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ABSTRACT The growing number of energy-autonomous applications raises the need for reliable DC
energy harvesting techniques such as Thermoelectric Generators (TEGs). One key issue, however, is the
minimum voltage (40–60 mV) required for start-up in small TEG energy harvesting sources. We review
in this paper recent start-up solutions for TEG energy harvesting technologies. Different solutions have
been categorized into 5 main approaches: external battery, extra-fabrication-process-based, transformers,
multisource energy harvesting, and DC-AC-DC conversion using oscillators. The ‘‘DC-AC-DC conversion
ring oscillators’’ approach is then shown to be the most promising solution in line with DC energy harvesting
applications because it offers several advantages over other approaches, such as allowing full integration
with good performance, compatibility with regular CMOS technology, and lower cost. Then, its different
implementations are discussed and a detailed analysis is provided to identify their respective advantages and
limitations.

INDEX TERMS TEG, EH, start-up techniques, ring oscillator, Schmitt Trigger, IoT, DC-AC conversion.

I. INTRODUCTION
There is a pressing need for extending battery lifetime or
-preferably- achieving battery-less operation for numerous
potential applications such as wireless sensors, Internet of
things (IoT), and Artificial Intelligence of Things (AIoT).
Devices in these applications should allow non-stop operation
for extended periods [1], [2], [3], [4], [5]. To extend battery
lifetime, much effort was put into developing techniques to
reduce power consumption, such as sleep and deep-sleep
operations modes [6], Dynamic Voltage and Frequency
Scaling (DVFS) [7], Adaptive Body Bias (ABB) [8], and
event-based monitoring [9]. Nevertheless, the existence of
batteries in the aforementioned systems is still associated
with replacement costs and reliability issues, especially
in applications where replacing the battery is physically
challenging, like in implanted biomedical devices or remote
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devices in sea or space [10], [11]. Thus, achieving battery-less
operation is more favorable, and can be established by
converting ambient energy into electric energy [12], [13].

The procedure of converting energy from ambient sources
into electrical energy is called Energy Harvesting (EH)
[14]. Some examples of available ambient sources of
energy are electromagnetic radiation (such as light [15],
[16], and Radio Frequency (RF) waves [17], [18], thermal
gradients [19], and mechanical motion [20]). Harvesting
mechanical motion requires vibrating media, which is not
available in many applications. On the other hand, the most
abundant sources of energy are RF waves and thermal
energy [21], [22], [23]. RF energy is abundant in populated
areas since billions of wireless devices radiate RF waves
constantly. RF energy is emitted by satellites, mobile phones,
WiFi routers, etc. However, ambient RF energy density in
free space is limited [24], [25], [26]. Furthermore, Power
Conversion Efficiency (PCE) in RF energy harvesters is
also limited, because antennas of RF harvesters receive very
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low RF power density due to propagation losses [27], [28].
Moreover, attenuation becomes worse with multi-path fading
effects and longer distances [14], [29]. On the other hand,
sources of energy, such as light and heat, are available in
numerous environments, but they usually provide low voltage
levels [30], [31].

Harvesting ambient thermal energy using TEGs is a
convenient means of supplying power to many applications
because it is scalable, reliable, and does not employ moving
parts in contrast to vibration energy transducers [32], [33],
[34]. Therefore, it is appealing in human body-powered
biomedical devices such as pacemakers, which can be
powered from thermal gradient across the human skin [35],
[36], [37]. Also, on-chip TEGs can be used to harvest
electrical energy from components waste heat, or any other
heat source such as solar radiation or industrial waste heat
[38], [39], [40]. However, TEG usually requires a constant
temperature gradient, which is difficult to maintain unless
there is a heat sink applied to one of the TEG’s two sides.
Also, for small temperature differences, the limited TEG
output voltage (40-60 mV) forces the system to self-start-up
from low voltage levels ( ≈ 50 mV ) [41], [42], [43].
As illustrated in Fig. 1, this paper categorizes different

reported start-up approaches for DC energy harvesting
technologies (TEGs as primary example) into 5 main
types: external battery, extra fabrication process-based,
transformers-based, multisource energy harvesting, DC-AC-
DC conversion using oscillators. Then, it reviews the different
implementations of the most promising approaches in line
with energy harvesting applications. A detailed analysis of
reported solutions is provided and discussed.

In the remaining parts of the paper, we introduce our
classification of TEGs start-up techniques in Section II.
A detailed analysis of the DC-AC-DC conversion using the
oscillator approach is presented in Section III, where the
measured performances of the reported integrated solutions
are summarized and compared. Our results and evaluation of
the reviewed techniques are presented in Section IV. Finally,
the paper is concluded in Section V.

