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ABSTRACT In the global effort to promote green energy policies, understanding and optimizing boiler
combustion processes in coal-fired power plants is crucial. During unit start-ups, shutdowns, and load
deep peak regulation, significant energy-saving potential can be harnessed in boilers. This paper focuses
on a 600MW supercritical coal-fired power unit and presents an improved Least Squares Support Vector
Machine (LS-SVM)model with refined initial parameters. By combining the improved LS-SVMwith Affin-
ity Propagation (AP) clustering, a combustion efficiency model for boilers is constructed. The experimental
results demonstrate that the AP-based improved LS-SVMmodel not only reduces computational complexity
and training time but also enhances predictive accuracy and generalization performance.

INDEX TERMS Boiler efficiency, AP clustering algorithm, LS-SVM, hybrid modeling, oxygen content of
flue gas, carbon content in fly ash.

I. INTRODUCTION
Coal-fired power plants play a significant role in the global
electricity supply, but they face considerable environmental
and energy challenges. Despite the worldwide push for green
energy policies, coal-fired units must adapt to system load
fluctuations during start-ups, shutdowns, and load deep peak
regulation to ensure power grid stability.

However, these operational changes can lead to increased
coal consumption, reduced energy efficiency, but also offer
significant energy-saving potential. In the era of energy con-
servation and emission reduction, combustion optimization
has become a primary means of regulation [1]. Yet, the
intricate nonlinear, time-varying, and coupled nature of com-
bustion processes poses a formidable challenge for predicting
and controlling boiler combustion efficiency [2], [3], [4].
Traditional boiler combustion efficiency prediction methods
struggle to capture nonlinear relationships, thus inadequately
representing the complexity of combustion processes.
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Economic adjustments in boiler combustion encompass
reference indicators such as the net calorific value of coal,
oxygen content of flue gas, and carbon content in fly ash.
Constructing a boiler efficiency model based on these indica-
tors and performing real-time optimization can significantly
enhance combustion efficiency [5], [6], [7]. However, in real
coal-fired power plants, accurate measurement of boiler
parameters is difficult due to the absence of real-time net
calorific value of coal measurement devices, inaccurate and
costly carbon content in fly ash measurement, as well as
the high cost of oxygen content sensors. Obtaining accurate
real-time data for boiler efficiency is particularly challeng-
ing during unit start-ups, shutdowns, and load deep peak
regulation.

The pursuit of an efficient and accurate method for pre-
dicting combustion efficiency has become a focal point in
research. In recent years, the integration of machine learning
and data mining techniques into the energy sector has led
to new perspectives and tools for predicting boiler com-
bustion efficiency. Various methods, such as hybrid Least
Squares Support Vector Machine (LS-SVM) with factor
analysis [8], [9], distributed extreme learning machines [10],
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Deep Bidirectional Learning Machine [11], and neural net-
works [12], [13], treat boiler efficiency as the direct output
of machine learning models. However, these models primar-
ily rely on hardware measurement values, such as oxygen
content of flue gas and carbon content in fly ash, as input
variables. The accuracy of these initial input variables is often
insufficient, which limits predictive accuracy. To address this
issue, a preliminary step could involve using hybrid modeling
techniques to tackle the challenges posed by hard-to-measure
parameters, followed by integrating them as input variables
into the model.

Support Vector Machines (SVM) are a powerful tool for
classification and regression in machine learning. LS-SVM,
a variant of SVM, trains models by minimizing the square
sum of the loss function and has exceptional nonlinear fit-
ting capability. Its ability to handle small-sample data and
high-dimensional features makes it outstanding in predic-
tive problems. For example, Wu et al. [14] used LS-SVM to
construct a combustion model for coal-fired power plants,
capturing the complex nonlinear features of combustion pro-
cesses through historical data to predict carbon content in fly
ash and boiler efficiency. However, due to exclusive reliance
on LS-SVM for prediction, limitations arise in handling
large-sample prediction, hindering real-time precise online
prediction based on abundant data from power plants.

