-level deep neural models to FPGAs,’’
in Proc. 49th Annu. IEEE/ACM Int. Symp. Microarchitecture (MICRO),
Oct. 2016, pp. 1–12.

[214] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam,
‘‘DianNao: A small-footprint high-throughput accelerator for ubiquitous
machine-learning,’’ in Proc. ASPLOS, 2014, pp. 269–284.

[215] Y.-H. Chen, T. Krishna, J. Emer, andV. Sze, ‘‘Eyeriss: An energy-efficient
reconfigurable accelerator for deep convolutional neural networks,’’ in
IEEE Int. Solid-State Circuits Conf. (ISSCC)Dig. Tech. Papers, Jan. 2016,
pp. 127–138.

[216] M. Gao, J. Pu, X. Yang, M. Horowitz, and C. Kozyrakis, ‘‘TETRIS:
Scalable and efficient neural network acceleration with 3D memory,’’ in
Proc. ASPLOS, 2017, pp. 751–764.

[217] A. Yazdanbakhsh, K. Samadi, N. S. Kim, H. Esmaeilzadeh, H. Falahati,
and P. J. Wolfe, ‘‘GANAX: A unified MIMD-SIMD acceleration for
generative adversarial networks,’’ in Proc. ACM/IEEE 45th Annu. Int.
Symp. Comput. Archit. (ISCA), Jun. 2018, pp. 650–661.

[218] B. Domonkos and G. Jakab, ‘‘A programming model for GPU-based
parallel computing with scalability and abstraction,’’ in Proc. 25th Spring
Conf. Comput. Graph., Apr. 2009, pp. 103–111.

[219] J. Cabezas, M. Jordà, I. Gelado, N. Navarro, andW.-M. Hwu, ‘‘GPU-SM:
Shared memory multi-GPU programming,’’ in Proc. 8th Workshop Gen.
Purpose Process. GPUs, Feb. 2015, pp. 13–24.

[220] Y. Xu, R. Wang, N. Goswami, T. Li, L. Gao, and D. Qian, ‘‘Software
transactional memory for GPU architectures,’’ in Proc. Annu. IEEE/ACM
Int. Symp. Code Gener. Optim., Feb. 2014, pp. 1–14.

[221] S. W. Min, K. Wu, S. Huang, M. Hidayetoğlu, J. Xiong, E. Ebrahimi,
D. Chen, and W.-M. Hwu, ‘‘PyTorch-Direct: Enabling GPU centric data
access for very large graph neural network training with irregular
accesses,’’ 2021, arXiv:2101.07956.

[222] T. Ben-Nun, M. Sutton, S. Pai, and K. Pingali, ‘‘Groute: Asynchronous
multi-GPU programming model with applications to large-scale graph
processing,’’ ACM Trans. Parallel Comput., vol. 7, no. 3, pp. 1–27,
Sep. 2020.

[223] J. Choi, D. F. Richards, and L. V. Kale, ‘‘Improving scalability with GPU-
aware asynchronous tasks,’’ 2022, arXiv:2202.11819.

[224] J. Meng, D. Tarjan, and K. Skadron, ‘‘Dynamic warp subdivision for
integrated branch andmemory divergence tolerance,’’ in Proc. 37th Annu.
Int. Symp. Comput. Archit., Jun. 2010, pp. 235–246.

[225] M. Rhu and M. Erez, ‘‘The dual-path execution model for efficient GPU
control flow,’’ in Proc. IEEE 19th Int. Symp. High Perform. Comput.
Archit. (HPCA), Feb. 2013, pp. 591–602.

[226] G. Diamos, B. Ashbaugh, S. Maiyuran, A. Kerr, H. Wu, and
S. Yalamanchili, ‘‘SIMD re-convergence at thread frontiers,’’ in
Proc. 44th Annu. IEEE/ACM Int. Symp. Microarchitecture (MICRO),
Dec. 2011, pp. 477–488.

[227] W.W. L. Fung and T.M. Aamodt, ‘‘Thread block compaction for efficient
SIMT control flow,’’ in Proc. IEEE 17th Int. Symp. High Perform.
Comput. Archit., Feb. 2011, pp. 25–36.