II. TEG HARVESTER START-UP TECHNIQUES
First, we present briefly the operation principle of TEGs and
the role of their start-up circuit in TEG harvesting systems.
Then, we classify the start-up techniques into five main
categories.

A. TEG OPERATION PRINCIPLE
As shown in Fig. 2(a), TEGs (also called Seebeck generators)
are devices that convert heat (temperature differences)
directly into electricity based on the Seebeck effect [19],
[44]. According to that effect, the generated voltage is
proportional to the temperature gradient between its two
sides [45]. Unlike the Pyroelectric (PR) effect (which is based
on the re-orientation of dipoles triggered by temperature
fluctuations [44]), the ThermoElectric (TE) effect generates

a DC output [1]. Fig.2(b) illustrates a thermocouple, which
is the basic construction unit of the thermal harvester. The
principle of operation of a thermocouple is simple and is
based on the Seebeck effect that generates electron-hole
pairs [46] as follows: upon applying temperature difference
across the junction of two dissimilar materials, heat flows
from the hot to the cool side. Consequently, the energy that
comes from the heat forces the free electrons and holes to
move, forming an electrical potential across the junction
that causes electrical current to flow in the case of a closed
circuit [47]. Thus, the electrical potential (in volts) of the
junction can be expressed as:

U = αN (Ta− Te). (1)

where Ta - Te is the temperature difference across the
junction, α (in volt per Kelvin) is the Seebeck coefficient
corresponding to a specific pair of materials, and N is the
number of thermocouples in a TEG [48]. A voltage source
in series with an internal resistance is representative of TEG
model [49], [50] as shown in Fig. 2(c). The open-circuit
output voltage of the TEG is proportional to the temperature
gradient as indicated by equation 1 [51].
The use of TEGs for sensors, body-wearable applications,

or implantable applications typically limit the output voltage
to 40-60 mV (rarely exceeding 100 mV) for temperature
differences of 1-2 K found between the body and ambiance.
Thus, the system has to accomplish self-start-up from low
voltage level ≈ 50mV [30], [53], [54]. This very low output
voltage cannot power conventional CMOS electronic circuits,
which calls for a high-efficiency voltage multiplier circuit
(boost DC-DC converter) to successfully boost the output
voltage to the desired value [30]. Fig. 3 depicts a conventional
DC-DC boost converter. However, to start the main boost
converter, it is required to have a DC voltage reservoir
with a potential equal to or larger than 500 mV to power
the remaining electronics. This can be achieved through a
start-up circuit powered by the primary DC energy source
[30], [55]. Additionally, lowering the startup voltage levels
is significantly advantageous for boost converters because
minimum input voltage for steady-state operation in most
of the reviewed architectures is much less than 50 mV.
Therefore, they can operate at much lower voltage levels (or
thermal gradients) if they could properly start-up.

B. TEG HARVESTER START-UP TECHNIQUES
CLASSIFICATION
Thus, we can categorize different reported start-up solutions
for DC energy harvesting technologies (TEG as a primary
example) into 5 main approaches as illustrated by Fig. 1:

1) EXTERNAL BATTERY
The first explored start-up technique consists of using an
external specialized source of energy such as a battery [56],
or pre-charged capacitor [57] to help start up the system
for the very first time. Though this seems to be a simple
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FIGURE 1. Classification of TEG harvester start-up techniques.

FIGURE 2. (a) Typical TEG architecture, (b) Thermocouple unit, and (c) TEG
Electrical equivalent circuit [52].

solution, restarting the system would require some of the
boost converter output to be saved for later, which limits the
performance of the converter in addition to the risk of getting
fully depleted of energy. This would render the whole system

FIGURE 3. Block diagram of conventional self-start for TEG boost
converter with 5 start-up approaches illustrated.

nonfunctional. This is a serious issue, especially when the
device is used in a remote place or implanted in a human
body. Thus, the reliability and cost of such an approach
constitute real obstacles. Some researchers attempted to
address this problem by proposing battery-assisted energy
harvesting systems to reduce the rate of battery replacement
and to realize self-charging for the rechargeable battery [58].
Consequently, battery-assisted energy harvesting systems
can significantly prolong the battery life compared with
conventional battery-powered IoT nodes. However, the issue
of battery replacement remains unsolved.

2) EXTRA FABRICATION PROCESS-BASED
The second approach attempts to solve the restart ability
problem of the first approach by conducting extra fabrication
processes or post-fabrication steps. For instance, imple-
menting fabricated mechanical switches enabled starting
up from a voltage level as low as 35 mV [47]. Also,
some succeeded at compensating for the die-to-die process
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variation by applying post-fabrication threshold voltage
trimming [54]. Although the use of mechanical switches
enabled starting up from low voltages, and post-fabrication
trimming reduced the minimum operating voltage of the
start-up oscillator to 95 mV, the extra fabrication process
steps add complexity and cost to the system, and it is
incompatible with standard CMOS technologies provided
by existing foundries. Moreover, implemented mechanical
switches need a vibrating medium to operate, which limits
their range of application significantly.