To address this issue, multi-model methods, especially
those considering the boiler combustion process’s multivari-
able and severe nonlinearity, can be introduced. Affinity
propagation (AP) algorithm is a clustering method suit-
able for multi-model modeling and has been proven to be
a superior algorithm compared to others [15], [16], [17].
It autonomously determines the sample center [18], which
is critical in boiler combustion modeling. In this paper,
we select a 600MW supercritical boiler with opposed wall
swirling burners and direct-fired system as the research
object. We improve the LS-SVM method by employing
a hybrid modeling approach to address hard-to-accurately-
measure parameters, using them as model input vari-
ables. Simultaneously, by combining AP with LS-SVM,
we enhance the classification performance, generalization
performance, and prediction accuracy of the boiler combus-
tion model. This research makes a noteworthy contribution
by presenting a pioneering methodology that amalgamates
the improved LS-SVM technique with Affinity Propagation,
effectively tackling the challenges linked to hard-to-measure
parameters.

II. MATHEMATICAL MODEL
In this paper, An AP clustering method is employed to
enable multi-model modeling of boiler combustion. The AP
algorithm clusters the test sample set into multiple categories,
each resulting in a sub-model tailored to a specific combus-
tion characteristic, such as the oxygen content of flue gas and
the carbon content in fly ash. In constructing each sub-model,
we employ an improved LS-SVMmethod to address the intri-
cacies posed by challenging-to-measure parameters, using

techniques including mechanism analysis and factor analy-
sis. These parameters are then integrated as input variables,
enhancing predictive accuracy and generalization ability.

A. AP CLUSTERING
The multi-modeling algorithm based on AP Clustering is
illustrated in Figure 1. Initially, the sample data under-
goes clustering using the AP Clustering method, resulting
in several subclasses (denoted as m classes in Figure 1).
Subsequently, algorithms such as LS-SVM are employed
to independently train models for each subclass, generating
distinct sub-models. For testing samples, a classification is
initially performed using a similarity measure, followed by
individual predictions and outputs from the corresponding
sub-models.

FIGURE 1. Example of an AP clustering algorithm.

The AP clustering method is known for its efficiency
and speed. It starts by identifying potential cluster centers,
followed by iterative similarity calculations to refine these
centers and improve the accuracy of multi-model clustering.

The underlying principle of AP involves defining the simi-
larity between any two sample points xi and xj in a sample
space containing N sample points, with the function S(i,j)
(Si,j ∈ S), which can be measured by negative Euclidean
distance Si,j = −dcor(xi− xj) or any similarity/distance func-
tion, as our goal is to maximize the correlation among group
members. The results will be stored in the N × N similarity
matrix S by using an expression like Eq. (1). For the AP
algorithm, it is not necessary to define the number of clusters.
However, the preference value Sk,k for each of the diagonal
elements in Smust be provided. The diagonal elements of the
matrix represent the bias parameter p, indicating the degree
to which xi becomes a clustering center, with an initial value
set as the median of S. Adjusting p can change the clustering
results, and when p is less than a certain threshold, it will
cause a change in the number of classifications. Preferences
should have the same value, i.e., the median of the similari-
ties, to give all the points the probability of being a prototype.
The larger p(Sk,k ), the higher probability of being chosen as
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a prototype and may result in more clusters.[
x1 · · · xi · · · xj · · · xN

]

⇒


S(1, 1) . . . . . . . . . S(1, N)

. . . . . . S(i, j) . . . . . .

. . . S(j, i) . . . . . . . . .

. . . . . . . . . . . . . . .

S( N, 1) . . . . . . . . . S( N, N)


(1)

The previous message passing procedure relies on iterative
updates of the responsibility matrix R and the availability
matrix A. To find a suitable clustering center xk , the AP
algorithm continually gathers evidence for R and A from
data samples. R(i,k)(Ri,k ∈ R) accumulates evidence of how
suitable is xk to be the representative (prototype) for xi if
both would be in the same cluste (i.e. the extent to which
sample point xk suits being the clustering center for xi). R is
calculated by using Eq. (2). A(i,k) (Ai,k ∈ A) represent the
availability of xk to be chosen as the representative for point
xi (i.e. how well xi chooses xk as its clustering center). Non-
diagonal elements of matrixA are calculated by using (3) and
diagonal elements are shaped by (4). The iterative formulas
are as follows:

Ri,k = Si,k − max
j̸=k

{A i,j + Si,j
}

(2)

Ai,k = min {0, Rk,k +

∑
i′ /∈{i, k}

max {0, Ri′,k
}}

(3)