[228] V. Narasiman, M. Shebanow, C. J. Lee, R. Miftakhutdinov, O. Mutlu,
and Y. N. Patt, ‘‘Improving GPU performance via large warps and two-
level warp scheduling,’’ in Proc. 44th Annu. IEEE/ACM Int. Symp.
Microarchitecture (MICRO), Dec. 2011, pp. 308–317.

[229] M. Rhu and M. Erez, ‘‘CAPRI: Prediction of compaction-adequacy for
handling control-divergence in GPGPU architectures,’’ in Proc. 39th
Annu. Int. Symp. Comput. Archit. (ISCA), Jun. 2012, pp. 61–71.

[230] A. ElTantawy and T. M. Aamodt, ‘‘Warp scheduling for fine-grained
synchronization,’’ in Proc. IEEE Int. Symp. High Perform. Comput.
Archit. (HPCA), Feb. 2018, pp. 375–388.

[231] Y. Lee, R. Krashinsky, V. Grover, S. W. Keckler, and K. Asanovic,
‘‘Convergence and scalarization for data-parallel architectures,’’ in Proc.
IEEE/ACM Int. Symp. Code Gener. Optim. (CGO), Feb. 2013, pp. 1–11.

[232] S. W. Keckler, W. J. Dally, B. Khailany, M. Garland, and D. Glasco,
‘‘GPUs and the future of parallel computing,’’ IEEEMicro, vol. 31, no. 5,
pp. 7–17, Sep. 2011.

[233] R. Krashinsky, C. Batten, M. Hampton, S. Gerding, B. Pharris, J. Casper,
and K. Asanovic, ‘‘The vector-thread architecture,’’ in Proc. 31st Annu.
Int. Symp. Comput. Archit., Mar. 2004, pp. 52–63.

[234] Y. Wang, S. Chen, J. Wan, J. Meng, K. Zhang, W. Liu, and X. Ning,
‘‘A multiple SIMD, multiple data (MSMD) architecture: Parallel
execution of dynamic and static SIMD fragments,’’ in Proc. IEEE
19th Int. Symp. High Perform. Comput. Archit. (HPCA), Feb. 2013,
pp. 603–614.

[235] W. W. L. Fung, I. Singh, A. Brownsword, and T. M. Aamodt, ‘‘Hard-
ware transactional memory for GPU architectures,’’ in Proc. 44th
Annu. IEEE/ACM Int. Symp. Microarchitecture (MICRO), Dec. 2011,
pp. 296–307.

[236] A. Yilmazer and D. Kaeli, ‘‘HQL: A scalable synchronization mechanism
for GPUs,’’ in Proc. IEEE 27th Int. Symp. Parallel Distrib. Process.,
May 2013, pp. 475–486.

[237] A. Li, G.-J. van den Braak, H. Corporaal, and A. Kumar, ‘‘Fine-
grained synchronizations and dataflow programming on GPUs,’’ in Proc.
29th ACM Int. Conf. Supercomputing, New York, NY, USA, Jun. 2015,
pp. 109–118.

[238] D. Thuerck, ‘‘Supporting irregularity in throughput-oriented computing
by SIMT-SIMD integration,’’ in Proc. IEEE/ACM 10th Workshop
Irregular Appl., Architectures Algorithms (IA3), Nov. 2020, pp. 31–35.

[239] Y. Park, J. J. K. Park, H. Park, and S. Mahlke, ‘‘Libra: Tailoring SIMD
execution using heterogeneous hardware and dynamic configurability,’’
in Proc. 45th Annu. IEEE/ACM Int. Symp. Microarchitecture, Dec. 2012,
pp. 84–95.

[240] N. B. Abu-Ghazaleh and P. A. Wilsey, ‘‘Shared control—Supporting
control parallelism using a SIMD-like architecture,’’ in Proc. Eur. Conf.
Parallel Process. Berlin, Germany: Springer, 1998, pp. 1089–1099.

[241] Y. Xu, L. Gao, R. Wang, Z. Luan, W. Wu, and D. Qian, ‘‘Lock-based
synchronization for GPU architectures,’’ inProc. ACM Int. Conf. Comput.
Frontiers, May 2016, pp. 205–213.