3) TRANSFORMERS-BASED
The third approach explores the use of transformers which
comprise two inductors configured in mutual feedback. For
instance, authors in [53] managed to start-up from a 40 mV
source, then reused the transformer in the main converter
by exploiting one of its two sides as an inductor. However,
the efficiency of such a solution is very low and it does
not compensate for the large area of the transformer. Also,
work reported in [59] demonstrates the effect of designing
the core of the DC-DC converter as a pulse transformer
boost converter using a Dynamic Threshold MOS transistor
(DTMOS). This system can self-start at 36 mV input
voltage since employing DTMOS increases transistor satu-
ration current and output power compared to conventional
transistors at similar input voltage and improves power
efficiency up to two times at sub-300 mV input voltages
compared with a conventional configuration. Furthermore,
transformer-based solutions have been widely adopted in
industrial applications where the area is less significant than
the minimum input voltage that allows system start-up. For
example, the work presented in [60] is a transformer-based
boost converter that operates from input voltages as low
as 21 mV. Another highly integrated DC-DC converter was
presented in [61] which operates from 20 mV with the ability
to change such value by changing the primary-secondary
turns ratio of the transformer. In [62] a transformer-based
startup scheme with voltage monitors for energy harvesting
at input voltage as low as 20 mV was reported. Although
transformer-based techniques enable low start-up voltages,
the use of bulky off-chip components renders them unsuitable
for system integration or deep miniaturization. There were
some attempts to use on-chip transformers. Work in [63]
introduces a stacked-type transformer-based LC oscillator,
but the limitation of low on-chip quality factor limits the
input voltage to 160 mV and 25.8% efficiency, and to
100 mV and 33% efficiency in best cases as reported by [64].
Moreover, the authors in [65] propose an 85 mV input, fully
integrated voltage multiplier, fabricated in 65nm CMOS,
comprising a passive clock boost using on-chip transformers
and an integrated LC oscillator. Despite achieving low
input voltage, it is still out of range since the use of
TEGs for most applications limits the minimum output
voltage level to 40-60 mV for temperature differences
of 1-2 K [19], [30], [53].

4) MULTISOURCE ENERGY HARVESTING
The fourth approach comprises the use of an additional
energy harvester to realize the start-up of the system. For
instance, authors in [66] use an off-chip antenna with
auxiliary RF energy harvesting to start the system for the
TEG boost converter to operate properly. A thermal/RF
hybrid energy harvester was presented in [67]. It can harvest
energy from a TEG and an RF energy source simultaneously,
by using a rectifying combination technique and a modified
Fractional Open-Circuit Voltage (FOCV) Maximum Power
Point Tracking (MPPT) technique. Although the system
works efficiently from a TEG input voltage as low as
50 mV, the RF power must be available simultaneously and
continuously with the TEG power. Similarly, work presented
in [68] proposed simultaneous scavenging of both RF and
thermal energy in a mixed manner, where the harvested DC
voltage from a thermal source is used to bias a diode to
improve the diode’s RF-DC power conversion efficiency.
Nevertheless, this technique introduces the complexity of
an antenna and an auxiliary RF energy harvesting design,
in addition to the bulky off-chip components used.

5) DC-AC-DC CONVERSION USING OSCILLATORS
Finally, the fifth approach exploits DC-AC conversion by
inserting an intermediate oscillator stage, then AC-DC
conversion with a boosted level by a charge pump [69]. Two
types of oscillators could be considered: resonant oscillators
and waveform oscillators [70]. Resonant oscillators include
crystal oscillators and LC tank oscillator topologies. How-
ever, crystal oscillators can neither be integrated nor tuned.
On the other hand, LC oscillators can be used to implement
start-up circuits. Authors in [69] reported a converter with
VIN,min = 50 mV for start-up using an LC-tank oscillator fol-
lowed by a voltage multiplier. Also, work in [62] presented a
self-startup power management Integrated Circuit (IC)-based
on a boost converter integrated with its complete control
circuitry, including MPPT capacity. This converter supports
cold self-start from TEG at a minimum of 60 mV, using three
startup phases, two power-on-reset (POR) signals for smooth
transitions between the phases, and a Hartley oscillator that
conventionally requires two separate inductors. These authors
reused one from the boost converter to minimize off-chip
components. Moreover, work in [66] reported a converter
with VIN,min = 11 mV for start-up using an Enhanced-
Swing Ring Oscillator (ESRO), off-chip inductors, zero-VTH
transistors and a three-stage Dickson Charge Pump (DCP).
Nevertheless, the aforementioned oscillator-based methods
still require off-chip inductors. On the other hand, there are
attempts to realize an LC tank using integrated inductors
such as in [71]. However, integrated inductors consume a
large silicon area. In addition, integrated inductors have
low Quality factors (Q), which degrades their performance.
A detailed description of recent ultra-low-voltage oscillators
based on LC-tank topologies is presented in [72].