Ak,k =

∑
i′ ̸=k

max
{
0, Ri′,k

}
(4)

where i, j, and k are integers in the 1-to-N closed range.
The AP clustering is a process of constantly iterating and

updating the evidence according to formula (2), (3) and (4).
The iteration termination condition is as follows: for any
sample xi, if sample xk makes R +A the maximum value
in R(i, j) + A(i, j), j = 1,2,. . . ,N, then the sample xk is the
clustering center of xi.By means of iterative competition,
AP clustering can obtain the optimal clustering center and the
category of each sample [18].
To assess clustering quality, the k-index is introduced,

calculated as follows:

Sil(t) =
min {d (t,Ci)} − a(t)

max {a(t),min {d (t,Ci)}}
(5)

In Formula (5), Ci (i = 1,2,. . . , k) denotes the i-th category,
d(t,Ci) represents the average distance between sample t in
Ci and all samples in another category Cj, while a(t) signifies
the average distance between sample t inCi and other samples
withinCi. For a dataset of all sample points, the average value
of the k-index is:

Sil−av = mean

[
n∑
t=1

Sil(t)

]
(6)

Sil_av ranges between [0, 1], displaying a positive correlation.
To achieve clear separation between different sub-classes,

Sil_av should not be less than 0.5. In cases where separa-
tion between subclasses is difficult, its value usually doesn’t
exceed 0.2.

B. LEAST SQUARES SUPPORT VECTOR MACHINE
SVM is suitable for small and nonlinear training samples
with kernel approaches for classification and regression.
In order to calculate simplified, Suykens and Vandewalle
propose a modification algorithm of standard SVM algorithm
as LS-SVM at 1999 [19]. The most important difference is
that LS-SVM uses a set of linear equations for training while
SVM uses a quadratic optimization problem. In this paper,
LS-SVM is used to get regression model.

The depiction of LS-SVM for regression problems is delin-
eated as follows:

Consider a training dataset {(xi, yi) | i = 1,2,. . . ,N}, where
N is the number of training samples, xi ∈ RN is the input
for the i-th sample, and yi ∈ R is the corresponding output.
The input space RN is mapped to a high-dimensional feature
space Z through a nonlinear function ϕ(xi). In Z, an unknown
nonlinear function is estimated using an expression like (7),
where w and b are undetermined parameters.

y(x) = wTϕ(x) + b,w ∈ Z, b ∈ R (7)

The optimization problem for LS-SVM is defined as:

min
w,e

J (w, e) =
1
2
wTw+

γ

2

N∑
i=1

e2i , γ > 0 (8)

Subject to the equality constraint:

yi = wTϕ (xi) + b+ ei, i = 1, 2, · · · ,N (9)

Here, the first term of the objective function corresponds to
the model’s generalization capability, and the second term
represents the model’s accuracy. γ serves as a compromise
parameter between model generalization and accuracy, sub-
ject to human tuning. ei represents the error between the
actual and predicted output for the i-th data.

Solving the Lagrange function for the optimization prob-
lem yields the optimal solution [20]:[

b
a

]
=

[
0 IT

l � + γ −1l

]−1 [
0
Y

]
(10)

Here, the vectors are denoted as Y = [y1, y2, . . . , yN ]T ,
1 = [1, 1, . . . , 1]T , and a = [a1, a2, . . . , aN ]T . � is an
N × N symmetric matrix, where �i,j = ϕ(xi)Tϕ(xj) = K (xi,
xj)(i,j = 1,2,. . . ,N), and K (•, •) is the kernel function. The
final expression for the LS-SVM model is:

y(x) =
N∑
i=1

aiK (x, xi) + b (11)

where ai ∈R(i = 1,2,. . . ,N), and K (x, xi)(i = 1,2,. . . ,N) are
any kernel functions satisfying the Mercer condition [19].
After establishing these LS-SVM sub-models, testing sam-

ples can be assessed based on the degree of similarity,
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FIGURE 2. Structure of the boiler combustion model.

selecting different sub-models for testing output, and utilizing
them as the ultimate output.

In cases where separation hybrid modeling approach,
we establish soft-sensing models for two subclasses: The
oxygen content of flue gas and the carbon content in fly ash.
These soft-sensing values are then integrated back into the
sample database. Following this, utilizing the LS-SVM tech-
nique, we develop models for various parameters, including
oxygen content of flue gas (SVM_A), carbon content in fly
ash (SVM_B), exhaust gas temperature (SVM_C), and tem-
perature (SVM_D). After training these models, a simplified
algorithm is employed to calculate boiler average furnace
efficiency [21], [22], [23].