[242] B. Ren, G. Agrawal, J. R. Larus, T. Mytkowicz, T. Poutanen, and
W. Schulte, ‘‘SIMD parallelization of applications that traverse irregular
data structures,’’ in Proc. IEEE/ACM Int. Symp. Code Gener. Optim.
(CGO), Feb. 2013, pp. 1–10.

[243] A. Betts, N. Chong, A. Donaldson, S. Qadeer, and P. Thomson,
‘‘GPUVerify: A verifier for GPU kernels,’’ inProc. ACM Int. Conf. Object
Oriented Program. Syst. Lang. Appl., Oct. 2012, pp. 113–132.

[244] G. Li, P. Li, G. Sawaya, G. Gopalakrishnan, I. Ghosh, and S. P. Rajan,
‘‘GKLEE: Concolic verification and test generation for GPUs,’’ in Proc.
17th ACM SIGPLAN Symp. Princ. Pract. Parallel Program., 2012,
pp. 215–224.

[245] R. Sharma, M. Bauer, and A. Aiken, ‘‘Verification of producer-consumer
synchronization in GPU programs,’’ in Proc. 36th ACM SIGPLAN Conf.
Program. Lang. Design Implement., Jun. 2015, pp. 88–98.

[246] M. Zheng, V. T. Ravi, F. Qin, and G. Agrawal, ‘‘GRace: A low-overhead
mechanism for detecting data races in GPU programs,’’ ACM SIGPLAN
Notices, vol. 46, no. 8, pp. 135–146, 2011.

[247] A. Habermaier and A. Knapp, ‘‘On the correctness of the SIMT execution
model of GPUs,’’ in Programming Languages and Systems. Berlin,
Germany: Springer, 2012, pp. 316–335.

[248] A. Bik, M. Girkar, P. M. Grey, and X. Tian, ‘‘Automatic intra-register
vectorization for the Intel architecture,’’ Int. J. Parallel Program., vol. 30,
pp. 65–98, Apr. 2002.

[249] N. Sreraman and R. Govindarajan, ‘‘A vectorizing compiler for multime-
dia extensions,’’ Int. J. Parallel Program., vol. 28, no. 4, pp. 363–400,
Aug. 2000.

[250] H. Zima and B. Chapman, Supercompilers for Parallel and Vector
Computers. New York, NY, USA: ACM Press, 1990.

VOLUME 12, 2024 34375



D. Mustafa et al.: MIMD Programs Execution Support on SIMD Machines: A Holistic Survey

[251] C. G. Lee and M. G. Stoodley, ‘‘Simple vector microprocessors
for multimedia applications,’’ in Proc. 31st Annu. ACM/IEEE Int.
Symp. Microarchitecture, Dec. 1998, pp. 25–36.

[252] D. Naishlos, M. Biberstein, S. Ben-David, and A. Zaks, ‘‘Vectorizing for
a SIMdD DSP architecture,’’ in Proc. Int. Conf. Compil., Archit. Synth.
Embedded Syst., Oct. 2003, pp. 2–11.

[253] K. Hou, H. Wang, and W.-C. Feng, ‘‘ASPaS: A framework for automatic
SIMDization of parallel sorting on x86-based many-core processors,’’ in
Proc. 29th ACM Int. Conf. Supercomputing, Jun. 2015, pp. 383–392.

[254] J. C. Beyer, E. J. Stotzer, A. Hart, and B. R. Supinski, ‘‘OpenMP for
accelerators,’’ in Proc. IWOMP, 2011, pp. 108–121.

[255] P. Flynn, X. Yi, and Y. Yan, ‘‘Exploring source-to-source compiler
transformation of OpenMP SIMD constructs for Intel AVX and arm SVE
vector architectures,’’ in Proc. 13th Int. Workshop Program. Models Appl.
Multicores Manycores, Apr. 2022, pp. 11–20.

[256] X. Huo, B. Ren, and G. Agrawal, ‘‘A programming system for xeon
phis with runtime SIMD parallelization,’’ in Proc. 28th ACM Int. Conf.
Supercomputing, Jun. 2014, pp. 283–292.