The other oscillator type introduced in [70] is Waveform
oscillators, which include relaxation oscillator and Ring
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Oscillator (RO) topologies. However, relaxation oscillators
have poor phase noise performance compared to ROs.
Moreover, ROs could be realized by transistors only, which
results in a small silicon area and low power implementa-
tion [71]. Therefore, RO topologies are excellent candidates
for realizing reliable and fully integrated start-up solutions.
Amain challenge, however, is to extend their use to extremely
low supply voltages [30].

Oscillator-based start-up is the most efficient technique
for starting-up from a single voltage source. It also requires
less silicon area as it can be fully integrated without trading
off performance. Moreover, it is compatible with CMOS
technology and it can be implemented at a lower cost, which
is a critical aspect since IoT and wireless applications put
stringent constraints on the system cost. Table 1 summarizes
the advantages and disadvantages of the reviewed techniques.

III. DC-AC-DC CONVERSION USING OSCILLATORS
APPROACH
The main challenge faced when employing the RO start-up
solution is that a simple inverter normally used as a delay
element in conventional RO requires a relatively large
supply voltage (a few hundred millivolts) to ensure its
correct logic operation. This requirement is not practical
for energy-constrained harvesting applications because the
input voltage available from the energy source will be mostly
unable to reach a supply voltage sufficient to properly
activate cells. Thus, supply voltage reduction is advantageous
for supply voltage-constrained applications. However, it is
limited by on-to-off current ratios degradation observed
with decreasing supply [30], [58], [74]. Many scientists
have attempted to provide valid solutions for this issue by
either adopting a new delay cell architecture or by applying
new biasing mechanisms to existing structures. Certainly,
others optimized the results by combining different delay
cell architectures with different biasing techniques. We will
analyze the most significant results from the past ten years in
the upcoming section.

A. SELF-BIAS FEEDBACK INVERTER
An RO consisting of gain-enhanced Self-Bias Inverters
(SBIs) was reported in [75]. The SBI is composed of two
inverters: the main inverter and the feedback inverter as
shown in Fig. 4(a). The feedback inverter controls the main
inverter body bias voltage to improve the voltage gain. The
principle of operation of this configuration is as follows:
When VIN is low, VOUT becomes high, and the output voltage
of the feedback inverter becomes low. Thus, VTH, P becomes
low and VTH, N becomes high. Therefore, 1VTH becomes
higher than 0 V. On the other hand, when VIN is high,
VOUT becomes low, and the output voltage of the feedback
inverter becomes high. Thus, VTH, P becomes high andVTH, N
becomes low. Therefore, 1VTH becomes lower than 0 V.
Thus, the Voltage Transfer Curve (VTC) of the SBI comes
close to the two curves of1VTH < 0 and1VTH > 0, as shown
in Fig. 4(b), and the voltage gain is improved. Measurement

FIGURE 4. (a) Schematic of self-biased feedback inverter, and (b) its
modified voltage transfer curve [75].

FIGURE 5. Stacked Three-Inverter Cell from [76].

results of this RO show its ability to oscillate at a low 42 mV
supply voltage. This technique’s main strength is that it can
be applied to any delay cell (not limited to basic CMOS
inverter) but at the expense of doubling the area and power
consumption.

B. STACKED THREE-INVERTER CELL
A modified RO architecture using a stacked three-inverter
delay element was presented in [76]. It can generate
self-sustained oscillation from a 40 mV input supply voltage.
As shown in Fig. 5, the delay element comprises three stacked
inverters INV1, INV2, and INV3. The input signal is fed
to all three inverters gates, and INV1 and INV3 outputs are
connected to M3 and M4 sources, respectively. Additionally,
the gate widths of M1 and M6 are larger than those of M3
and M4, respectively, to make the entire delay element DC
operating point similar to that of a single inverter. Finally,
INV2 consists of M3 and M4 only. The advantage of this
topology is that it helps suppress the output leakage through
the off switch by pulling the respective nodes to either VDD
or ground when the output needs to transition high or low,
respectively. The implemented start-up oscillator, in 0.18 µm
CMOS process, comprises 21 stages and it generates a clock
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TABLE 1. Advantages and limitations of start-up approaches for TEG energy harvesting technologies.

frequency of 9.5 kHz with an 86% voltage swing from
a 50 mV input supply voltage. Moreover, this proposed
architecture’s significance is that it allowed a variety of
promising combinations of delay cells as we will see in the
next few sections.