III. NUMERICAL FORMULATION
A. STRUCTURE OF BOILER COMBUSTION MODEL
The structure of our boiler combustion model, as illustrated
in Figure 2, entails an initial application of the AP algorithm
to cluster data from the power plant’s sample database. This
clustering process results in the creation of multiple sub-
models. Subsequently, through a hybrid modeling approach,
we establish soft-sensing models for two subclasses: The
oxygen content of flue gas and the carbon content in fly
ash. These soft-sensing values are then integrated back into
the sample database. Following this, utilizing the LS-SVM
technique, we develop models for various parameters, includ-
ing oxygen content of flue gas (SVM_A), carbon content in
fly ash (SVM_B), exhaust gas temperature (SVM_C), and
average furnace temperature (SVM_D). After training these
models, a simplified algorithm is employed to calculate boiler
efficiency.

NOTATIONS
A Received the ash content of the fuel.
V Volatile fraction of fuel.
tpy Exhaust gas temperature.
tc Reference temperature.
SA,SB,SC ,SD,SE ,SF Secondary air damper openings of

layers A, B, C, D, E, F.
SEF , SEB Front and rear wall burnt-out air

damper openings.

P Unit load.
B Total fuel consumption.
1P Front and rear air preheater differential

pressure.
Q Net calorific value of coal.
QV Air flow content.
tif Average inlet air temperature of forced draft

fans A and B.
Tout , Tin Pulverizers outlet and inlet temperature.
Bm Pulverizers load.
PA Primary air pressure.
FE Frequency of pulverizers separator.
toa Average temperature at the outlet of air pre-

heaters A and B.
1PB Difference between the secondary air total

pressure and the furnace pressure.
8(SO2) SO2 concentration at the boiler outlet.
DP Inlet and outlet differential pressure of

pulverizers.
Pout , Pin Pulverizers outlet and inlet pressure.
Vm Mixed air flow rate entering pulverizers.
tm Temperature at the center of the combustion

flame.
tob Outlet temperature of the furnace.
tyw Flue gas temperature when the smoke temper-

ature probe is inserted.
tIB Average temperature inside the furnace.
8(O2) Oxygen content of the flue gas at the boiler

tail.
Cfy Carbon content in the fly ash;.
ηB Represents the boiler efficiency.

As in Figure 2, the symbols are interpreted as follows:
To construct the sub-models, DCS soft-sensing technol-

ogy is initially utilized for real-time online hybrid modeling.
This process involves various techniques such as mecha-
nism analysis, mathematical statistics, factor analysis, and
experimental modeling, either individually or in combination.
These methods contribute to the creation of sub-models for
the economic indicators of flue gas oxygen content and fly
ash carbon content, ultimately enhancing the accuracy of
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crucial input variables within the boiler efficiency model.
These sub-models provide optimal setpoints for various oper-
ational variables, serving as vital references for real-time
combustion economy adjustments.

B. SUB-MODEL FOR OXYGEN CONTENT OF FLUE GAS
The calculation of flue gas oxygen content necessitates
consideration of the net calorific value of coal. For subcrit-
ical drum boilers, the direct energy balance (DEB) method
is employed to estimate the net calorific value of coal.
Conversely, for supercritical boilers, we employ a specific
coal consumption coefficient method [24]. This coefficient,
denoted as K , encapsulates the principle of energy conser-
vation, as expressed in Formula (12), which enables us to
estimate the net calorific value of coal:

K =
B÷ P
B0 ÷ P0

(12)

In Formula (12),K is usually confined to a range of 0.7 to 1.3.
B represents the actual total fuel consumption entering the
furnace (primarily the total coal consumption, including oil
consumption converted to coal consumption during oil gun
use). P represents actual power generation load, P0 corre-
sponds to various load points under the design coal type, and
B0 corresponds to the fuel quantity at each load point under
the design coal type. Special scenarios like Run Back (RB)
and high-pressure heater exit handling are also considered.