[257] L. Wan, W. Zheng, and X. Yuan, ‘‘HCE: A runtime system for efficiently
supporting heterogeneous cooperative execution,’’ IEEE Access, vol. 9,
pp. 147264–147279, 2021.

[258] W. Shu and M.-Y. Wu, ‘‘Solving dynamic and irregular problems on
SIMD architectures with runtime support,’’ in Proc. Int. Conf. Parallel
Process., vol. 2, Aug. 1993, pp. 167–174.

[259] M. A. Nichols, H. J. Siegel, and H. G. Dietz, ‘‘Data management and
control-flow aspects of an SIMD/SPMD parallel language/compiler,’’
IEEE Trans. Parallel Distrib. Syst., vol. 4, no. 2, pp. 222–234, Feb. 1993.

[260] K. Yuksel and W. Skarbek, ‘‘Deep alignment network: From MIMD to
SIMD platform,’’ Proc. SPIE, vol. 10808, pp. 67–74, Oct. 2018.

[261] N. Dryden, N. Maruyama, T. Moon, T. Benson, A. Yoo, M. Snir, and
B. van Essen, ‘‘Aluminum: An asynchronous, GPU-aware communica-
tion library optimized for large-scale training of deep neural networks
on HPC systems,’’ in Proc. IEEE/ACMMach. Learn. HPC Environments
(MLHPC), Nov. 2018, pp. 1–13.

[262] S. Carr, K. S. McKinley, and C.-W. Tseng, ‘‘Compiler optimizations for
improving data locality,’’ in Proc. 6th Int. Conf. Architectural Support
Program. Lang. Operating Syst., New York, NY, USA, Nov. 1994,
pp. 252–262.

[263] C. Ding and K. Kennedy, ‘‘Improving cache performance in dynamic
applications through data and computation reorganization at run time,’’
in Proc. ACM SIGPLAN Conf. Program. Lang. Design Implement.
New York, NY, USA: ACM Press, May 1999, pp. 229–241.

[264] H. Han and C. W. Tseng, ‘‘A comparison of locality transformations for
irregular codes,’’ in Proc. 5th Int. Workshop Lang., Compil., Run-Time
Syst. Scalable Comput. London, U.K.: Springer-Verlag, 2000, pp. 70–84.

[265] E.-J. Im and K. Yelick, ‘‘Optimizing sparse matrix computations for
register reuse in SPARSITY,’’ in Proc. Int. Conf. Comput. Sci. (ICCS).
London, U.K.: Springer-Verlag, May 2001, pp. 127–136.

[266] N. Mitchell, L. Carter, and J. Ferrante, ‘‘Localizing non-affine array
references,’’ in Proc. Int. Conf. Parallel Architectures Compilation
Techn., Oct. 1999, pp. 192–202.

[267] G. Zhu, P. Jiang, and G. Agrawal, ‘‘A methodology for characterizing
sparse datasets and its application to SIMD performance prediction,’’
in Proc. 28th Int. Conf. Parallel Archit. Compilation Techn. (PACT),
Sep. 2019, pp. 445–456.

[268] A. Bustamam, K. Burrage, and N. A. Hamilton, ‘‘Fast parallel Markov
clustering in bioinformatics using massively parallel computing on
GPU with CUDA and ELLPACK-R sparse format,’’ IEEE/ACM Trans.
Comput. Biol. Bioinf., vol. 9, no. 3, pp. 679–692, May 2012.

[269] Y. Chen, W. Li, R. Fan, and X. Liu, ‘‘GPU optimization for high-quality
kinetic fluid simulation,’’ IEEE Trans. Vis. Comput. Graphics, vol. 28,
no. 9, pp. 3235–3251, Sep. 2022.

[270] Y. Kim, F. Pacaud, K. Kim, and M. Anitescu, ‘‘Leveraging GPU batching
for scalable nonlinear programming through massive Lagrangian decom-
position,’’ 2021, arXiv:2106.14995.

[271] J. Austin, R. Corrales-Fatou, S. Wyetzner, and H. Lipson, ‘‘Titan:
A parallel asynchronous library for multi-agent and soft-body robotics
using NVIDIA CUDA,’’ in Proc. IEEE Int. Conf. Robot. Autom. (ICRA),
May 2020, pp. 7754–7760.