C. VARIANTS OF THE BODY-BIASED STACKED INVERTER
In [77], four new variants of a body-biased stacked inverter
delay cell of [76] were proposed and implemented in
180nm BCD CMOS process. The delay cell comprises three
inverters as shown in Fig. 6 (same as [76]). However, the
body terminals of the ith stage are biased using one or a
combination of VDD, VSS, Yi+1, Xi+1, INi+2 terminals. Fig. 6
depicts two adjacent delay cells in the RO (ith and i + 1th

stages). It also defines the terminology and the body terminals
from which the operation of the device can be explained. ‘B’
refers to the body terminal of a MOSFET; ‘p’ (‘n’) following
‘B’ refers to the type of MOSFET under consideration.
‘ST’, ‘SB’, and ‘M’ respectively refer to ‘‘Stacked Bottom’’,
‘‘Stacked Top’’, or Middle inverter FETs. All stacked inverter
variants have the same structure but with different Body
connections. Their post-layout simulations show that the four

variants consume an average power of 24 pW at 50 mV.
The NN-NN-NN variant, depicted in Fig. 6, has the highest
swing that corresponds to 92% of its supply voltage, and the
maximum gain per unit cell while it can start and sustain
oscillations for a supply voltage as low as 32.5 mV. Among
these variants, the fastest one can oscillate at a frequency of
only 131.5 Hz.

D. RECURSIVE BODY-BIASED STACKED INVERTER
In [78], a recursive body-biased stacked inverter is intro-
duced. These authors [76] propose to stack additional
inverters at the top and bottom of the inverter recursively
as shown in Fig. 7. The recursive-stacking technique
increases the transconductance of the MOSFETs in the
recursively stacked inverters as well as in the main inverter
while decreasing leakage currents. This structure achieves
low-voltage operation at the cost of an increased number of
transistors, area, and power penalty. Their prototype test chip
was fabricated in a 180-nm, 1-poly, 6-metal CMOS process
technology with a deep n-well option. The measured lowest
VDD,min was 26 mV, and all their prototype chips oscillated
successfully at 30 mV.
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FIGURE 6. Two adjacent delay cells (i th and i + 1th stages) in the
NN-NN-NN Variant of the Body-Biased Stacked Inverter RO from [77].

FIGURE 7. Recursive Body-Biased Stacked Inverter Cell from [78].

E. REDUNDANT INVERTER CELL
In [79], a redundant inverter RO is reported to self-oscillate at
45 mV. It is considered as an extension of the work presented
in [76] as shown in Fig. 8. The 3-stage redundant inverter
is shown in Fig. 9 and it is composed of 7 inverters. It is
similar to the 2-stage redundant inverter but it generates a
larger output swing and has the same working principle.
Additionally, the authors claim that the concept can be easily
extended to an N-stage redundant inverter. However, this
comes obviously with more power and area consumption.
The chip micrographs of this start-up system implemented
in a 65nm CMOS technology are illustrated in Fig.10. The
power converter proposed in [79] achieves 210 mV self-start
voltage by implementing the 3-stage redundant inverter RO
in the start-up circuit in three steps: The first RO and first
charge pump have been used to achieve a low self-start
of 60 mV, and the first charge pump produces an output
around 105 mV during step 1. Then, a second RO and
differential clock booster are optimized to drive the second
charge pump, producing an output larger than 300 mV in
step 2. Then, a clock divider and another clock booster are
used in step 3 to generate an output clock offering 700 mV
swing that is sufficiently large to drive the main converter.
Although this power converter can sustain operation from
7 mV input, its start-up requirement of 210 mV is much

FIGURE 8. Two-stage redundant inverter from [79].

FIGURE 9. Three-stage redundant inverter from [79].

higher than the start-up voltage of the 2-stage redundant
inverter (57 mV) reported in [76]. One possible reason is
layout and measurement issues; another possible reason is
that their overall start-up circuit implementation is not as
optimum as the one reported in [76].

F. STACKED THREE-INVERTER CELL + SELF-BIAS
FEEDBACK INVERTER
In [80], an RO composed of gain-enhanced Stacked Body
Bias Inverters (SBBIs) is introduced. As shown in Fig. 11,
the RO is composed of Stacked Body Bias Inverters (SBBIs)
that are based on the conventional Self-Bias Inverter (SBI)
from [75], and stacked three-inverter (SI) from [76]. This
design was implemented in 0.18 µm CMOS process with a
deep N-well option. Simulation results showed that the RO
oscillates at 34 mV and generates a clock pulse with 88%
voltage swing from a 50 mV supply voltage. The reported
SBBI combines the advantages of both SBI and SI to enable
oscillation at extremely low supply voltage since the voltage
gain is improved by controlling the main inverter’s supply
(VDD and GND) and body-bias voltages simultaneously.