For direct-fired system, an approach simulating several
minutes of coal feeding is used to calculate actual total fuel
consumption B and actual load P. The total coal feed signal
undergoes transmission through a series of third-order and
first-order inertia links to derive the corresponding boiler
steam generation capacity. This method offers greater accu-
racy compared to algorithms utilizing averaged actual loads
and fuel consumption values over a few minutes, as it better
reflects the characteristics of the controlled object. The time
constant t of this inertia link is obtained through on-site
simulation experiments, and its transfer function is as shown
in Formula (13):

t = G(s) =
0.8/(s+ 1)3

5.1/(100s+ 1)
(13)

Utilizing the transfer function above, we derive net calorific
value of coal Q:

Q =
Qs
K (t)

(14)

In Formula (14), Qs represents net calorific value of the
design coal, and K (t) signifies the coal consumption ratio
coefficient value after a time constant t .

Subsequently, guided by the basic principles of boiler com-
bustion, the coal combustion inside the furnace occurs at
high temperatures. Under these conditions, the combustion
of combustible substances and oxygen from the air takes
place via high-temperature exothermic chemical reactions.
The formula for calculating oxygen content in the flue gas

at the tail end of the boiler is given [25]:

8(O2) =
Qv − QrB

Qv + (QFT − Qr )B
(15)

In Formula (15), Qv represents the air flow content enter-
ing the furnace (adjusted using the DCS-calculated value
of secondary air density and considering leakage coeffi-
cient, corrected using the air preheater’s front and rear
differential pressure values under corresponding conditions);
B represents the total fuel consumption entering the furnace.
Qr andQFT respectively represent the theoretical air required
for complete combustion of 1 kg of entering coal and the the-
oretical flue gas volume (adjusted using the DCS-calculated
flue gas density), with units of m3/kg.

The formula for calculating air density is as follows:

ρ =
ρ0T0px
p0T

(16)

In Formula (16), ρ, px , T respectively represent the density,
pressure, and thermodynamic temperature of dry air under
other states, while ρ0, p0, T0 represent the density, pressure,
and thermodynamic temperature of dry air under standard
conditions. They are measured in units of kg/m3, kPa, and K.
For standard conditions (T0 = 273 K and p0 = 101.3 kPa),

represents the density of dry air under normal composi-
tion (ρ0 = 1.293 kg/m3). Here, px represents atmospheric
pressure, which is transmitted to DCS via transmitters
installed on-site to measure atmospheric pressure. T repre-
sents the average air temperature at the inlet of forced draft
fans A and B, i.e., tif .
The calculation formulas for Qr and QFT are given by:

Qr = 0.0889
(
Cny+0.375 Sny

)
+0.265 Hny−0.0333 Qny

(17)

QFT =
1.866 Cny+0.7 Sny+11.1 Hny+1.24Wny+0.8 Nny

100
+ 0.79 Qr (18)

Through Formula (17) and Formula (18), it is evident that
despite the relatively simple combustion mechanism of the
boiler, real-time calculations are challenging due to the neces-
sity of promptly knowing the reference content of various
elements. However, as ultimate analysis of coal is intricate
and entails lag, power plants generally perform proximate
analysis, and DCS lacks real-time measurement data for var-
ious elements. Through extensive analysis of coal properties,
we discern that coal primarily consists of combustible ele-
ments such as carbon, hydrogen, and sulfur. Under complete
combustion conditions, these elements generate CO2, SO2,
and H2O. According to relevant literature, the air required
for the combustion of 1 kg of coal per unit mass shows an
approximately linear relationship with net calorific value of
coal. Thus, in the absence of fuel element analysis data, net
calorific value of coal can be used as an approximation to
calculate the theoretical air quantity [26]:

Qr = 0.251Q/1000 + 0.278 (19)

QFT = 0.248Q/1000 + 0.77 (20)
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FIGURE 3. Trend of soft-sensing values of flue gas oxygen content.

In Formula (19) and Formula (20), Q represents net calorific
value of coal, measured in kJ/kg.

Finally, leveraging the real-time net calorific value of coal
obtained through Formula (14) in the DCS system, combined
with the results of Formula (19) and Formula (20), we calcu-
late the theoretical air quantityQr and the theoretical flue gas
volume QFT required for the complete combustion of 1 kg of
entering coal and subsequently obtain the oxygen content in
the boiler flue gas through Formula (15).
To validate the soft-sensing of flue gas oxygen con-

tent, we utilized actual operational data for verification,
Figure 3 shows three aspects were examined: First, the cal-
culated results from the established soft-sensing model were
highly accurate and could replace physical sensors. Second,
the soft-sensing model demonstrated remarkable accuracy
improvement in measuring oxygen content, especially at low
loads, proving more reliable than the measurements from
physical sensors. Third, the soft-sensing results provided
effective redundant information for physical sensors in cases
of hardware failures or malfunctions, thereby enhancingmea-
surement reliability across various operational conditions.