[272] W. Zhang, Z. Yan, Y. Lin, C. Zhao, and L. Peng, ‘‘A high throughput
B+tree for SIMD architectures,’’ IEEE Trans. Parallel Distrib. Syst.,
vol. 31, no. 3, pp. 707–720, Mar. 2020.

[273] B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States,
S. Swaminathan, and M. Karplus, ‘‘CHARMM: A program for
macromolecular energy, minimization, and dynamics calculations,’’
J. Comput. Chem., vol. 4, no. 2, pp. 187–217, Jun. 1983.

[274] H. Jin, M. Frumkin, and J. Yan, ‘‘The OpenMP implementation of NAS
parallel benchmarks and its performance,’’ NASA, Washington, DC,
USA, Tech. Rep. NAS-99-011.

[275] R. Das, D. J. Mavriplis, J. Saltz, S. Gupta, and R. Ponnusamy, ‘‘Design
and implementation of a parallel unstructured Euler solver using software
primitives,’’ AIAA J., vol. 32, no. 3, pp. 489–496, Mar. 1994.

[276] Y.-S. Hwang, R. Das, J. H. Saltz, M. Hodoscek, and B. R. Brooks,
‘‘Parallelizing molecular dynamics programs for distributed-memory
machines,’’ IEEE Comput. Sci. Eng., vol. 2, no. 2, pp. 18–29, May 1995.

[277] R. Nasre, M. Burtscher, and K. Pingali, ‘‘Atomic-free irregular computa-
tions on GPUs,’’ in Proc. 6th Workshop Gen. Purpose Processor Using
Graph. Process. Units, Mar. 2013, pp. 96–107.

[278] J. Shen and J. A. McCammon, ‘‘Molecular dynamics simulation
of superoxide interacting with superoxide dismutase,’’ Chem. Phys.,
vol. 158, nos. 2–3, pp. 191–198, Dec. 1991.

[279] W. Shu, ‘‘Chare kernel and its implementation on multicomputers,’’ Dept.
Comput. Sci., Univ. Illinois Urbana-Champaign, Champaign, IL, USA,
ProQuest Dissertations Publishing, 9021756, 1990.

[280] T. Iwashita, H. Nakashima, and Y. Takahashi, ‘‘Algebraic block multi-
color ordering method for parallel multi-threaded sparse triangular solver
in ICCG method,’’ in Proc. IEEE 26th Int. Parallel Distrib. Process.
Symp., May 2012, pp. 474–483.

[281] J. Park, M. Smelyanskiy, K. Vaidyanathan, A. Heinecke, D. D. Kalamkar,
X. Liu, M. M. A. Patwary, Y. Lu, and P. Dubey, ‘‘Efficient shared-
memory implementation of high-performance conjugate gradient bench-
mark and its application to unstructured matrices,’’ in Proc. Int. Conf.
High Perform. Comput., Netw., Storage Anal., Nov. 2014, pp. 945–955.

[282] L. Thébault, E. Petit, andQ.Dinh, ‘‘Scalable and efficient implementation
of 3D unstructured meshes computation: A case study on matrix
assembly,’’ in Proc. 20th ACM SIGPLAN Symp. Princ. Pract. Parallel
Program., New York, NY, USA, Jan. 2015, pp. 120–129.

[283] N. Goswami, R. Shankar, M. Joshi, and T. Li, ‘‘Exploring GPGPU
workloads: Characterization methodology, analysis and microarchitec-
ture evaluation implications,’’ in Proc. IEEE Int. Symp. Workload
Characterization (IISWC), Dec. 2010, pp. 1–10.

[284] L. Buatois, G. Caumon, and B. Lévy, ‘‘Concurrent number cruncher:
A GPU implementation of a general sparse linear solver,’’ Int. J. Parallel,
Emergent Distrib. Syst., vol. 24, no. 3, pp. 205–223, Jun. 2009.

[285] S. Lee and J. S. Vetter, ‘‘Early evaluation of directive-based GPU
programming models for productive exascale computing,’’ in Proc. Int.
Conf. High Perform. Comput., Netw., Storage Anal., Nov. 2012, pp. 1–11.