34122 VOLUME 12, 2024



M. Ahmed et al.: Recent Start-Up Techniques Intended for TEG EH: A Review

FIGURE 10. Chip micrograph of the fabricated redundant inverter cell
implemented in 65nm CMOS process from [79].

FIGURE 11. (a) RO from [80], and (b) individual delay cell composed from
combining [75], [76] techniques.

G. STACKED THREE-INVERTER CELL + DYNAMIC BODY
BIASING
An improved delay element based on work from [76]
for cold start-up RO was reported in [58]. As shown in
Fig. 12, all the transistors in the stacked inverter previously
presented in [76] are replaced by Deep N Well (DNW)
transistors. The body of all transistors is tied to the input
node such that the threshold of those transistors is controlled
by the input signal. Thus, by dynamically controlling the
transistors’ threshold voltage, the RO oscillates at a lower
supply voltage. Furthermore, post-layout simulation results
of this 21-stage RO show that it maintains oscillation under
VDD = 36 mV power supply, in addition to a wider swing
compared with other cold start-up ROs. The authors extended
their work to cover battery-assisted DC energy harvesting
systems in [58] to reduce battery replacement frequency by
realizing self-charging for rechargeable batteries. Thus, the
battery-assisted energy harvesting system can significantly
prolong battery life compared with conventional systems.
This was achieved by inserting a low Voltage Level Shifter
(VLS) to obtain a wider voltage range for biasing the body
of the delay element presented in [3], to enhance both its
Voltage Transfer Curve (VTC) and DC gain. Consequently,
the cold start-up 21-stage RO of the modified delay element,
implemented in 180 nm CMOS process, achieved oscillation
under 24mVVDD under a typical corner at room temperature.

FIGURE 12. Stacked Three-Inverter Cell + Dynamic Body Biasing delay
element from [58].

Although this design works with very low input voltage (the
lowest reported for fully integrated start-up solutions), the
issue of battery replacement remains.

H. PROCESS TOLERANT INVERTER CELL
The authors in [81] reported a successful start-up from a
60mV voltage produced by a TEG by employing an RO and a
40-stage charge pump. They proposed a new process tolerant
inverter cell, as depicted in Fig. 13, to be implemented
in the RO and driver circuits to ensure functionality in
different process corners. Fig. 14 shows the different corner
cases’ effects on the inverter cell. The inverter cell consists
of a pull-up PMOS network and an NMOS pull-down
network, consequently, the FS (fast-slow) and SF (slow-fast)
corners oppositely affect these networks. Thus, these corners
can result in inverter cell failure at small supply voltages.
Therefore, they propose the inverter cell depicted by Fig. 13.
To activate the auxiliary pull-up/down networks, a corner
detection circuit is needed to generate the higher voltages
necessary for their activation.

I. FEEDBACK BODY BIASING
In [19], some variations in the basic CMOS inverter cell
were presented to reduce its threshold voltage. This is
different from the ‘‘Self-bias feedback inverter’’ type reported
in [75]. as there is no extra feedback stages to provide
body biasing, instead, the body terminals of each NMOS
and PMOS transistors of each stage are connected to the
output voltage of the following stage as shown in Fig. 15,.
For example, in the two consecutive stages N, and N+1;
when the output voltage of stage N+1 transitions from low
to high, the output voltage of stage N transitions from high
to low. Consequently, the NMOS transistor of stage N turns
on. As VB,NMOS is connected to the output voltage of stage
N+1, the body voltage is high and the threshold voltage of the
NMOS decreases, which aids the NMOS to turn ON faster.
The same happens when stage N transitions from low to
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FIGURE 13. Process-tolerant inverter cell from [81].

FIGURE 14. Inverter from [81] in different process corners (a) FS corner,
(b) TT corner, and (c) SF corner.

FIGURE 15. Schematic of RO from [19] employing feedback body biasing
technique.

high. Therefore, a dynamic reduction in transistor threshold
voltages leads to a decrease in VDD. Consequently, these
authors reached a minimum voltage of 60 mV for the correct
operation of the bootstrap circuits and a maximum time of
400 ms for the circuit to start up.

J. SCHMITT TRIGGER DELAY CELL
The previously mentioned references either modify the basic
inverter delay cell structure or its biasing to realize the RO
used in TEG harvester start-up circuits. However, there is also
a very promising class of delay cells derived from the Schmitt
Trigger (ST) structure. First, we present a brief analysis
of basic ST structure and operation, followed by a review

FIGURE 16. Basic ST delay element structure [82].

of recent applications in the subthreshold operating region,
mainly on its application in TEG harvester start-up ROs.