C. SUB-MODEL FOR CARBON CONTENT IN FLY ASH
Carbon content in fly ash is influenced by various factors,
making it challenging to model through mechanism analysis.
As a result, factor analysis is employed in this paper to select
key indicators or factors from numerous variables, forming
the basis of the fly ash carbon content model. Subsequently,
the model is refined using experimental data.

Initially, factor analysis is applied to obtain the maximum
variance of the factor component matrix through orthogonal
rotation, as per Formula (15), establishing a factor model for
carbon content in fly ash Cfh:

Cfh = −0.25F1 + 0.87F2 + 0.24F3 − 0.082F4 (21)

In Formula (21), F1 represents the factor of hot air temper-
ature, F2 stands for the factor of burnout, F3 corresponds
to the factor of primary air pressure, and F4 represents the
coal quality factor. Therefore, the main influencing factors
on fly ash carbon content can be decomposed into: the hot air
temperature factor (primary air temperature T1 and secondary
air temperature T2), the burnout factor (excess air coefficient
and coal fineness R90), the primary air pressure factor, and
the coal quality factor. In this paper, Tout represents the outlet
temperature of pulverizers (T1), toa signifies the average tem-
perature at the outlet of air preheaters A and B (T2), the excess
air coefficient can be obtained from the calculation formula
of the oxygen content 8(O2) in the flue gas of the boiler
tail (soft-sensing value) and the oxygen content 8′(O2) at the
inlet of the air preheater, and R90 represents the particle size
distribution of coal particles, which can be modeled through
soft-sensing using primary air pressure PA and pulverizers
separator frequency FE .

Subsequently, the coal quality factor is primarily deter-
mined by the contents of the coal’s total moistureM , inherent
ash A, volatile matter V , and total sulfur S. The influence
weights of these parameters on fly ash carbon content, as well
as the variations in fly ash carbon content due to changes in
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coal quality under specific conditions, can be calculated using
boiler design residence time [27]. This vital data requires
online data to ensure its real-time availability. For instance,
A can be derived through a linear relationship function
corresponding to the net calorific value of coal calculated
earlier (Q); S can be derived through a linear relationship
function corresponding to the boiler outlet SO2 measurement
value;M can be obtained by considering energy balance prin-
ciples and soft-sensing modeling based on variables such as
pulverizers air flow rate Vm, pulverizers load Bm, pulverizers
inlet temperature Tin, pulverizers outlet temperature Tout , and
coal fineness R90 [28]; V can be input manually based on the
coal type or proximate analysis.

Finally, for refining the factor model, individual vari-
able experiments were conducted, collecting actual test data
(including offline assay data for fly ash carbon content). From
these data, curves depicting the numerical variations of fly
ash carbon content due to individual variable influences were
derived. These curves were then corrected using the least
squares method. Through multiple rounds of experimental
data correction, a relatively accurate factor model for fly ash
carbon content was established.

D. IMPROVED AP-BASED LS-SVM MULTI-MODEL
BOILER EFFICIENCY MODELING
After obtaining the soft measurement values of boiler com-
bustion characteristic parameters, such as oxygen content of
flue gas and carbon content in fly ash, this paper incorporates
these values into the sample library, thereby significantly
enhancing the real-time and accuracy of the sample library.
Through this improvement, we utilize the LS-SVM algorithm
to establish sub-models for oxygen content of flue gas, carbon
content in fly ash, exhaust gas temperature, and average
furnace temperature. In the multi-modeling phase, a weighted
sum method is employed to combine the LS-SVM models
and the functional relationship models, enabling the pre-
diction of boiler efficiency. The following steps outline the
process:

Preprocessing of training sample data: This involves
eliminating outliers, identifying steady state operating con-
ditions, and performing normalization. Training of sample
AP clustering: For the normalized training sample data, the
parameters λ and p are initialized for the AP clustering.
Here, the range of λ is set between 0.5 and 0.9, and p is
set as p = median(S). The clustering result corresponding to
max{Sil_av} is selected, and the parameter p is adjusted based
on the Sil_av index, with the down step defined as shown in
Formula (22).