[286] C. R. Ferreira and M. Bader, ‘‘Load balancing and patch-based parallel
adaptive mesh refinement for tsunami simulation on heterogeneous
platforms using Xeon Phi coprocessors,’’ in Proc. Platform Adv. Sci.
Comput. Conf., Jun. 2017, p. 12.

[287] C. Rosales, ‘‘Porting to the Intel Xeon Phi: Opportunities and chal-
lenges,’’ in Proc. Extreme Scaling Workshop (XSW), Aug. 2013, pp. 1–7.

[288] F. Franchetti, S. Kral, J. Lorenz, and C. W. Ueberhuber, ‘‘Efficient
utilization of SIMD extensions,’’ Proc. IEEE, vol. 93, no. 2, pp. 409–425,
Feb. 2005.

[289] A. Barredo, J. M. Cebrian, M. Valero, M. Casas, and M. Moreto,
‘‘Efficiency analysis of modern vector architectures: Vector ALU sizes,
core counts and clock frequencies,’’ J. Supercomput., vol. 76, no. 3,
pp. 1960–1979, Mar. 2020.

[290] I. V. Afanasyev, V. V. Voevodin, V. V. Voevodin, K. Komatsu, and
H. Kobayashi, ‘‘Analysis of relationship between SIMD-processing
features used in NVIDIA GPUs and NEC SX-Aurora TSUBASA
vector processors,’’ in Proc. Int. Conf. Parallel Comput. Technol. Cham,
Switzerland: Springer, 2019, pp. 125–139.

[291] J. Langguth, Q. Lan, N. Gaur, and X. Cai, ‘‘Accelerating detailed
tissue-scale 3D cardiac simulations using heterogeneous CPU-Xeon Phi
computing,’’ Int. J. Parallel Program., vol. 45, no. 5, pp. 1236–1258,
Oct. 2017.

[292] B. Plazolles, D. E. Baz, M. Spel, V. Rivola, and P. Gegout, ‘‘Parallel
monte-carlo simulations on GPU and Xeon Phi for stratospheric
balloon envelope drift descent analysis,’’ in Proc. Intl. IEEE Conf.
Ubiquitous Intell. Comput., Adv. Trusted Comput., Scalable Comput.
Commun., Cloud Big Data Comput., Internet People, Smart World Congr.
(UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld), Jul. 2016, pp. 611–619.

34376 VOLUME 12, 2024



D. Mustafa et al.: MIMD Programs Execution Support on SIMD Machines: A Holistic Survey

[293] M. Burtscher, R. Nasre, and K. Pingali, ‘‘A quantitative study of irregular
programs onGPUs,’’ inProc. IEEE Int. Symp.WorkloadCharacterization
(IISWC), Nov. 2012, pp. 141–151.

[294] A. Basumallik and R. Eigenmann, ‘‘Optimizing irregular shared-memory
applications for distributed-memory systems,’’ in Proc. 11th ACM
SIGPLAN Symp. Princ. Pract. parallel Program., New York, NY, USA,
Mar. 2006, pp. 119–128.

[295] J. D. McCalpin, ‘‘Memory bandwidth and machine balance in current
high performance computers,’’ in Proc. IEEE Comput. Soc. Tech. Com-
mittee Comput. Archit. (TCCA) Newslett., Dec. 1995, pp. 19–25.

[296] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee,
and K. Skadron, ‘‘Rodinia: A benchmark suite for heterogeneous
computing,’’ in Proc. IEEE Int. Symp. Workload Characterization
(IISWC), Oct. 2009, pp. 44–54.

[297] M. Daga, A. M. Aji, and W.-C. Feng, ‘‘On the efficacy of a fused
CPU+GPU processor (or APU) for parallel computing,’’ in Proc. Symp.
Appl. Accel. High-Perform. Comput., Jul. 2011, pp. 141–149.

[298] K. L. Spafford, J. S. Meredith, S. Lee, D. Li, P. C. Roth, and J. S. Vetter,
‘‘The tradeoffs of fused memory hierarchies in heterogeneous computing
architectures,’’ in Proc. 9th Conf. Comput. Frontiers, May 2012,
pp. 103–112.