1) ST STRUCTURE AND OPERATION
The classical CMOS ST is depicted in Fig. 16 [82]. Its
operation in weak inversion is studied in detail in [83].
However, we can explain its operating principle roughly as
follows: when the input is high, both N0 and N1 turn on,
and the output is low because of the path between the output
and the ground. This turns off N2 and turns on P2. Thus, VY
becomes low and this helps suppress the leakage through P0
and P1 by establishing a positive feedback loop. Similarly,
when the input is low, both P0 and P1 turn on, and the
output is high because of the path between the output and
VDD. This turns P2 off and turns N2 on. Thus, VX becomes
high and this helps suppress the leakage through N1 and
N0 by establishing a positive feedback loop. However, for
high-low input transition, initially, N2 is off and P2 is on,
while for low-high input transition, initially N2 is on and P2
is off. Effectively, these two situations result in two different
trip points of the ST, which characterizes the ST hysteretic
operation, However, aiming at sub 100 mV operation will
lead to the disappearance of hysteresis as explained in [83].

2) ST SUBTHRESHOLD OPERATION
As previously mentioned, supply voltage reduction is gen-
erally advantageous for supply-voltage-constrained applica-
tions like energy harvesting systems. However, it is limited
by on-to-off current ratios degradation with decreasing
supply. Thus, many works showed that the effective on-
to-off ratio can be considerably improved while operating
with lower supply voltage using the ST structure, which
reduces leakage from the output node effectively and thereby
stabilizes the output voltage level [74], [84]. For instance,
[85] presented a differential 10-transistor Static Random
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AccessMemory (SRAM) suitable for subthreshold operation,
using ST structure. This SRAM design was implemented in
0.13 µm CMOS technology, showing proper functionality
with a 160 mV supply voltage.

Additionally, the authors in [86] presented a minimalist
standard cell library based on the classical CMOS ST
inverter, optimized for 90 mV supply voltage operation.
The robustness of the ST library was verified through the
measurement of two frequency divider chains, using either
standard or ST logic. The ST logic managed to operate from
76 mV, while the conventional logic operated from 94 mV,
which confirms that ST logic allows standard cells operation
from very low supply voltages (of the order of 3x the thermal
voltage) even though it consumes more area and increases
delay as compared to conventional logic. Also, the operation
of digital circuits at 62 mV supply voltage was reported
in [74] without extra process or post-silicon tuning by
using ST. Therefore, ST is an effective solution for mitigating
global variations and decreasing supply voltage requirements,
while keeping an effective on-to-off ratio, in start-up circuits.
This is of great significance in our case, since it can yield an
effective RO operating well in the subthreshold region [87].

3) ST ADVANTAGES IN SUBTHRESHOLD REGION
First, ST voltage gain is much higher than that of the
conventional inverter. However, this comes at the expense of a
larger area occupied by the ST and lower operating frequency
at the same supply voltage. Nevertheless, at considerably high
supply voltage, the size of the transistors tends to be lower,
which means that the occupied area and operating frequency
of the ST tend to be similar to that of the conventional inverter.
Additionally, the ST is less sensitive to process, voltage,
and temperature (PVT) variations, and it can work as an
inverter at very low supply voltages, even in the presence of
PVT variations, because its Voltage Transfer Curve (VTC) is
well defined. Moreover, the optimized ST can theoretically
operate at 31.5 mV supply voltage at 300 K (provide a
voltage gain higher than unity), which is slightly lower than
the conventional inverter (36 mV). This result is significant
because it sets a new limit for the lower bound of the
supply voltage needed for ultralow-voltage circuits. However,
careful analysis of surrounding circuits is required since the
static noise margin of the ST is higher than the conventional
inverter, and noise present in the circuits tends to disturb
their operation [30], [88], [89]. Thus, there have been some
attempts to build ROs from STs to operate in the subthreshold
region.

4) ST-BASED RO
A comparison in [83] was reported between the ST and the
inverter-based ROs. Results showed that for VDD = 70 mV,
the inverter-based RO had 43.36 mV output voltage swing,
and the ST-based RO had 54.34 mV output voltage swing.
Furthermore, inverter-based ROs did not oscillate at supply

FIGURE 17. Selective ST delay element from [90].

voltages below 70 mV due to low voltage gain. However, the
ST-based RO oscillated at a supply voltage of 57 mV.

5) SELF-BIASED ST-BASED RO
Moreover, authors in [88] demonstrated through simulations
that self-biased ST-based RO (which uses STs as basic
cells, along with self-biasing by connecting the substrates
to the gates) can reach start-up voltages of around 40 mV.
Additionally, they demonstrated experimentally that it can
start up from supply voltages of around 50 mV. In particular,
it managed to reduce the minimum supply voltage by 5 to
6 mV in comparison with the stacked-inverter RO presented
in [76].