pstep =
0.01pm

0.1
√
k + 50

(22)

In Formula (22), k denotes the number of cluster centers.
Training of sub-models: Based on the clustering results,

the LS-SVM regression algorithm is applied to train the
sub-models. The RBF kernel function K (x, xi) = exp{-||x-
xi||2/σ 2} is used, and the regularization parameter γ and

TABLE 1. Details of data dimensions and sample numbers for LS-SVM
sub-models.

the kernel parameter σ of the LS-SVM are selected through
cross-validation. The predictive ability index of the model is
expressed as shown in Formula (23).

press =

∑
i

(yi − y−i)2 (23)

In Formula (23), yi represents the actual value of sample i,
and y−i denotes the model’s predicted regression value for yi
when the i-th sample is excluded from the training data,
a smaller ‘‘press’’ value indicates higher regression accuracy,
signifying optimal parameter selection.

Weighted sum prediction of multi-models: For a new test
sample x ′, its similarity to each sub-cluster center is calcu-
lated. It is then assigned to the class with the highest similarity
and predicted using the corresponding sub-model. By sum-
ming the outputs of multiple sub-models with weights, the
prediction of boiler efficiency can be obtained, as shown in
Formula (24).

y′ =

n∑
i=1

(Wiy′i) (24)

In Formula(24), y′ signifies the predicted boile efficiency,
n represents the number of sub-models,Wi is the weight of the
i-th sub-model, and yi′ is the prediction of the i-th sub-model.
The weights of the weighted sum are influenced by the pre-

diction errors of the sub-models, with smaller errors resulting
in larger weights. To prevent overly large weights due to
excessively small prediction errors, we introduce the parame-
ter α, resulting in the weight calculation formula as presented
in Formula (25):

Wi =
1

εi+ α
(25)

In Formula (25), Wi represents the weight of the i-th sub-
model, εi denotes the prediction error of the i-th sub-model,
and α is a parameter controlling the upper limit of weights,
typically set to 0.1.

IV. NUMERICAL EXPERIMENTS
A. DATA COLLECTION AND PREPROCESSING
In accordance with the model input data as described
in Section III-A, data collection was conducted on Boiler
No. 2. After identifying steady state operating conditions
using system discrimination, data was collected at 10-minute
intervals. The real-time calculations for net calorific value
of coal (Q), total moisture (M ), inherent ash (A), total sul-
fur (S), and volatile matter (V ) were derived from DCS data.

35190 VOLUME 12, 2024



M. Yan et al.: Improved LS-SVM Boiler Combustion Model Based on Affinity Propagation

TABLE 2. Comparison results between predicted oxygen content and actual measurements from the oxygen grid method sensors.

FIGURE 4. Validation results of carbon content in fly ash
(
Cfh

)
, exhaust gas temperature

(
tpy

)
, average temperature inside the

furnace
(
tiB

)
and oxygen content in flue gas

(
8

(
O2

)
.

These real-timemeasurements were supplemented bymanual
input from operators based on proximate analysis. If manual
inputs were provided, they would override the soft sensing
values, though if no new inputs were provided within four
hour, the systemwould revert to using the soft sensing values.
V can be input manually based on the coal type or proximate
analysis.

Furthermore, to ensure data quality, the 3σ principle was
employed to eliminate outliers. Data normalization was per-
formed using Formula (26), which limited input and output
values within the range of [−1, 1].

x ′
= [x −

max(x) + min(x)
2

]/[
max(x) − min(x)

2
] (26)

In Formula (26), x and x ′ represent the original and normal-
ized values, respectively.

B. TESTING AND ANALYSIS OF SUB-MODELS
During the training of sub-models, the data was divided
into training and testing sets at a ratio of 7:3. Using cross-
validation, the parameters γ and σ of the sub-models were
determined. The improved LS-SVM model was then con-
structed using these optimized parameters. Subsequently,
predictive experiments were conducted for various sub-
models, including oxygen content of flue gas (SVM_A),
carbon content in fly ash (SVM_B), exhaust gas temper-
ature (SVM_C), and average temperature in the furnace
chamber (SVM_D). The precise details of data dimensions
and sample numbers used in these experiments are outlined
in Table 1.