[299] A. Danalis, G. Marin, C. McCurdy, J. S. Meredith, P. C. Roth,
K. Spafford, V. Tipparaju, and J. S. Vetter, ‘‘The scalable heterogeneous
computing (SHOC) benchmark suite,’’ in Proc. 3rd Workshop General-
Purpose Comput. Graph. Process. Units, Mar. 2010, pp. 63–74.

[300] J. Dongarra and P. Luszczek, ‘‘Introduction to the HPC challenge
benchmark suite,’’ Dept. Comput. Sci., Univ. Tennessee, Knoxville, TN,
USA, Tech. Rep. UT-CS-05-544, 2005.

[301] C. Gregg and K. Hazelwood, ‘‘Where is the data?Why you cannot debate
CPU vs. GPU performance without the answer,’’ in Proc. IEEE Int. Symp.
Perform. Anal. Syst. Softw., Apr. 2011, pp. 134–144.

[302] M. Khalilov and A. Timoveev, ‘‘Performance analysis of CUDA,
OpenACC and OpenMP programming models on Tesla V100 GPU,’’ J.
Phys., Conf. Ser., vol. 1740, no. 1, Jan. 2021, Art. no. 012056.

DHEYA MUSTAFA (Member, IEEE) received the
bachelor’s degree in computer engineering from
Jordan University of Science and Technology,
in 2004, the master’s degree in computer engi-
neering from the University of Kentucky, in 2009,
and the Ph.D. degree in electrical and computer
engineering from PurdueUniversity, in 2013. He is
currently an Associate Professor with the Depart-
ment of Computer Engineering, The Hashemite
University, Jordan. Previously, he was with Intel

Corporation, Austin, TX, USA, from 2012 to 2016, as a Component Design
Engineer, focusing on pre- and post-silicon system validation. His research
interests include performance tuning and evaluation, parallel computing,
high-performance computing, heterogeneous architectures and systems,
artificial intelligence, natural language processing, and STEM education
technology.

RUBA ALKHASAWNEH (Member, IEEE)
received the B.S. degree in computer engineering
from Jordan University of Science and Technol-
ogy, the M.S. degree in computer engineering
from Yarmouk University, and the Ph.D. degree
in engineering from Virginia Commonwealth
University (VCU), in 2011. She was an Adjunct
Instructor with multiple online institutions,
from 2014 to 2020. She is currently an Assistant
Professor with Al-Ahliyya Amman University,

Amman, Jordan. Previously, she was with Intel Corporation, Austin, TX,
USA, from 2012 to 2020, as a System Validation Engineer, focusing on
pre/post-silicon validation by developing test plans and content to validate
leading-edge computer chips. Her research interests include semiconductor
design and validation, STEM education, AI, automation, and embedded
systems.

FADI OBEIDAT received the B.S. degree in
computer engineering from Jordan University of
Science and Technology (JUST), the M.S. degree
in computer engineering from Prince Faisal Infor-
mation Technology Center, Yarmouk University,
and the Ph.D. degree in computer engineering
from Virginia Commonwealth University (VCU).
He is currently an Application Engineering Man-
ager and an Emulation Consultant with Synopsys
Inc. Previously, he was a Prototyping/an Emula-

tion Architect with Cadence Design Systems (2020–2022), an Emulation
Consultant with Synopsys (2014–2020), and an Emulation Architect with
intel Corporation (2010–2014). He has an extensive experience in deploying
FPGAs and emulation technologies to accelerate system-on-chip (SoC)
design and verification. He had conducted research in the following
areas embedded systems, unmanned arial vehicles (UAVs), performance
modeling, emulation, and engineering education.

AHMED S. SHATNAWI received the M.S. degree
in software engineering from George Mason
University, in 2012, and the Ph.D. degree in
engineering from the University of Wisconsin
Milwaukee, in 2017. He is currently an Associate
Professor with the Software Engineering Depart-
ment, Jordan University of Science and Technol-
ogy. His research interests include intersection of
software engineering, information security, and
finding better ways to design safe, secure, and

reliable software systems.

VOLUME 12, 2024 34377