6) SELECTIVE ST-BASED RO
Furthermore, a modified ST (Selective ST (SST)-logic) was
presented in [90]. The SST cell, as shown in Fig. 17,
employs a standard ST cell, but adds two extra switches
in each feedback branch, and is derived by input signal
A. This strengthens the leakage suppression explained for
standard ST cells. The SST logic was utilized in startup
control circuitry (9-stage RO) and ultra-low voltage charge
pump driving circuits optimized for driving capacitive loads.
Consequently, the inductive DC-DC boost converter could
reach a minimum startup voltage of 70 mV using a TEG.

IV. SUMMARY OF SIGNIFICANT RESULTS FOUND IN THE
LITERATURE
Several start-up approaches for DC energy harvesting (EH)
technologies (TEGs considered as the primary example) were
presented in this paper. Each method offers some advantages
and also suffers from some limitations as summarized in
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TABLE 2. Overview of the reviewed subthreshold ring oscillators for start-up circuits.

Table 1. The ‘‘External Battery’’ approach is the simplest
start-up solution. However, unreliability and high cost render
it unsuitable for EH applications. On the other hand,
the ‘‘Extra-Fabrication-Process based’’ approach is more
suitable for EH applications as it enables low start-up voltages
without the need for external components. Nevertheless,
it is not compatible with standard CMOS technologies.
Both ‘‘Transformers’’ and ‘‘Multisource Energy Harvesting’’
approaches allow very Low start-up voltage with high
reliability, however, the added complexity and area overhead

of bulky external components pose a serious challenge.
Moreover, attempts to implement integrated versions still
suffer from severe efficiency degradation. Finally, the ‘‘DC-
AC-DC Conversion Using Oscillators’’ approach has two
effective oscillator categories: the first is using an LC tank
Oscillator; which resembles the ‘‘Transformers’’ approach
in both merits and limitations. The second is using RO;
which is considered the most promising solution as it is fully
integrated with good performance, compatible with regular
CMOS technology, less expensive, and needs only one
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energy source without compromising reliability. However,
to implement an effective RO start-up solution for energy-
constrained-harvesting applications, a simple inverter as the
delay element in a conventional RO will not suffice because
it requires a large supply voltage (a few hundred millivolts)
to ensure the correct logic operation. Consequently, many
researchers proposed new delay cells, applied new biasing
mechanisms, or combined both. The most significant results
from the past 10 years were analyzed and then summarised in
Table 2. Process Tolerant Inverter presented in [81] provides
a reliable solution to start up from low voltage. However,
it is possible to harness the same effect by designing the
RO using Fully Depleted Silicon On Insulator (FDSOI)
technology, which plays a robust role in minimizing process
variations without complexity, area, and power overhead
of a corner detection circuit; since the power constraint is
strict in energy harvesting systems. Employing a Feedback
inverter for body biasing is considered effective in lowering
transistors threshold value and lowering the minimum supply
voltage subsequently. Nevertheless, this doubles the number
of stages in the RO and increases power consumption.
Thus, we believe dynamic body biasing is more suitable
as implemented in [58]. Moreover, dynamic body biasing
combined with either the ‘‘Stacked Three-Inverter’’ cell [58]
or ‘‘ST’’ cell yields promising results as both cells provide
high performance in the subthreshold region due to advanced
leakage suppression. The area overhead can be neglected as
the final solution will be fully integrated but present similar
results to approaches that employ Off-chip components.

In general, for DC EH applications where reliability and
low supply voltage is of greater significance regardless of
the area, the ‘‘Transformers’’ approach is believed to be the
best suited, while for DC EH applications where small size
is critical, the most suitable technique is RO start-up using
stacked three-inverter or ST cell combined with dynamic
body biasing regardless of the used technology, however,
the FD-SOI technology is advisable as it minimizes process
variations and allows more effective dynamic body biasing.

V. CONCLUSION
Several start-up solutions for DC energy harvesting tech-
nologies (with TEGs considered as primary examples)
have been reviewed in this paper. Different solutions have
been categorized into 5 main approaches as those using:
External Battery, Extra-Fabrication-Process based, Trans-
formers, Multisource Energy Harvesting, and DC-AC-DC
Conversion Using Oscillators. The ‘‘DC-AC-DC Conversion
ROs’’ approach is considered the most promising in line
with DC energy harvesting applications because it has
several advantages over other approaches such as being
fully integrated with good performance, compatible with
regular CMOS technology, less expensive, and it needs
only one energy source without compromising reliability.
Finally, we evaluated various ‘‘DC-AC-DCConversion ROs’’
implementations to identify their respective advantages and
limitations. The overall perspective provided by this review

can be used as a foundation to propose better energy
harvesting solutions.
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