In the table, m represents the total number of data points,
nA, nB, nC, nD represent the respective data dimensions
for each sub-model, and kA, kB, kC, kD denote the sample
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FIGURE 5. Comparison of predictive efficiency among the improved AP_LS-SVM, unimproved AP_LS-SVM, and BPNN models.

numbers in the training set. Similarly, kA’, kB’, kC’, kD’
represent the sample numbers in the testing set.

Regarding to SVM_A, in order to accurately capture the
oxygen content across the entire flue, we employed an oxygen
grid method. In this method, three high-precision zirconia
oxygen sensors were strategically positioned on each side of
the flue, denoted as A1, A2, and A3 for the A side, and B1,
B2, and B3 for the B side. By collecting data from these
sensors at different positions and varying insertion depths,
followed by computing the average of all recorded values,
we obtained the precise actual oxygen content within the
flue gas.

Subsequently, we conducted predictive experiments using
the SVM_A model under different load conditions. The pre-
dicted oxygen content values were then compared with the
corresponding actual measurements, and the outcomes of this
comparative analysis are presented in Table 2.
Regarding to SVM_B, we conducted model training using

sample data collected at different loads, specifically focus-
ing on the data points surrounding offline assay sampling
moments. Regarding to SVM_C and SVM_D, data for model
training were collected during Boiler No. 2 efficiency tests,
including parameters such as flue gas temperature (tpy), com-
bustion flame center temperature (tm), and furnace outlet
temperature (tob).
Figure 4 illustrates the comparison between the actual

measured tpy and the predicted tpy by the improved LS-SVM,

and the actual 8(O2), Cfh, tIB and predicted 8(O2), Cfh, tIB
by the improved LS-SVM on the test data set, respectively.
It is easy to see that almost all of the data have been fallen
in a diagonal distribution along with the perfect line, where
predicted values are equal to actual values. It means that all
8(O2),Cfh, tpy, and tIB could be predicted with good accuracy
by the improved LS-SVM for all testing data sets.

In addition, Table 3 summarizes the precision calculation
outcomes. The 8(O2), Cfh, tpy, and tIB models, established
based on the improved LS-SVM, demonstrate a notably high
level of predictive capability.

TABLE 3. Accuracy of LS-SVM models.

C. TESTING AND ANALYSIS OF BOILER
EFFICIENCY MODEL
In this paper an improved AP-based LS-SVM multi-model
approach was employed for boiler efficiency modeling exper-
iments. During the Boiler No.2 efficiency test, sample
data was collected and randomly divided into training set
(45 groups) and testing set (15 groups).

Firstly, AP clustering was performed on the training
samples. By adjusting parameter p, the k index (the number
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of cluster centers) reached its maximum value when samples
were divided into four clusters. Subsequently, correspond-
ing LS-SVM sub-models were established. Cross-validation
was employed to determine parameters γ and σ for the
sub-models, minimizing the ‘‘press’’ value within each sub-
model. The optimal parameter combinations are presented
in Table 4.

TABLE 4. Parameters of LS-SVM models.

Next, the Euclidean distances between test samples and
cluster centers of each class were calculated. Test samples
were classified accordingly, and corresponding sub-models
were utilized for prediction. Subsequently, the efficiency was
predicted using the boiler efficiency function relationship and
weighted summation.

Lastly, the efficiency calculated from the efficiency test
was defined as the actual boiler efficiency value. To assess
the performance of the aforementioned models in predicting
boiler efficiency, a comparison was made between these pre-
dicted values, the unimproved AP_LS-SVM model, and the
BP neural network model. Figure 5 shows, the predictive per-
formance of the three models, and performance parameters
are presented in Table 5.

TABLE 5. Comparison between improved the AP_LS-SVM, unimproved
AP_LS-SVM, and BPNN models.

Clearly, the improved AP-based LS-SVM model exhibits
a distinct advantage in predicting boiler efficiency. This
model not only offers a shorter training time but also demon-
strates higher levels of prediction accuracy and generalization
ability.

V. CONCLUSION
In conclusion, this paper introduced an improved AP-based
LS-SVM method into the modeling of boiler combustion
efficiency in coal-fired power plants. This method effectively
divided training samples and established four sub-models
based on the improved LS-SVM approach. The approach
exhibited advantages in terms of training time, predic-
tion accuracy, and generalization capability, holding great
promise for widespread application in the field of thermal
power generation.
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